
DOI: 10.1007/s00453-002-0988-z

Algorithmica (2003) 35: 56–74 Algorithmica
© 2002 Springer-Verlag New York Inc.

Swapping a Failing Edge of a Single Source
Shortest Paths Tree Is Good and Fast1

Enrico Nardelli,2 Guido Proietti,2 and Peter Widmayer3

Abstract. Let G = (V, E) be a 2-edge connected, undirected and nonnegatively weighted graph, and let
S(r) be a single source shortest paths tree (SPT) of G rooted at r ∈ V . Whenever an edge e in S(r) fails,
we are interested in reconnecting the nodes now disconnected from the root by means of a single edge e′
crossing the cut created by the removal of e. Such an edge e′ is named a swap edge for e. Let Se/e′ (r) be the
swap tree (no longer an SPT, in general) obtained by swapping e with e′, and let Se be the set of all possible
swap trees with respect to e. Let F be a function defined over Se that expresses some feature of a swap tree,
such as the average length of a path from the root r to all the nodes below edge e, or the maximum length,
or one of many others. A best swap edge for e with respect to F is a swap edge f such that F(Se/ f (r)) is
minimum.

In this paper we present efficient algorithms for the problem of finding a best swap edge, for each edge e of
S(r), with respect to several objectives. Our work is motivated by a scenario in which individual connections
in a communication network suffer transient failures. As a consequence of an edge failure, the shortest paths to
all the nodes below the failed edge might completely change, and it might be desirable to avoid an expensive
switch to a new SPT, because the failure is only temporary. As an aside, what we get is not even far from a
new SPT: our analysis shows that the trees obtained from the swapping have features very similar to those of
the corresponding SPTs rebuilt from scratch.

Key Words. Network survivability, Single source shortest paths tree, Swap algorithms.

1. Introduction. Survivability of a communication network denotes the ability of the
network to remain operational even if individual network components (such as a link
or even a node) fail. In the past few years, several survivability problems have been
studied intensely [4]. From the practical side, this has largely been a consequence of
the replacement of metal wire meshes by fiber optic networks: Their extremely high
bandwidth makes it economically attractive to make networks as sparse as possible. In
the extreme, a network might be designed as a spanning tree of some underlying graph
of all possible links. A sparse network, however, is more vulnerable to failures, in the

1 This work has been partially supported by the Research Training Network Contract No. HPRN-CT-1999-
00104 funded by the European Union, by the CNR-Agenzia 2000 Program, under Grants Nos. CNRC00CAB8
and CNRG003EF8, and by the Research Project REAL-WINE, partially funded by the Italian Ministry of
Education, University and Research. A preliminary version of this paper appeared in the Proceedings of the
5th Annual International Computing and Combinatorics Conference (COCOON ’99), Vol. 1627 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1999, pp. 144–153.
2 Dipartimento di Informatica, Università di L’Aquila, Via Vetoio, 67010 L’Aquila, Italy, and Istituto di
Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR, Viale Manzoni 30, 00185 Roma, Italy. {nardelli,
proietti}@di.univaq.it.
3 Institut für Theoretische Informatik, ETH Zentrum, CLW C 2, Clausiusstrasse 49, 8092 Zürich, Switzerland.
widmayer@inf.ethz.ch.

Received July 31, 2001; revised June 6, 2002. Communicated by T. Nishizeki.
Online publication October 29, 2002.



Swapping a Failing Edge of a Single Source Shortest Paths Tree Is Good and Fast 57

sense that each link failure might disconnect the network. Therefore, it is important for
sparse networks also to take survivability into account from the very beginning.

