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Summary. In this paper we introduce and analyze two new
cost measures related to the communication overhead and
the space requirements associated with virtual path layouts
in ATM networks, that isthe edge congestionand thenode
congestion. Informally, the edge congestion of a given edgee
at an incident nodeu is defined as the number of VPs terminat-
ing at or starting fromuand usinge, while the node congestion
of a nodev is defined as the number of VPs havingv as an
endpoint. We investigate the problem of constructing virtual
path layouts allowing to connect a specified root node to all
the others in at mosth hops and with maximum edge or node
congestionc, for two given integersh andc. We first give tight
results concerning the time complexity of the construction of
such layouts for both the two congestion measures, that is we
exactly determine all the tractable and intractable cases. Then,
we provide some combinatorial bounds for arbitrary networks,
together with optimal layouts for specific topologies such as
chains, rings and grids.

Key words: Routing – ATM networks – Computational com-
plexity – Edge and node congestion

1 Introduction

TheAsynchronous Transfer Mode(ATM for short) is the most
popular networking paradigm for Broadband ISDN [13,12,
15]. It transfers data in the form of small fixed-sizecells, and
in order to achieve the stringent transfer rate requirements, is
based on two types of predetermined routes in the network:
virtual pathsor VPs, constituted by a sequence of successive
edges or physical links, andvirtual channelsor VCs, each
given by the concatenation of a proper sequence of VPs. Rout-
ing in virtual paths can be performed very efficiently by ded-
icated hardware, while a cell passing from one virtual path to
another one requires more complex and slower elaboration.
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Given a network and a set of connections to be established,
in order to provide the performance required by B-ISDN appli-
cations it is important that routing is performed in a hardware
fashion in most of the nodes a cell traverses, at the same time
limiting the number of virtual paths sharing a same physical
link [16,3,17,1,11].

A graph theoretical model related to thisATM design prob-
lem has been first proposed in [11,4]. In such a framework,
the VP layouts determined by the VPs constructed on the net-
work are evaluated mainly with respect to two different cost
measures: thehop count, that is the maximum number of VPs
belonging to aVC, which represents the number ofVP changes
of cells along their route to the destination, and theload, given
by the maximum number of virtual paths sharing an edge, that
determines the size of the VP routing tables (see, e.g., [5]).
Another relevant parameter is thestretch factor, i.e., the ratio
between the length of the path that a VC takes in the physical
graph and the shortest possible path between its endpoints.
This parameter controls the efficiency of the utilization of the
network. For further details and technical justifications of the
model for ATM networks see for instance [1,11].

While the problem of determiningVP layouts with bounded
hop count and load is NP-hard under different assumptions [11,
6], many optimal and nearly optimal constructions have been
given for various interconnection networks such as chain,
trees, grids and so forth [4,14,9,10,18,2]. A more detailed
list of these results can be found in [19].

In this paper we introduce and analyze two new cost mea-
sures associated to virtual path layouts: theedge congestion,
which is given by the maximum number of VPs terminating
or starting from a given edge at a given node, and thenode
congestion, that is the maximum number of VPs having as an
endpoint a given node. The main motivation behind these new
cost measures is due to the fact that while along a VP routing
is performed at hardware level with negligible delay, at the
end of the VP a non hardware route selection must be taken at
considerably higher cost. Even if in absence of resources con-
tention due to other cells delays are proportional to the number
of hops or traversed VPs, under the assumption of moderate
till bursty traffic along each VP, the effect of non hardware
routing decisions can seriously affect the delivering time if
the number of cells at the terminals of the VPs is not kept low
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or balanced. If an autonomous routing capability is given to
the input channels of ATM switches, this translates in a direct
way to devising VP layouts with a low edge congestion, while
if each switch is in charge of routing in a centralized way all
the cells arriving from all its input channels, then the node
congestion becomes the relevant parameter to be minimized.
Another important effect of the edge and node congestions is
that they directly influence the dimension of VC tables, as any
VP that increases the congestion of an edge or of a node causes
a number of entries in the corresponding VC table equal to the
number of VCs such a VP belongs to. Finally, the node conges-
tion allows to model the requirement of bounded degreeness
of the nodes, that is a real constraint in many practical cases.

Although the new congestion measures are not completely
unrelated with the edge load of [11,4], there are fundamental
differences that in general make the results provided for the
edge load not comparable to the ones for the edge and node
congestions (see Sect. 3). For instance, while a layout with
edge loadl has also edge congestionc ≤ l, the reverse in gen-
eral is not true and one can find layouts with small edge con-
gestion (c ≤ 2) and edge load linear in the number of nodes
(l ≥ N/2). Moreover, as will be shown in the sequel, fur-
ther differences hold when dealing with an unbounded stretch
factor, like in the results for grids provided in [14,2]. Simi-
lar considerations apply also to the node congestion and as a
consequence new layouts and methods are needed in order to
achieve optimal solutions.

As in [11] and [6], in this paper we focus on layouts that
enable the routing between all nodes and a single root node
(rather than between any pair of nodes), under the assumption
of a stretch factor equal to one, that is all the physical routed
paths are the shortest. In fact, this restricted case can be seen
as a building block for more complex routing problems and
nevertheless its simplicity has not been fully understood yet.
After a comparison with the existing performance measures
and some general properties and results, we give tight results
on the time complexity of constructing optimal rooted virtual
path layouts. We then provide some optimal layouts for spe-
cific networks, such as chains, rings and grids.

