
Finding the Most Vital Node of a Shortest Path�

Enrico Nardelli1,2, Guido Proietti1,2, and Peter Widmayer3

1 Dipartimento di Matematica Pura ed Applicata, Università di L’Aquila,
Via Vetoio, 67010 L’Aquila, Italy.
{nardelli,proietti}@univaq.it.

2 Istituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche,
Viale Manzoni 30, 00185 Roma, Italy.

3 Institut für Theoretische Informatik, ETH Zentrum,
CLW C 2, Clausiusstrasse 49, 8092 Zürich, Switzerland.

widmayer@inf.ethz.ch.

Abstract. In an undirected, 2-node connected graph G = (V, E) with
positive real edge lengths, the distance between any two nodes r and s
is the length of a shortest path between r and s in G. The removal of a
node and its incident edges from G may increase the distance from r to
s. A most vital node of a given shortest path from r to s is a node (other
than r and s) whose removal from G results in the largest increase of the
distance from r to s. In the past, the problem of finding a most vital node
of a given shortest path has been studied because of its implications in
network management, where it is important to know in advance which
component failure will affect network efficiency the most. In this paper,
we show that this problem can be solved in O(m + n logn) time and
O(m) space, where m and n denote the number of edges and the number
of nodes in G.

1 Introduction

The computational infrastructure throughout society is becoming increasingly
large and complex. Networks of workstations are vulnerable to attack and failure,
and it is generally recognized that the survivability of our computing systems is
a critical issue (IEEE Computer dedicated its August 2000 issue to this topic).
We are interested in a particular type of survivability: How is a communication
network affected by the failure of a component? In this paper, we consider the
effect that a node failure will have on a shortest path between two nodes. Our
scenario assumes that each message is routed along a shortest path in a com-
munication graph from its source to its destination. When a node on that path
fails, we need to replace the old route by a new one, preferably by a shortest
path in the graph that does not contain the failed node. Let us call this new
route a replacement (shortest) path; it will in general be longer than the path

� This work has been partially supported by the Research Training Network contract
no. HPRN–CT–1999–00104 funded by the European Union, and by the Research
Project REACTION, partially funded by the Italian Ministry of University.

J. Wang (Ed.): COCOON 2001, LNCS 2108, pp. 278–287, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Finding the Most Vital Node of a Shortest Path 279

it replaces, but it certainly will never be shorter. From a network management
point of view, it is desirable to know for a shortest path ahead of time which
node failure will result in the longest replacement path. Such a node is called a
most vital node, because its failure degrades the transmission from the source to
the destination most strongly.

The problem of finding a most vital node of a shortest path has been defined
and motivated by Corley and Sha [3]. More precisely, they considered the more
general problem of finding the k most vital nodes of a shortest path, that is the
k nodes whose removal will increase the distance between the source and the
destination node the most, and they gave an exponential algorithm for solving
the problem. For the case k = 1, an efficient implementation of their algorithm
requires O(mn+n2 log n) time, where m and n denote the number of edges and
the number of nodes in the underlying graph. Note that this is not better than the
trivial bound that we get by recomputing from scratch the replacement shortest
path for every node along the given shortest path. Later on, Bar-Noy et al. [2]
proved that, for arbitrary k, the problem is strongly NP-hard. Finally, Venema
et al. [13] studied the problem for k = 1 in a parallel computing environment,
providing a polynomial algorithm.

In a related scenario, nodes are reliable, but edges can fail. The problem of
finding a most vital edge on a shortest path has been studied extensively in the
past: We look for an edge whose failure leads to the longest replacement path
[1,2,3]. Now, naturally a replacement path is just a path avoiding the failed edge.
Let us assume that the source and destination nodes lie in a 2-edge connected
component of the given graph; otherwise, a most vital edge is just a bridge
between these nodes, and that is easy to find. The fastest algorithm to compute
most vital edges on a pointer machine runs in O(m+n log n) time and O(m) space
[6]. On a RAM, there is an algorithm to solve the problem (and an interesting
variant of it defined in [7]) in O(m · α(m, n)) time and O(m) space [8], where
α(m, n) denotes the functional inverse of the Ackermann function defined in [12].