Assuming that a link that is down comes back up quickly, the likelihood of having
many failures at the same time is quite small. Therefore, we study the problem of dealing
in isolation with the failure of each single link in the network: since we can expect that
sooner or later each link will fail, it is preferable to perform a single global computation on
the network, to know in advance how to manage a failure. In a practical setting, handling
a failing link entails all kinds of accompanying measures, such as a change in the routing
pattern, in addition to finding an alternative network configuration which does not make
use of the failed link. To keep these secondary measures cheap, it is desirable to find a most
simple alternative network configuration; in the simplest case, a single new link is used
to make up for the failing link. In this paper this is exactly the problem we study: given
the restriction that a failing edge of a graph can be compensated only by a single extra,
new edge, that we call a swap edge, how should the swap edge be chosen? For example,
if the network is a minimum spanning tree of a given weighted graph, then the optimum
might be to choose a swap edge of minimum weight. For minimum spanning trees, this
question has been studied before [1], [8], [13]. In this paper we study the corresponding
question for shortest paths trees, by extending our preliminary results presented in [10].

1.1. Basic Definitions. We first recall some of the basic graph terminology that we use
in what follows; for details, see [5]. Let G = (V, E) be an undirected graph, where V
is the set of nodes and E ⊆ V × V is the set of edges, with a nonnegative real length
|e| associated with each edge e ∈ E . Let n and m denote the number of nodes and
the number of edges, respectively. A graph H = (V (H), E(H)) is a subgraph of G if
V (H) ⊆ V and E(H) ⊆ E . If V (H) ≡ V , then H is a spanning subgraph of G.

A simple path (or a path for short) in G is a subgraph P with V (P) = {v1, . . . , vk |
vi 
= vj for i 
= j} and E(P) = {(vi , vi+1) | 1 ≤ i < k}, also denoted as P =
〈v1, . . . , vk〉. Path P is said to go from v1 to vk and to have length equal to the sum of
the lengths of its edges. If v1 ≡ vk , then P is a cycle. A graph G is connected if, for any
two nodes u, v ∈ V , there exists a path in G going from u to v. A graph G is 2-edge
connected if at least two edges in G must be removed to disconnect G.

A tree is a connected graph which does not contain a cycle. Let T be a spanning tree
of a 2-edge connected graph G. A swap edge for an edge e = (u, v) ∈ E(T ) is an edge
e′ = (u′, v′) ∈ E\{e} reconnecting the two subtrees Su and Sv created by the removal of
e, where in here and in the rest of the paper it is assumed that u, u′ ∈ V (Su) and v, v′ ∈
V (Sv). Let in the following Te/e′ denote the swap tree obtained by swapping e with e′, and
letSe be the set of all possible swap trees with respect to e. Depending on the goal that we
pursue in swapping, some swap edge may be preferable to some other one. We capture this
objective by defining a nonnegative real function F over Se. Intuitively, the function F
represents the objective of the optimization in the swap. A best swap edge for an edge e is
a swap edge f such that F(Te/ f ) is minimum. A swap algorithm is an algorithm that finds
a best swap edge for every edge e ∈ E(T ). All the swap algorithms that are presented in
this paper are assumed to be implemented on a comparison-based model of computation.

1.2. Related Work. Coping with a failure of a link in a network T that is a spanning
tree of a given 2-edge connected graph G means, on the theoretical side, to define an



58 E. Nardelli, G. Proietti, and P. Widmayer

interesting family of problems on graphs. For example, if T is a minimum spanning tree
(MST) of G, that is, a spanning tree whose sum of edge lengths is minimum among all the
spanning trees of G, then the natural function to be defined is F(Te/e′) = ∑

g∈E(Te/e′ )
|g|.

Therefore, a best swap edge for a failing edge e is an edge f such that Te/ f is a spanning
tree of minimum length among all possible swap edges. It is easy to see that here f is
simply a swap edge of minimum length. In this particular case, Te/ f coincides with the
MST T ′

e of G − e = (V, E\{e}). Therefore, an algorithm finding a best swap for each
edge in T can be viewed as a kind of dynamic algorithm dealing with the particular
instance of the deletion and the subsequent reinsertion of each edge in T . The fastest
solution for finding a best swap edge for each edge in T runs in O(m) time [1].