As a comparison with the previous edge load results for

grids, while our layouts yield an edge congestionc <
h√

N
2 ,

whereN is the number of nodes, in [2] it has been shown that
any layout with an unbounded stretch factor requires an edge

loadl = Ω( h

√
N2

h ), while it is possible to achievel ≤ h
h
√
N2.

Therefore, under the reasonable assumption thath = o(N),
our edge congestionc is below the lower bound in [2], even if
the stretch factor is equal to one. In fact, our layouts in general
have an edge loadl higher thanc. Similar arguments apply also
to the node congestion, thus giving a more precise evidence
of how the different cost measures can be highly unrelated.

The paper is organized as follows. In Sect. 2 we define
the preliminary notation and definitions. In Sect. 3 we discuss
the relationship between the new cost measures and the pre-
vious parameters, together with some basic results. In Sect. 4
we provide the above-mentioned time complexity results. In
Sect. 5 we present the optimal layouts for specific topologies
and finally, in Sect. 6, we give some concluding remarks and
list some open problems.

2 Preliminaries

We model the network as an undirected graphG = (V,E),
where nodes inV represent switches and edges inE are the
point-to-point physical communication links.

Definition 2.1 [11] A rooted virtual path layout(or simply
layout)Ψ is a collection of paths inG, termedvirtual paths
(VPs for short), and a noder ∈ V , termed theroot of the
layout.

Definition 2.2 [11] Thehop countH(v) of a nodev ∈ V in a
layoutΨ is the minimum number of VPs whose concatenation
forms a shortest path inG from v to r. If no such VPs exist,
defineH(v) ≡ ∞. Themaximal hop countof a layoutΨ is
Hmax(Ψ) ≡ maxv∈V {H(v)}.

Givenv ∈ V , let us denote asI(v) the set of the edges in
E incident tov.

Definition 2.3 Givenv ∈ V ande ∈ I(v), theedge conges-
tion E(e, v) of the edgee with respect tov in a layoutΨ is
the number of VPsψ ∈ Ψ that includee and havev as an
endpoint. Themaximal edge congestionEmax(Ψ) of a layout
Ψ ismaxv∈V,e∈I(v) E(e, v).

A layoutΨ with Hmax(Ψ) ≤ h andEmax(Ψ) ≤ c is called
a 〈h, c〉-edge layout.

At each node of the network, a more global congestion
measure can be considered which takes into account the total
cost required at the node.

Definition 2.4 Givenv ∈ V , thenode congestionN (v) of v
in a layoutΨ is the number of VPsψ ∈ Ψ such thatv is an
endpoint ofψ. Themaximal node congestionNmax(Ψ) of a
layoutΨ ismaxv∈V N (v).

A layoutΨ with Hmax(Ψ) ≤ handNmax(Ψ) ≤ c is called
a 〈h, c〉-node layout.

Clearly, the hop count and the edge (or node) congestion
are conflicting parameters, as in general a low hop count re-
quires an high congestion and a low congestion causes a high
hop count. Thus, a very natural problem arises in which one
parameter is traded off for the other. Moreover, once fixed two
boundsh andc respectively on the hop count and on the edge
(or node) congestion, in a parametric family of graphs it makes
sense to consider the problem of determining the highest order
graph that admits a layout respecting such bounds.

Definition 2.5 LetG be a family of graphs. For any two posi-
tive integershandc,EG(h, c) (resp.NG(h, c)) is definedas the
maximum integerN such that there exists anN -node graph
in G with a 〈h, c〉-edge layout (resp. a〈h, c〉-node layout).

For the sake of brevity, when clear from the context, we
will denoteEG(h, c) andNG(h, c) respectively asE(h, c) and
N(h, c).

Notice that all the above definitions assume a stretch factor
equal to one, i.e., all the physical routed paths are the shortest.
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3 Comparisons and basic properties

The congestion measures introduced in the previous section
and the edge load defined in [11] (maximum number of VPs
that share a physical edge) are not completely unrelated. In
fact, as it can be easily verified, an edge loadl implies an edge
congestion at mostl and a node congestion at most equall · δ,
whereδ is the maximum node degree.

On the other hand, apart from this relationship, it seems
that there is no strong connection between these parameters.
For instance, small edge and node congestions do not neces-
sarily imply a small load, as one can easily find VP layouts
with constant (edge or node) congestion and load linear in the
number of nodes. As an example, consider a VP layoutΨ for
a chain ofN nodes1, . . . , N with VPs〈i, i+ 1〉, 1 ≤ i < N ,
and 〈i,N − i〉, 1 ≤ i ≤ N/2. ThenΨ hasEmax(Ψ) = 2,
Nmax(Ψ) = 3 and edge load�N/2�.