In this paper, we show that the problem of finding a most vital node for a
shortest path in a 2-node connected, undirected and positively weighted graph
can be solved on a pointer machine in O(m+n log n) time and O(m) space. The
efficiency of our algorithm is based on two considerations. First, we make use
of specific structural properties of replacement paths in the computation. This
is realized by means of a priority queue that stores certain distance values for
certain nodes. Unfortunately, the priority queue contains distance values that
would lead to an incorrect result if they ever would be used, and it also contains
the desired distance values leading to the correct result. The reason for this
mix is algorithmic performance: We have no way of efficiently distinguishing
between both, but we make sure that the algorithm never uses the undesired
values. Second, we perform this computation incrementally as we visit the nodes
along the shortest path.

The paper is organized as follows: In Section 2 we define the problem formally
and give the required basic definitions. In Section 3, we present the structural

280 Enrico Nardelli, Guido Proietti, and Peter Widmayer

properties of replacement paths, along with our algorithm. Finally, Section 4
discusses modifications and further applications, and lists some open problems.

2 Basic Definitions

Let G = (V, E) be an undirected graph, where V is the set of nodes and E ⊆
V × V is the set of edges. Let n and m denote the number of nodes and the
number of edges, respectively, and, for each e ∈ E, let w(e) be a positive real
length. A graph H = (V (H), E(H)) is called a subgraph of G if V (H) ⊆ V and
E(H) ⊆ E. If V (H) = V then H is called a spanning subgraph of G.

A simple path (or a path for short) in G is a subgraph P with V (P) =
{v0, v1, . . . , vk|vi �= vj for i �= j} and E(P) = {(vi, vi+1)|0 ≤ i < k}, also
denoted as P (v0, vk) = 〈v0, . . . , vk〉. Path P (v0, vk) is said to go from v0 to vk

or, alternatively, to be between v0 and vk. Its length is the sum of the lengths of
the path edges, and will be denoted as |P (v0, vk)|. A graph G is connected if, for
any two nodes u, v ∈ V , there exists a path in G going from u to v. A connected
acyclic spanning subgraph of G is called a spanning tree of G. Let G − v denote
the graph obtained by removing from G the node v and its incident edges. A
graph G is 2-node connected if for any v ∈ V , G − v is connected.

A path between two nodes r and s is shortest in G if it has minimum length
among all the paths in G between r and s. In this case, we denote the path by
PG(r, s), and its length, also known as the distance in G between r and s, by
dG(r, s). For a distinguished node r ∈ V , called the source, and all the nodes
v ∈ V \ {r}, a single-source shortest paths tree (SPT) SG(r) in G is a spanning
tree of G rooted in r and formed by the union of shortest paths, with one shortest
path from r to v for each v ∈ V \ {r}.

Let PG−v(r, s) be a shortest path between r and s in G−v, named a replace-
ment shortest path for v, and let dG−v(r, s) denote its length. The most vital node
(MVN) problem with respect to PG(r, s) asks for finding a node v∗ ∈ V \ {r, s}
such that dG−v∗(r, s) ≥ dG−v(r, s), for any v ∈ V \ {r, s}.

3 An Efficient Solution of the MVN Problem

Let PG(r, s) = 〈v0, v1, . . . , vk〉 be a shortest path between r = v0 and s = vk in G.
First of all, notice that a node (other than r and s) whose removal increases the
distance between r and s must belong to the node set {v1, . . . , vk−1}. Therefore,
in the following, we will consider only the removal of the nodes along the path.

3.1 The Structural Properties of Replacement Shortest Paths

In this section, we present the structural properties of replacement shortest paths
that will form the basis for the efficiency of our algorithm.