Another interesting problem arises when T is a minimum diameter spanning tree
(MDST) of G, that is, a spanning tree having the maximum length of a path on the tree
between any two nodes minimum among all the spanning trees of G. In this case the
natural function to be defined is the diameter of Te/e′ , and a best swap edge is a swap
edge which makes the diameter of the new spanning tree as low as possible (for practical
motivations, see [7]). The problem of finding a best swap edge for each edge in T can
be solved in O(n

√
m) time and O(m) space [9]. Notice that in this case Te/ f does not

coincide with the MDST T ′
e of G − e. However, it can be shown that the diameter of

Te/ f is at most 5/2 times the diameter of T ′
e . Therefore, Te/ f is functionally close to T ′

e .

1.3. Single Source Shortest Paths Trees. Among all paths between two nodesv, v′ ∈ V ,
a path is called shortest if the length of the path is smallest. Let the distance d(v, v′)
between two nodes v, v′ in G be the length of a shortest path between v and v′. For a
distinguished node r ∈ V , called the source, and all the nodes v ∈ V \{r}, a shortest
paths tree (SPT) S(r) rooted at r is a spanning tree of G formed by the union of shortest
paths, with one shortest path from r to v for each v ∈ V \{r}. To simplify notations, we
denote by ES the set of edges of S(r). Figure 1 illustrates an SPT S(r) of a graph G,
along with the set of swap edges for a given edge e = (u, v) ∈ ES .

Many network architectures are based on an SPT. In fact, this is especially interesting
as a model for a (centralized) network where a (privileged) node broadcasts messages
to all the other nodes. In this case no single, unique and natural notion of best swap
edge for a failing edge e = (u, v), with u closer to r than v, is as obvious as for the

Sv

(a) (b)

r

1 1
2

4

1

1
u

r

1 1
2

4

1

2

1

r

1 1
2

4

4

1

2 3

1

8

5
6

6

7

5
2

(c)

v

S(r)

11

5

4
6

3

7

Su

G

Fig. 1. (a) A weighted graph G = (V, E); (b) an SPT S(r) rooted at r ; (c) edge e = (u, v) is removed from
S(r): dashed edges are swap edges.



Swapping a Failing Edge of a Single Source Shortest Paths Tree Is Good and Fast 59

MST and the MDST. For example, here one could be interested in choosing a swap
edge e′ that keeps as low as possible either the maximum or the average distance in
Se/e′(r) between r and any node descending from v in S(r), among other interesting
alternatives from a network management point of view. Therefore, a comprehensive
study of the problem requires a rigorous definition of a number of objective functions
to be minimized. Hence, the algorithm for finding a best swap edge for any edge in
S(r) will depend on the function F , and so will its complexity. In this paper we propose
efficient swap algorithms for several functions expressing desirable features of an SPT,
as specified in detail in Section 2. These algorithms are much faster than recomputing
for each edge e ∈ ES from scratch an SPT S′

e(r) of G − e. It is fair to compare with a
recomputation from scratch, since no dynamic solution for this problem is known to be
asymptotically better [3].

Furthermore, we compare Se/ f (r) and S′
e(r), on the basis of those features captured by

the functions that have been considered for the swapping. More precisely, if a swap tree
is obtained starting from a function expressing a given feature, then we measure such a
feature in Se/e′(r) and in S′

e(r). Moreover, to make the comparison more expressive, we
go one step further: we also study the effect that a swap algorithm has on the other features
that it does not aim at. Somewhat surprisingly, for some swap algorithms, the ratio of a
given feature, as measured in Se/ f (r) and in S′

e(r), stays within a small constant factor
(in the worst case) for all the considered features. That is, the swap is a good solution
to a problem at which it does not even aim! Hence, swapping can be viewed as fast and
good at the same time.

The paper is organized as follows. In Section 2 we define more precisely and formally
the problems we are dealing with. Section 3 proposes the algorithms for solving the
problems. In Section 4 we present a comparison between the solutions computed by the
various swap algorithms and the respective exact solutions. Finally, in Section 5, we
discuss the obtained results and list some possible extensions and open problems.

2. The Swap Problems. A swap problem with respect to a given function F asks for
finding a best swap edge (with respect to F) for every edge e ∈ ES . In this section we
formally define the set of swap problems that are considered throughout the paper.