Another basic difference is that for the new cost measures it
does not make sense to consider layouts with unbounded phys-
ical routed lengths. In fact, optimal layout constructions for
the node congestion case can always be determined when the
physical routed length is unbounded as follows. Consider any
ordering of the nodes, except the root. Then, the root reaches
through a VP in one hop the firstc nodes, and iteratively in the
order each reached node is assigned a VP to all the next(c−1)
unreached nodes. This always givesN(h, c) = c(c−1)h−2

c−2 in a
straightforward way. In the edge congestion case the construc-
tion is slightly more complicated, because nodes have to be
ordered non increasingly with respect to their degrees. Since
to the purpose of minimizing the edge congestion VPs have
not necessarily to correspond to simple physical paths, at ev-
ery node the incident VPs can be equally distributed among
its incident edges. Thus an optimal layout can be easily deter-
mined.

Optimal layouts can be easily found, still assuming un-
bounded physical routed lengths, even in the all-to-all case in
which, by respecting the bounds on the edge or node conges-
tion, each node wants to reach every other node in at most a
given number of hops. Here the construction becomes a pure
combinatorial graph design problem. In fact, if the node con-
gestion is bounded byc, there is a layout for a graphG within
a given hop counth if and only if there exists ac-bounded
degree graph with diameterh and the same number of nodes
of G. Any embedding of such a graph onG gives the desired
layout. A similar argument holds for the edge congestion, but
here there is a layout respectingh andc if there exists a graph
with the same number of nodes, diameterh and such that, if
we denote asdi the degree of nodei in the initial graphG, the
i-th node of the graph has degree at mostc · di.

We conclude the section with a simple counting argument
that allows to establish upper bounds on the number of nodes in
networks admitting〈h, c〉-edge layouts or〈h, c〉-node layouts.

Given a graphG with a specified root noder, we say that
a non root nodeu hasbranch parameterd if it has exactlyd
incident edges{u, v1}, . . . , {u, vd} such that for eachi, 1 ≤
i ≤ d, u is on a shortest path fromr to vi. Let the branch
parameter of a family of graphsG be the maximum branch
parameter of a non root node of a graph inG. Then, ifdr is the
degree of the rootr, in any layout with edge congestionc from
r it is possible to reach in one hop at mostc · dr nodes; each
node with hop count1 can then reach in another hop at most

cd other nodes (for a total ofcdr(cd) nodes), and this holds
for every node with hop count at least1, since the physical
routed paths have to be the shortest and thus each node can
use at mostd outgoing edges to reach other nodes. Hence,
E(h, c) ≤ 1 + cdr + cdr(cd) + cdr(cd)2 + . . .+ cdr(cd)h−1

and the following fact is proved.

Fact 3.1 Let G a family of graphs with branch parameter
d and root r of degree at mostdr. ThenE(h, c) ≤ 1 +
cdr

(cd)h−1
cd−1 .

Similarly, in a layout with node congestionc, starting from
r it is possible to reach in one hop at mostc nodes; each
node with hop count1 can then reach in another hop at most
c − 1 other nodes, and this holds for every node with hop
count at least1, since the VP through which a node is reached
contributes1 to its node congestion. Therefore,N(h, c) ≤
1 + c + c(c − 1) + c(c − 1)2 + . . . + c(c − 1)h−1 and the
following fact holds.

Fact 3.2 For any family of graphsG,N(h, c) ≤ c(c−1)h−2
c−2 .

As we will see in Sect. 5, nevertheless their conceptual
simplicity, Facts 3.1 and 3.2 allow to establish tight upper
bounds in all the considered topologies.

4 Time complexity results

In this section we show that constructing optimal layouts is in
general an NP-hard problem for both the two congestion mea-
sures. We first show that deciding the existence of an〈h, c〉-
edge layout is an NP-complete problem, even forh = 3 and
c = 1.

Theorem 4.1 Given a networkG = (V,E) and a rootr ∈ V ,
deciding the existence of a〈3, 1〉-edge layout forG with root
r is an NP-complete problem.

Proof First of all, observe that for anyh andc the problem
of deciding the existence of a〈h, c〉-edge layout is in NP, as
given a layoutΨ forG = (V,E) with a given rootr ∈ V , one
can easily check whetherE(e, v) ≤ c for every nodev and
incident edgee ∈ E and whetherHmax(Ψ) ≤ h (see [6]).

We prove the claim by providing a polynomial time re-
duction from3-SAT(known to be NP-complete; see [8]). An
instance of this problem is constituted by a boolean formulaf
overm variablesx1, . . . , xm, wheref is in conjunctive normal
form, i.e.,f is the conjunction ofg clausesc1, . . . , cg, each of
which is the disjunction of three literals. We want to determine
whether there exists a truth assignment forx1, . . . , xm which
satisfiesf .

Starting from an instance of3-SAT, we construct a graph
G that admits a〈3, 1〉-edge layout if and only iff is satisfiable.

LetG = (V,E), whereV = {r}∪V1 ∪V2 ∪V3 ∪V4, and
E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 (see Fig. 1), with:

V1 = {ua, ua | a = 1, . . . ,m}, V2 = {va | a = 1, . . . ,m},
V3 = {qa, qa | a = 1, . . . ,m}, V4 = {zb | b = 1, . . . , g},

and

E1 = {{r, ua}, {r, ua} | a = 1, . . . ,m},
E2 = {{ua, va}, {ua, va} | a = 1, . . . ,m},
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Fig. 1. The reduction graph for the〈3, 1〉-
edge layout problem

Fig. 2.Truth setting component and path layout for〈3, 1〉-edge layout
problem

E3 = {{va, qa}, {va, qa} | a = 1, . . . ,m},
E4 = {{qa, zb} | a = 1, . . . ,m , b = 1, . . . , g , xa ∈ cb},
E5 = {{qa, zb} | a = 1, . . . ,m , b = 1, . . . , g , xa ∈ cb}.