Let SG(r) denote a SPT in G rooted at r and containing PG(r, s), and let
vi, 1 ≤ i ≤ k − 1, be a node on PG(r, s). When node vi and its incident edges
are removed from G, SG(r) is partitioned into a set of subtrees, that we classify
as follows (see Figure 1):

Finding the Most Vital Node of a Shortest Path 281

r

vi�1

SG(r)

Nodes in Di

vi

Nodes in Ui

Nodes in Oi

vi+1

: : : : : :

s

Fig. 1. Node vi is removed from G: SG(r) is partitioned into a set of subtrees, with
node sets Ui, Oi and Di.

1. the subtree of SG(r) containing the parent vi−1 of vi; we call the nodes of
this subtree the upwards nodes of vi, and we denote them as Ui;

2. the subtree of SG(r) containing the child vi+1 of vi; we call the nodes of this
subtree the downwards nodes of vi, and we denote them as Di;

3. all the remaining subtrees of SG(r); we call the nodes of the union of all
these subtrees the outwards nodes of vi, and we denote them as Oi.

In the rest of the paper, we will make use of the following properties, that
hold for i, j = 1, . . . , k − 1 and j �= i:

(P1:) Ui ∪ Oi ∪ Di = V \ {vi};
(P2:) Ui,Oi and Di are pairwise disjoint;
(P3:) Ui ⊂ Ui+1;
(P4:) Di+1 ⊂ Di;
(P5:) Oi ∩ Oj = ∅.

We start by observing that for nodes in Ui, the shortest path to r does not
contain vi. This immediately implies the following:

Lemma 1. For each node u ∈ Ui, dG(r, u) = dG−vi(r, u). ��
On the other hand, for nodes in Di, we have that the distance to s does not

change when vi is removed:

Lemma 2. For each node u ∈ Di, dG(s, u) = dG−vi(s, u).

Proof. Suppose, for the sake of contradiction, that dG(s, u) �= dG−vi(s, u). Let
SG(s) be a SPT in G rooted in s containing PG(r, s). From dG(s, u) �= dG−vi

(s, u),

282 Enrico Nardelli, Guido Proietti, and Peter Widmayer

it follows that every shortest path in G between s and u, in particular PG(s, u)
in SG(s), contains vi. Therefore, PG(s, u) has to contain its parent vi+1 in SG(s).
Hence, the edge ei = (vi, vi+1) belongs to PG(s, u), and since subpaths of shortest
paths are shortest paths, we have that

dG(vi+1, u) = w(ei) + dG(vi, u) > dG(vi, u).

On the other hand, by the fact that u ∈ Di, we have that PG(r, u) in SG(r)
contains vi and vi+1. Hence, since subpaths of shortest paths are shortest paths,
we have that

dG(vi, u) = w(ei) + dG(vi+1, u) > dG(vi+1, u),

that is, we have a contradiction. ��
Let E(Ui ∪ Oi,Di) ⊂ E be the cut induced by Di in G − vi, i.e., the set of

edges of G − vi with one end node in Ui ∪ Oi and the other one in Di. In the
following, an edge f = (x, y) ∈ E(Ui ∪ Oi,Di) will be considered as having node
y in Di. Edges in E(Ui ∪Oi,Di) will be named the crossing edges associated with
vi. Since any replacement shortest path for node vi must use a crossing edge,
the length of the path can be expressed as follows:

dG−vi(r, s) = min
f=(x,y)∈E(Ui∪Oi,Di)

{dG−vi(r, x) + w(f) + dG−vi(y, s)}. (1)

This immediately suggests an algorithm to solve the MVN problem, but
unfortunately we do not know how to compute all the dG−vi(r, x) distances
sufficiently fast, since this might require the computation, for each node vi on
PG(r, s), of the SPT rooted in r in G − vi. Therefore, let us look at replacement
shortest paths more closely. In a path in G − vi from r to s, let us call the path
node y ∈ Di closest to r the entry node (into Di) of the path. We can prove that,
to minimize (1), not all the distances in G − vi between r and nodes in Ui ∪ Oi

need to be computed:

Lemma 3. Any replacement shortest path for node vi can be expressed as a
concatenation of PG−vi−Di

(r, x), edge (x, y) and PG(y, s), where y is the entry
node into Di, PG−vi−Di

(r, x) is a shortest path from r to x in G − vi − Di, and
PG(y, s) is a shortest path from y to s in G.