We call the subgraph ofG induced by nodesr, ua, ua, va,
qa, qa the a-th truth setting component ofG, as the restric-
tion of any〈3, 1〉-edge layoutΨ on this subgraph can be as-
sociated in a very natural way to a truth assignment forxa

(see Fig. 2). In fact, edge{r, ua} (resp.{r, ua}) must belong
to Ψ , otherwiseH(ua) = ∞ (resp.H(ua) = ∞), as we
have to route a physical shortest path fromr to ua (resp.ua).
SinceEmax(Ψ) = 1, no other VP can start fromr through
edges{r, ua} and{r, ua}. Moreover, one of the two edges
{ua, va} or {ua, va}, say{ua, va}, must form a VP (other-
wiseH(va) = ∞) and again, sinceEmax(Ψ) = 1, there is one
VP starting fromua (if not we simply add it respecting the
bound on the edge congestion and without increasing the hop
count of the other nodes) which steps through or terminates at
eitherqa orqa. In the first case the truth assignment associated
to xa is false, otherwise it is true. Notice that, ifxa is false
(resp. true), then〈va, qa〉 (resp.〈va, qa〉) must be a VP, so that
H(qa) = 3 < ∞ (resp.H(qa) = 3 < ∞).

Assume first that there is a truth assignment satisfyingf .
We show that there exists a〈3, 1〉-edge layoutΨ forG. TheVPs
of Ψ are constituted by all edges inE1 ∪E4 ∪E5 plus for each
a, 1 ≤ a ≤ m, the VP〈ua, va〉, and if the truth assignment
satisfiesxa (resp.xa), the VPs〈ua, va, qa〉 and〈va, qa〉 (resp.
〈ua, va, qa〉 and〈va, qa〉). Then, all nodesua, ua ∈ V1 have
hop count1, all verticesva ∈ V2 hop count2, all vertices
qa ∈ V3 such thatxa is false (resp. true) have hop count2
(resp.3), and all verticesqa ∈ V3 such thatxa is false (resp.
true) hop count3 (resp.2). Finally, each nodezb ∈ V4 has hop
count3, as there is at least one literal incb, sayxa (resp.xa),

which is satisfied, i.e. such that{qa, zb} (resp.{qa, zb}) is a
VP andH(qa) = 2 (resp.H(qa) = 2).

Assume now that there is a〈3, 1〉-edge layoutΨ forG and
let us show thatf is satisfiable. Consider the truth assignment
induced byΨ on the variablesx1, . . . , xm. For every clause
cb, by hypothesis nodezb has hop count at most3. If a literal
xa orxa belonging tocb is not satisfied, then it is not possible
to reachzb in 3 hops through VPs coming from thea-th truth
setting component. Therefore, there must exist at least one
literal of cb which is satisfied and since this is true for every
clause,f is satisfiable. ��

Even if for the sake of brevity in this paper we do not give
any further complexity result for the edge-congestion case, by
using proof techniques similar to those in [6] it is possible
to give an exact characterization of all the tractable and in-
tractable cases. In fact, the problem is NP-complete for anyh
andc, except for the casesh = 1 (anyc), andh = 2, c = 1,
for which a solution can be obtained in polynomial time by
means of suitable flow constructions. A detailed proof can be
found in the technical report associated to this paper [7].

A result analogous to Theorem 4.1 holds also for the node
congestion case.

Theorem 4.2 Given a networkG = (V,E), a root r ∈ V
and a positive integerc, deciding the existence of a〈2, c〉-
node layout forG with root r is an NP-complete problem.

Proof We show that the problem is NP-complete by providing
a polynomial time transformation from theDominating Set
problem (DS) (known to be NP-complete; see [8]). In DS we
have a universe setU = {u1, . . . , um} ofmelements, a family
{A1, . . . , Af} of f subsets ofU and an integerk ≤ f ; we want
to decide if there existk subsetsAj1 , . . . , Ajk

which coverU ,
i.e., such that

⋃k
i=1Aji = U .

Starting from an instanceIDS of DS, we construct a graph
G that admits a〈2, c〉-node layout withc = m if and only if
IDS admits a cover.

LetG = (V,E), whereV = {r} ∪V1 ∪V2 ∪V3 ∪V4 and
E = E1 ∪ E2 ∪ E3 ∪ E4 (see Fig. 3), with:

V1 = {va | a = 1, . . . ,m− k},
V2 = {qb | b = 1, . . . ,m− (f − k) − 1},
V3 = {wd | d = 1, . . . , f},
V4 = {ze | e = 1, . . . ,m},

and
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Fig. 3.The reduction graph for the〈h, c〉-node layout problem

E1 = {{r, va} | a = 1, . . . ,m− k},
E2 = {{v1, qb} | b = 1, . . . ,m− (f − k) − 1},
E3 = {{v1, wd} | d = 1, . . . , f},
E4 = {{wd, ze} | ue ∈ Ad}.