Proof. Since r is not contained in Di, but s is, there is a first node on the
path traced from r towards s that belongs to Di. Call that node y, and call its
predecessor on the path x. This proves the first and second part of the claim.
Part three is due to Lemma 2. ��

3.2 Computing Components of Distances

Lemma 3 allows us to compute replacement shortest paths as follows. First, we
compute in G a SPT rooted in s. This gives us all distances dG−vi

(y, s) for

Finding the Most Vital Node of a Shortest Path 283

y ∈ Di, i = 1, . . . , k − 1. Second, we compute all paths PG−vi−Di
(r, x) from r

to x ∈ Ui ∪ Oi, i = 1, . . . , k − 1. This is described in more detail in the follow-
ing paragraph. Third, we compose these distance components by inspecting all
crossing edges as we go along the nodes vi, i = 1, . . . , k − 1. This is described in
more detail in Section 3.3.

For x ∈ Ui, from Lemma 1 we have dG−vi−Di
(r, x) = dG(r, x), and therefore

the SPT rooted in r that contains PG(r, s), denoted as SG(r), gives us all these
values. The remaining more interesting task is the computation of dG−vi−Di(r, x)
for x ∈ Oi. We propose to do this as follows, making use of SG(r). When node
vi, 1 ≤ i ≤ k − 1, is removed, we consider the subtree of SG(r) induced by Ui –
which is of course a SPT rooted in r of the subgraph of G induced by the node set
Ui. Then we compute the distance from r to all the nodes in Oi in the subgraph
of G induced by Ui ∪ Oi. We do this by applying Dijkstra’s algorithm [4] in the
following way to the nodes in Oi, starting from the precomputed distances for
Ui. Let E(Ui,Oi) be the subset of edges in E having one end node in Ui and
the other one in Oi, let E(Ui, x) be the subset of edges in E(Ui,Oi) having one
end node in Ui and the other one in x ∈ Oi, and let E(Oi,Oi) be the subset of
edges in E having both end nodes in Oi. We create an initially empty heap Hi,
inserting into it all the nodes x ∈ Oi, with key

k(x) =

{
min

f=(u,x)∈E(Ui,x)
{dG−vi(r, u) + w(f)} if E(Ui, x) �= ∅;

+∞ otherwise.
(2)

Afterwards, we extract theminimum k(x) fromHi; this gives us dG−vi−Di(r,x).
Then, we update the keys of adjacent nodes still appearing in Hi, by making use
of edges in E(Oi,Oi), exactly as in Dijkstra’s algorithm. The algorithm iterates
until Hi is empty.

This algorithm has an efficient implementation, as expressed in the following
lemma:

Lemma 4. The values dG−vi−Di(r, x) for all nodes x ∈ Oi, i = 1, . . . , k −1, can
be computed in O(m + n log n) time and O(m) space.

Proof. The initial computation of SG(r) takes O(m + n log n) time and O(m)
space [5]. Throughout the k − 1 iterations in our algorithm, k − 1 = O(n) heaps
are created. Let ni denote the number of nodes of Oi, and let mi = |E(Ui,Oi)∪
E(Oi,Oi)|. On heap Hi, we perform O(ni) Insert operations, and from Lemma 1,
key initialization can be performed in O(mi) time once SG(r) has been computed.
Moreover, we perform O(ni) ExtractMin and O(mi) DecreaseKey operations. By
using Fibonacci heaps [5], for all the nodes x ∈ Oi, dG−vi−Di

(r, x) can then be
computed in O(mi + ni log ni) time.