Informally, in the reduction graph each subsetAd corre-
sponds to the subgraph induced by nodewd and all nodesze

such thatue ∈ Ad, which are all connected towd. The idea un-
derlying our construction is that, since at mostk of the nodes
wd can be reached fromr in one hop, if there arek dominating
sets inIDS , then all nodes ofG can be reached fromr in at
most2 hops.

Assume that there arek dominating setsAj1 , . . . , Ajk
. We

show that there exists a〈2, c〉-node layout forG. The VPs of
Ψ are constituted by all edges inE1 ∪ E2 ∪ E4, the edges
{v1, wd} ∈ E3 such thatAd is not one of the dominating sets,
i.e. d �= ji, i = 1, . . . , k, and finally the VPs〈r, v1, wji

〉 for
i = 1, . . . , k (which correspond to thek dominating sets). By
construction,N (v) ≤ m = c for each nodev ∈ V . In order
to check whetherHmax(Ψ) ≤ 2, it suffices to observe that
all nodesva ∈ V1 are reached in one hop, nodesqb ∈ V2
are reached in two hops, nodeswd ∈ V3 not corresponding to
dominating sets are reached in two hops, nodeswji

∈ V2 cor-
responding to dominating sets are reached in one hop (through
the VP〈r, v1, wji〉), and as nodeswj1 , . . . , wjk

correspond to
thek dominating sets, all nodesze ∈ V4 are reached in two
hops, since each of them is connected to at least onewji

.
It remains to show that if there are notk dominating sets,

then no〈2, c〉-node layoutΨ forG exists. Consider any layout
Ψ for G. Notice first that each of the edges{r, va} must be-
long toΨ , otherwiseH(va) = ∞. Similarly, since each node
qb must be reached through a shortest path, either the edge
{v1, qb} or the path〈r, v1, qb〉 must be a VP ofΨ . Without
loss of generality we can assume that the first case holds, as
otherwise inserting{v1, qb} in the set of the VPs ofΨ and
replacing another VP starting fromv1 with a longer one di-
rectly from r, H(qb) = 2 and the hop count and node con-
gestion of all the other nodes can only be decreased. Then,
there aref nodeswd ∈ V3 to be reached along shortest paths
and this can be done only through the remainingf VPs, of
which k can start from the root andf − k from v1, yielding
respectively hop count1 and2. Hence, no node inV4 can be
reached in two hops without exploiting a VP starting from a
nodewd ∈ V3. Letwj1 , . . . , wjk

be thek nodes inV3 such that
H(wji) = 1, i = 1, . . . , k. Since there are notk dominating

sets, then at least one nodeze is not connected to any of the
nodeswj1 , . . . , wjk

, and thereforeH(ze) ≥ 3. ��
Like for the edge-congestion case, also here it is possible

to give an exact characterization of all the tractable and in-
tractable cases. In particular, observe that in the node conges-
tion case, once fixedh andc, the problem of determining the
existence of a〈h, c〉-node layout for any graphG has a poly-
nomial time-complexity, since from Fact 3.2 we know that the

number of nodes inG has to beN(h, c) ≤ c(c−1)h−2
c−2 , i.e., it

is always bounded by a constant. Hence, in all the intractable
cases eitherh or c or both are not constant, i.e. they are part of
the instance of the problem. Then, it is possible to show that
the node layout problem is NP-complete for any fixedh ≥ 2
(c not constant) and for anyc ≥ 3 (h not constant), while it
can be solved in polynomial time in all the remaining cases.
Again, for a detailed description see the technical report [7].

5 Results for specific topologies

In this section we give optimum layouts for specific topologies.
Let us consider first a chain or path of nodes with node set

V = {1, . . . N} and edge setE = {{i, i + 1}|1 ≤ i < N}.
In order to give worst case estimations on the longest chain
admitting a〈h, c〉-edge or〈h, c〉-node layout, we assumer = 1
as the root node.

Theorem 5.1 LetP be the family of chain (or path) graphs.

ThenE(h, c) = ch+1−1
c−1 andN(h, c) = c(c−1)h−2

c−2 .

Proof By Fact 3.1E(h, c) ≤ 1 + c ch−1
c−1 = ch+1−1

c−1 and by

Fact 3.2N(h, c) ≤ c(c−1)h−2
c−2 .

The lower bound onE(h, c) (resp.N(h, c)) follows by
observing that from the root of any chain it is possible to reach
the nextcnodes in one hop, and from each node with hop count
at least one again the first next unreachedc nodes (resp.c− 1
nodes), thus yieldingE(h, c) ≥ 1+c+c2+. . .+ch = ch+1−1

c−1

andN(h, c) ≥ 1+c+c(c−1)+. . .+c(c−1)h−1 = c(c−1)h−2
c−2 .

��
A ring graph consists of a node setV = {0, . . . , N − 1}

and an edge setE = {{i, (i+1)mod N}|0 ≤ i < N}.As a ring
is node-symmetric, without loss of generality it is possible to
choose any node as the root. By arguments similar to those
ones for chain graphs it is possible to prove the following
theorem.

Theorem 5.2 LetR be the family of ring graphs, thenE(h, c)
= 2 ch+1−1

c−1 − 1 andN(h, c) = c(c−1)h−2
c−2 if c is even, other-

wiseN(h, c) = 1 + (c−1)h+1−1
c−2 .

Proof Again, by Fact 3.1, takingdr = 2 andd = 1,E(h, c) ≤
1 + 2c ch−1

c−1 = 2 ch+1−1
c−1 − 1 and such an upper bound can

always be attained by observing that, similarly as for chains,
from the root it is possible to reach inh hopsc + c2 + . . . +
ch = ch+1−1

c−1 − 1 nodes clockwise andc
h+1−1
c−1 − 1 nodes

anti-clockwise, thus forming a〈h, c〉-edge layout for a ring of
2( ch+1−1

c−1 − 1) + 1 = 2 ch+1−1
c−1 − 1 nodes.
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Concerning the node congestion case, we distinguish be-
tween the case in whichc is even and the case in whichc is
odd.

In the former, by Fact 3.2,N(h, c) ≤ c(c−1)h−2
c−2 , and the

lower bound onN(h, c) follows by observing that from the
root it is possible to reach in one hop the closestc nodes, of
which c/2 clockwise and the otherc/2 anti-clockwise, and
from each node reached clockwise (resp. anti-clockwise) in at
least one hop again the first next unreached clockwise (resp.
anti-clockwise)c− 1 nodes, thus yieldingN(h, c) ≥ 1 + c+
c(c− 1) + . . .+ c(c− 1)h−1 = c(c−1)h−2

c−2 .
If c is odd, then either clockwise or anti-clockwise, say

clockwise, it is possible to reach at mostc−1
2 nodes. From each

of these nodes again clockwise it is possible to reach at most
otherc− 1 unreached nodes and so forth, till reaching within
h hops a total of at mostc−1

2 (1+(c−1)+ . . .+(c−1)h−1) =
c−1
2

(c−1)h−1
c−2 nodes. Since all the nodes must be reached along

shortest paths and the last two nodes reached respectively
clockwise and anti-clockwise must be adjacent, starting from
the root in the anti-clockwise direction it is possible to reach

at mostc−1
2

(c−1)h−1
c−2 + 1 nodes. This yieldsN(h, c) ≤ 1 +

c−1
2

(c−1)h−1
c−2 + c−1

2
(c−1)h−1

c−2 + 1 = 1 + (c−1)h+1−1
c−2 .

The lower bound onN(h, c) follows by observing that the
above construction can always be done in a ring with such a
number of nodes. In fact, reaching from the root in one hop the
closestc−1

2 nodes clockwise and the closestc−1
2 nodes anti-

clockwise, similarly as for chains,c−1
2

(c−1)h−1
c−2 nodes can al-

ways be reached clockwise andc−1
2

(c−1)h−1
c−2 anti-clockwise,

plus another one anti-clockwise through the remaining avail-
able VP from the root. ��

We now turn our attention to the2-dimensional extension
of chains, that is to grids.

Given a square gridGn×n of N = n2 nodes, with node
setV = {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ n} and edge setE =
{{(i, j), (i+ 1, j)}|1 ≤ i < n, 1 ≤ j ≤ n} ∪ {{(i, j), (i, j +
1)}|1 ≤ i ≤ n, 1 ≤ j < n}, again in order to give worst
case estimations on the largest grid admitting a〈h, c〉-edge or
〈h, c〉-node layout, we assumer = (1, 1) as the root node.

For the case of edge congestionc = 1, as stated by the
following theorem the dimension of the largest grid admitting
a〈h, c〉-edge layout is dominated by the maximum number of
nodes reachable inh hops along the first row or column.

Theorem 5.3 LetP2 be the family of square grid graphs, then
E(h, 1) = h2 if h ≤ 3, otherwiseE(h, 1) = (h+ 1)2.

Proof Observe first thatE(h, 1) ≤ �√N�2, whereN =
2h+1 − 1. In fact, by Fact 3.1, takingdr = 2 andd = 2,
the maximum number of nodes reachable inh hops fromr

is N ≤ (2c)h+1−1
2c−1 = 2h+1 − 1, and since every grid has a

quadratic number of nodes, that isn2 for a given integern ≥ 1,
n = �√N� is the maximum integer such thatn2 ≤ N . On the
other hand, the maximum number of nodes along the first row
or column reachable fromr in h hops ish+1 (r included), so
thatE(h, 1) ≤ (h + 1)2. Since�√N�2 = �√2h+1 − 1�2 ≤
h2 for h ≤ 3, by combining the above constraints we obtain
E(h, 1) ≤ h2 for h ≤ 3 andE(h, 1) ≤ (h + 1)2 for h > 3.