Since each DecreaseKey operation is associated with an edge of G, and each
edge of G is considered at most twice, and given that sets Oi are disjoint, we
finally have that the total time is

k−1∑
i=1

O(mi + ni log ni) = O(m + n log n).
✷

284 Enrico Nardelli, Guido Proietti, and Peter Widmayer

3.3 Combining Components of Distances

We are now ready to combine the distance components computed so far. We first
give a description of the algorithm, and we then analyze its correctness and its
time and space complexity.

We consider the nodes v1, . . . , vk−1 in this order along PG(r, s), and when the
node vi is considered, we maintain in a heap H the set of nodes Di associated
with it. For each node y ∈ Di, we consider the subset of edges in E(Ui ∪ Oi,Di)
incident to y, denoted as E(Ui ∪ Oi, y). In the heap, with node y a key k(y) is
associated that satisfies the following condition immediately before a FindMin
operation on H is performed:

k(y) = min
f=(x,y)∈E(Ui∪Oi,y)

{dG−vi−Di
(r, x) + w(f) + dG(y, s)}. (3)

Notice that in general, this key value is not the length of a shortest path in
G−vi from r to s through y, but, as we explained in Section 3.1, we cannot afford
to maintain these latter values. We will show later that these keys, however, give
us sufficient information to solve the problem.

The algorithm works in stages. At the beginning, the heap H is created for
D0, that is, all the nodes in the subtree D0 rooted at v1 in SG(r) are inserted,
with arbitrarily large keys associated. At the ith stage, we consider the node vi

on PG(r, s), and we update the heap in the following way:

Step 1: We remove from H the node vi and the nodes Oi associated with it.
(Comment: This leaves exactly the nodes in Di in H; we update their keys
in Steps 2 and 3.)

Step 2: We consider all the nodes in Oi; for each such node x, we inspect its
incident edges, and we limit further actions on those crossing into Di. Let
f = (x, y) be one of these crossing edges, if any, and let

k′ = dG−vi−Di
(r, x) + w(f) + dG(y, s), (4)

where dG−vi−Di(r, x) has been computed by means of the procedure de-
scribed in Section 3.2. If k′ < k(y), we decrease the key of y in H to value
k′. (Comment: When this step is completed, all the crossing edges associated
with vi and induced by its removal have been exhausted.)

Step 3: We then consider all the nodes in vi−1 ∪ Oi−1; for each node x in
this set, we look at its incident edges, and we limit further actions on those
crossing into Di. Let f = (x, y) be one of these crossing edges, if any, and let

k′ = dG(r, x) + w(f) + dG(y, s). (5)

If k′ < k(y), we decrease the key of y in H to value k′. (Comment: When
this step is completed, all the crossing edges associated with vi and induced
by the reinsertion of vi−1 have been exhausted, and the corresponding key
maintenance in the heap is complete.)

Finding the Most Vital Node of a Shortest Path 285

Step 4: We finally find the minimum of H. (Comment: We will prove shortly
that the key associated with this minimum is exactly the length of a replace-
ment shortest path in G − vi between r and s, that is dG−vi(r, s).)

When all stages 1, . . . , k−1 have been completed, a most vital node can then
be determined as a node vj on PG(r, s) such that

dG−vj
(r, s) = max

i=1,...,k−1
{dG−vi

(r, s)}. (6)

Let us now prove that our algorithm indeed computes at each stage the length
of a corresponding replacement shortest path.

Lemma 5. The minimum key found in H at the ith stage is the length of a
replacement shortest path between r and s in G − vi.

Proof. We prove the lemma in two steps. First, we prove that each key in the
heap H, say k(y) for node y, is the length of a shortest path in G−vi from r to s
through the entry node y. The reason is that our algorithm inspects all crossing
edges (x, y) incident to y, and keeps track of the best.

Second, we prove that at least one node in the heap has a key corresponding
to the length of a replacement shortest path between r and s in G − vi. In
fact, for any replacement shortest path P in G − vi, the corresponding entry
node y is in H. Let x be its predecessor on P . Then, k(y) equals the length of
P , because the prefix of P from r to x is contained in G − vi − Di, and then
dG−vi−Di(r, x) = dG−vi(r, x). Therefore, (1) and (3) are both minimized when
edge (x, y) is considered, and k(y) = dG−vi(r, s). ��

The following theorem can finally be proved:

Theorem 1. A most vital node on a shortest path PG(r, s) between two nodes r
and s in a 2-node connected, undirected graph G = (V, E) with n vertices and m
edges, with positive real edge lengths, can be determined in O(m + n log n) time
and O(m) space.

Proof. The correctness of the above algorithm derives from Lemma 5. The time
complexity follows from that of Lemma 4 for the initial phase. This allows us
to compute (4) in O(1) time for each crossing edge. Clearly, (5) can be com-
puted in O(1) time for each crossing edge as well, once SG(r) and SG(s) have
been computed. Globally, we perform O(m) computations of (4) and (5), since a
crossing edge is checked at most twice, once each in Step 2 and Step 3. Then,
we make use of a Fibonacci heap [5] for maintaining H. Since each node of G is
inserted into the heap and removed from it at most once, we have a single Make-
Heap, O(n) Insert, k − 1 = O(n) FindMin, O(n) Delete and O(m) DecreaseKey
operations (since a key may be decreased only when a new crossing edge is con-
sidered), and thus we obtain a total time of O(m+ n log n) for heap operations.
The time complexity for other tasks is respectively O(m+n log n) time for com-
puting SG(r) and SG(s), O(n) time for managing sets Oi, i = 1, . . . , k − 1, and
O(n) time for computing (6). Finally, O(m) space is trivially enough to handle
all the operations. Thus, the claim follows. ��

286 Enrico Nardelli, Guido Proietti, and Peter Widmayer

4 Discussion

In this paper we have presented a fast solution to the problem of finding a most
vital node along a shortest path PG(r, s) between two nodes r and s in a graph
G. Implicitly, our algorithm computes not only the lengths of replacement paths,
but also the paths themselves; it can be easily modified to do so explicitly. It
runs in O(m + n log n) time and O(m) space, which, as far as we know, is the
first improvement over the trivial bound of O(nm + n2 log n) time and O(m)
space that we get by recomputing a replacement shortest path between r and s
from scratch after the removal of each node along PG(r, s).

In some applications, such as transportation networks, it appears to be more
realistic to associate costs with both, nodes and edges, instead of only one type of
network components. Our approach also answers the corresponding more general
question that suggests itself: In a graph where both edges and nodes have a non-
negative cost, and where both edges and nodes can fail, what is a most vital
edge or node on a shortest path? The algorithm can be modified slightly and
still runs within the same asymptotic bounds for this more general question, for
two reasons. First, edge failures can be modelled as node failures, when each
edge is replaced by a path of length two with an extra node in the center of that
path; then, the failure of the extra node represents the failure of the original edge.
Second, Dijkstra’s algorithm can be adapted easily to work also for shortest path
computations in graphs with costs on edges and nodes, where the cost of a path
is the sum of the costs of its edges and nodes. Obviously, both modifications do
not change the asymptotic bounds for the runtime and the storage space.