Layouts matching these upper bounds are explicitly shown in
Fig. 4 forh ≤ 4, together with the hop distance of each node
from the root. Note that forh = 4 we are able to build a lay-
out for a5 × 5 square grid such that at each node(i, 5) (resp.
(5, i)), i < 5, belonging to the right (resp. bottom) border
of the grid it resultsE((i, 5), {(i, 5), (i + 1, 5)}) = 0 (resp.
E((5, i), {(5, i), (5, i + 1)}) = 0). Therefore, we can build a
〈5, 1〉-edge layout for a6×6 square grids by using these edges
and edges{(i, 5), (i, 6)} and{(5, i), (6, i)}, still maintaining
the same property at the nodes(i, 6) and (6, i) with i < 6
belonging to the right or bottom border of the6 × 6 grid. In
general, this gives an inductive construction to obtain from a
〈h − 1, 1〉-edge layout for ah × h square grid a〈h, 1〉-edge
layout for a(h+ 1) × (h+ 1) square grid, for anyh ≥ 5. ��

Theorem 5.4 Let P2 be the family of square grid graphs.
Then, forc ≥ 4, E(h, c) = �√Nh,c�2, where

Nh,c = (2c)h+1−1
2c−1 .

Proof Again by Fact 3.1 withdr = 2 andd = 2, the maximum

number of nodes reachable inh hops isNh,c ≤ (2c)h+1−1
2c−1 ,

and since every grid has a quadratic number of nodes, the
upper bound onE(h, c) derives directly by observing that
n = �√Nh,c� is the maximum integer such thatn2 ≤ Nh,c.

In order to provide an optimal layout, given a square grid
G with at leastNh,c nodes, we define a gridoidGh as the
subgrid ofG induced by nodes(i, j) with i ≤ �√Nh,c�
and j ≤ �√Nh,c�, i.e., the�√Nh,c� × �√Nh,c� subgrid
induced by the first�√Nh,c� rows and columns, plus the
Nh,c − �√Nh,c�2 nodes starting from node(�√Nh,c�, 1),
going toward node(�√Nh,c�, �

√
Nh,c�) along row�√Nh,c�

and then, ifNh,c − �√Nh,c�2 > �√Nh,c�, up along column
�√Nh,c� taking nodes(�√Nh,c�−1, �√Nh,c�), (�

√
Nh,c�−

2, �√Nh,c�), and so forth.
Let the order ofGh benh = �√Nh,c�, that is the number

of rows or columns of the largest subgrid contained inGh. We
now show an incremental construction for layouts with edge
congestion at mostc such that, for any positive integerh, the
subgraph induced by all the nodes with hop count at mosth
is Gh (see Fig. 5). The theorem then follows by considering
the restriction of the layout on thenh × nh subgrid ofGh

containingn2
h = E(h, c) nodes.

ClearlyG0 contains only the root(1, 1) and a〈1, c〉-edge
layout forG1 can be easily constructed by putting a suitable
VP from the root to each node inG1. Let us now show when
h ≥ 1 how to construct from a〈h, c〉-edge layout forGh a
〈h + 1, c〉-edge layout forGh+1. Notice that, for any node
(i, j), all the nodes(i′, j′) with i′ ≤ i andj′ ≤ j belong to
a shortest path from(i, j) to the root(1, 1). Then, we first
have a set ofexpandingVPs that, for each rowi (resp. column
i) with 1 ≤ i ≤ nh, are between the nodes in rowi (resp.
columni) with hop counth (that is belonging toGh but not
to Gh−1) and the nodes in rowi (resp. columni) belonging
toGh+1 −Gh, so that each of them is reached inh+ 1 hops.
All the remaining available VPs from the nodes inGh −Gh−1
are used to reach the remaining not considered nodes(i, j) of
Gh+1 − Gh with i > nh andj > nh, i.e. in the right-down
corner.
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Fig. 4. (a) 〈2, 1〉-edge layout (dot-
ted) for a2×2 square grid graph; (b)
〈3, 1〉-edge layout for a3 × 3 grid;
(c) 〈4, 1〉-edge layout for a4 × 4
grid; (d) 〈4, 1〉-edge layout for a
5 × 5 grid with the inductive step to
get a〈5, 1〉-edge layout for a6 × 6
grid

Fig. 5.The incremental layout for grids

For any given rowi (resp. columni) with 1 ≤ i ≤ nh, let
dh be the number of nodes in rowi (resp. columni) belonging
toGh+1−Gh. Since each edge can have congestion at mostc,
in order to guarantee the correctness of the above incremental
construction we have to prove thatc · dh ≥ dh+1.

By construction,

dh ≤ nh+1 − nh + 1 = �√Nh+1,c� − �√Nh,c� + 1

≤
√

(2c)h+2 − 1
2c− 1

−
√

(2c)h+1 − 1
2c− 1

+ 2

=

√
(2c)h+1

2c− 1

(√
2c− 1

(2c)h+1 −
√

1 − 1
(2c)h+1

)
+ 2

≤
√

(2c)h+1

2c− 1

(√
2c− 1

2c
−
√

1 − 1
2c

)
+ 2

=

√
(2c)h+1

2c− 1

(√
(2c− 1)(2c+ 1)

2c
−
√

2c− 1
2c

)
+ 2

=
√

(2c)h+1

(√
2c+ 1 − 1√

2c

)
+ 2.

Similarly,

dh ≥ nh+1 − nh − 1 = �√Nh+1,c� − �√Nh,c� − 1

≥
√

(2c)h+2 − 1
2c− 1

−
√

(2c)h+1 − 1
2c− 1

− 2

>
√

(2c)h+1

(√
2c− 1√
2c− 1

)
− 2.