Our algorithmic solution is also useful in quite a different application con-
text. In large networks, components (nodes and edges) may be owned by different
owners. The incentive of an owner of a component to forward a message, nat-
urally, is to get some reward. In standard economic terms, that reward is the
price of the service of forwarding the message. It is economically desirable that
each owner declares the true price for the service that its component offers, so as
to allocate the overall resources in a best possible way. Nevertheless, there is an
incentive for owners to speculate and ask for a higher price, in the hope of getting
a higher profit. This leads to economically suboptimal resource allocation and
is therefore undesirable. A few studies in the computer science literature have
devoted their attention to setting the boundary conditions in such a way that
speculating with high prices does not pay off. This is known as mechanism de-
sign for selfish agents [9,10,11]. In [10], Nisan is explicitly suggesting a rewarding
model for forwarding messages on paths, based on microeconomic theory, that
requires the computation of replacement path lengths for edges. This model as-
sumes that only edges charge a price for forwarding a message; nodes perform
their service for free. Here, again, it would be more realistic to have a price for
both, edges and nodes, than a limitation of the pricing to the edges alone. A
straightforward modification of the charging scheme from [10] to node and edge
prices serves the desired purpose. Now, the modification of our algorithm for
node and edge costs and failures is an efficient implementation of the required
replacement path computations.

Finding the Most Vital Node of a Shortest Path 287

Our solution is efficient, but it is still open whether it is optimal. Notice
that to improve our solution, a faster computation of a single source shortest
paths tree must be provided. For more general settings there are still many open
problems; one of them deals with multiple edge or node failures on a shortest
path.

References

1. M.O. Ball, B.L. Golden and R.V. Vohra, Finding the most vital arcs in a network,
Oper. Res. Letters, 8 (1989) 73–76.

2. A. Bar-Noy, S. Khuller and B. Schieber, The complexity of finding most vital
arcs and nodes. TR CS-TR-3539, Institute for Advanced Studies, University of
Maryland, College Park, MD, 1995.

3. H.W. Corley and D.Y. Sha, Most vital links and nodes in weighted networks, Oper.
Res. Letters, 1 (1982) 157–160.

4. E.W. Dijkstra, A note on two problems in connection with graphs, Numer. Math.,
1 (1959) 269–271.

5. M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved net-
work optimization algorithms, Journal of the ACM, 34 (3) (1987) 596-615.

6. K. Malik, A.K. Mittal and S.K. Gupta, The k most vital arcs in the shortest path
problem, Oper. Res. Letters, 8 (1989) 223–227.

7. E. Nardelli, G. Proietti and P. Widmayer, Finding the detour-critical edge of a
shortest path between two nodes, Info. Proc. Letters, 67 (1) (1998) 51–54.

8. E. Nardelli, G. Proietti and P. Widmayer, A faster computation of the most vital
edge of a shortest path between two nodes, Info. Proc. Letters, to appear. Also
available as TR 15-99, Dipartimento di Matematica Pura ed Applicata, University
of L’Aquila, L’Aquila, Italy, April 1999.

9. N. Nisan, Algorithms for selfish agents, Proc. of the 16th Symp. on Theoretical
Aspects of Computer Science (STACS’99), Lecture Notes in Computer Science,
Vol. 1563, Springer, (1999) 1–15.

10. N. Nisan and A. Ronen, Algorithmic mechanism design, Proc. of the 31st Annual
ACM Symposium on Theory of Computing (STOC’99), (1999) 129–140.

11. J.S. Rosenschein and G. Zlotkin, Rules of Encounter: Designing Conventions for
Automated Negotiation Among Computers. MIT Press, Cambridge, Massachusetts,
1994.

12. R.E. Tarjan, Efficiency of a good but not linear set union algorithm, Journal of
the ACM, 22 (1975) 215–225.

13. S. Venema, H. Shen and F. Suraweera, A parallel algorithm for the
single most vital vertex problem with respect to single source short-
est paths, Online Proc. of the First Int. Conf. on Parallel and Dis-
tributed Computing, Applications and Technologies (PDCAT’2000), Chapter 22,
http://www2.comp.polyu.edu.hk/PDCAT2000/publish.html.

	Introduction
	Basic Definitions
	An Efficient Solution of the MVN Problem
	The Structural Properties of Replacement Shortest Paths
	Computing Components of Distances
	Combining Components of Distances

	Discussion
	References