It is possible to verify that if4 ≤ c ≤ 11, h ≥ 2 or if
c ≥ 12, anyh it is

cdh > c
√

(2c)h+1

(√
2c− 1√
2c− 1

)
− 2c

≥
√

(2c)h+2

(√
2c+ 1 − 1√

2c

)
+ 2 ≥ dh+1.

A case analysis shows that the construction works also for
4 ≤ c ≤ 11 and0 ≤ h < 2. This completes the proof of the
theorem. ��

Tighter results can be determined for the node congestion
case. Notice first that no〈h, c〉-node layout withc ≤ 2 can
exist for a grid larger than2 × 2. In fact, for c = 1 it is
not possible to have a VP from the root(1, 1) to one of its
two neighbors(1, 2) and(2, 1), that in turn cannot be reached
through a shortest path. Ifc = 2, as the edges from(1, 1)
respectively to(1, 2) and(2, 1) must form two VPs, one of the
3 nodes(1, 3), (3, 1) and(2, 2) cannot be reached through a
shortest path.

For c ≥ 3 the following theorem holds.

Theorem 5.5 Let P2 be the family of square grid graphs.

Then, forc ≥ 3,N(h, c) = �
√

c(c−1)h−2
c−2 �2.

Proof By Fact 3.2 the maximum number of nodes reachable in

h hops isc(c−1)h−2
c−2 and the�

√
c(c−1)h−2

c−2 �2 upper bound on

N(h, c) follows by observing that every grid has a quadratic
number of nodes.

In order to provide a matching lower bound, again we
apply the gridoid method of Theorem 5.4, and the proof pro-
ceeds exactly as in Theorem 5.4 by considering the new value
c(c−1)h−2

c−2 for Nh,c.
Clearly the gridoidG0 contains only the root(1, 1) and a

〈1, c〉-node layout forG1 can be easily constructed by putting
a suitable VP from the root to each node inG1.
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Again, letnh = �√Nh,c� be the order ofGh, that is the
number of rows or columns of the largest subgrid contained
in Gh, and for any given rowi (resp. columni) with 1 ≤ i ≤
nh, let dh be the number of nodes in rowi (resp. columni)
belonging toGh+1 −Gh. Since each node has congestion at
mostc, in order to guarantee the correctness of the incremental
construction allowing to determine gridoidsGh for h > 1, we
have to prove thatc · dh ≥ dh+1.

By construction,

dh ≤ nh+1 − nh + 1 = �√Nh+1,c� − �√Nh,c� + 1

≤
√
c(c− 1)h+1 − 2

c− 2
−
√
c(c− 1)h − 2

c− 2
+ 2

=

√
c(c− 1)h

c− 2

(√
(c− 1) − 2

c(c− 1)h

−
√

1 − 2
c(c− 1)h

)
+ 2.

Similarly,

dh ≥ nh+1 − nh − 1 = �√Nh+1,c� − �√Nh,c� − 1

≥
√
c(c− 1)h+1 − 2

c− 2
−
√
c(c− 1)h − 2

c− 2
− 2

>

√
c(c− 1)h+1

c− 2
−
√
c(c− 1)h

c− 2
− 2

=

√
c(c− 1)h

c− 2
(√
c− 1 − 1

)− 2.

It is possible to verify that if3 ≤ c ≤ 6, h ≥ 6 or if c ≥ 7,
anyh it is

cdh > c

√
c(c− 1)h

c− 2
(√
c− 1 − 1

)− 2c

≥
√
c(c− 1)h+1

c− 2

(√
(c− 1) − 2

c(c− 1)h+1

−
√

(1 − 2
c(c− 1)h+1

)
+ 2

≥ dh+1.

A case analysis shows that the construction works also for
3 ≤ c ≤ 6 and0 ≤ h < 6, hence the theorem. ��

6 Conclusion and open problems

In this paper we have introduced and analyzed two new cost
measures related to the communication overhead and the space
requirements associated to virtual path layouts in ATM net-
works, that is theedge congestionand thenode congestion.

All the provided time complexity results are tight, and the
same holds for the layout constructions for specific topologies,
except for the cases of an edge congestionc = 2 andc = 3 in

grids. We are very close to the determination of these layouts,
but they are not incremental, that is the subset of the nodes
with hop count at most equal to a given integerh in general
does not form a gridoid. In fact, it is possible to see that in
these cases the incremental solution does not work, as there
are values ofh such that from the gridoid of the nodes with
hop count at mosth it is not possible to build the successive
one corresponding to a hop count at most equal toh+ 1.

An interesting issue to be pursued is the determination of
optimal path layouts for other network topologies. Moreover,
it would be interesting to extend all the results to all-to-all
layouts, where communication must be guaranteed between
any two pairs of nodes.

Besides the relationships discussed in Sect. 3, another open
question concerns the determination of further connections
between the new congestion measures and the load parameter
of [11,4].

Finally, while we have remarked that in this context it does
not make sense to consider an unbounded stretch factor, a case
worth to investigate is when the stretch factor is bounded by
a given real number greater than one.
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