2.1. One-to-One Swap Problems. A first class of swap problems, that we call one-to-
one swap problems, arises when F simply focuses on two fixed nodes, one node s in Su

and one node t in Sv . Since only two nodes are involved, it is quite natural to let F be the
distance between the two nodes. More formally, let in the following de/e′(v, v′) denote
the distance in Se/e′(r) between any two nodes v and v′, and let Ce denote the set of all
possible swap edges for e. Then we set

F{s,t}(Se/e′(r)) = de/e′(s, t),

with e = (u, v) ∈ ES, e′ ∈ Ce, s ∈ V (Su) and t ∈ V (Sv).

Depending on the identity of s and t , a set of one-to-one problems is defined. Quite
naturally, the most meaningful choices for s and t are those expressed by the following
couple of one-to-one swap problems:



60 E. Nardelli, G. Proietti, and P. Widmayer

{r, v}-PROBLEM. In this problem, a best swap edge minimizes the distance from the
root r of S(r) to the root v of Sv . Solving this problem efficiently has applications in
network broadcasting. To make a concrete example, one could imagine a situation in
which a message broadcasted from the root is processed by each node in the network,
and a node can process the message only after its parent in S(r) has done that. There-
fore, after the edge e has failed, if the node u sent back to r the message partially
processed up to node u itself, then the root must route such a message to v as fast as
possible.

{u, v}-PROBLEM. In this problem, a best swap edge minimizes the distance from u to
the root v of Sv . This is motivated since the failure of edge e is detected by node u, and
u wants to send its message to v as fast as possible.

It is worth noting that these two problems do not exhaust the possible choices for
s and t , and alternative choices can be motivated on the basis of different network
functionalities.

2.2. One-to-Many Swap Problems. A second class of swap problems, that we call one-
to-many swap problems, arises when the function F focuses on a fixed node s ∈ V (Su)

and on a subset of nodes T ⊆ V (Sv). Once again, depending on F and on the identity of s
and T , several different one-to-many swap problems can be defined. Concerning s, as for
one-to-one problems, it is natural to restrict our attention to r and u. On the other hand,
with regard to T , given that SPTs are particularly used for broadcasting (and therefore
all the nodes in Sv deserve the same attention), it is natural to focus on Sv as a whole.
Concerning the function F , given that many nodes are now involved, there is not just
a single, natural way to define it. However, since a reasonable function must be related
with the structural properties of an SPT, we can claim that, for e = (u, v) ∈ ES, e′ ∈ Ce

and s ∈ V (Su), the following functions are well representative:

1. F{s,�}(Se/e′(r)) = ∑
t∈V (Sv)

de/e′(s, t);
2. F{s,	}(Se/e′(r)) = max{de/e′(s, t) − d(s, t): t ∈ V (Sv)};
3. F{s,min}(Se/e′(r)) = min{de/e′(s, t): t ∈ V (Sv)};
4. F{s,max}(Se/e′(r)) = max{de/e′(s, t): t ∈ V (Sv)}.

Therefore, when focusing on the root r , the following one-to-many swap problems
arise:

{r, �}-PROBLEM. In this problem, a best swap edge minimizes the function F{r,�}, that
is, it is a swap edge minimizing the total distance from r to all the nodes in Sv . Choosing
such a swap edge will therefore minimize the average delay in delivering a message from
the root to any node in Sv .

{r, 	}-PROBLEM. In this problem, a best swap edge minimizes the function F{r,	}, that
is, it is a swap edge minimizing the maximum increment of the distance from r to any
node in Sv . Choosing such a swap edge will therefore minimize the maximum “moving
away” of a node with respect to the root.



Swapping a Failing Edge of a Single Source Shortest Paths Tree Is Good and Fast 61

{r, min}-PROBLEM. In this problem, a best swap edge minimizes the function F{r,min},
that is, it is a swap edge f = (x, y) such that the distance from r to y is minimum.
Choosing such a swap edge will therefore minimize the delay in delivering a message
from the root to a node in Sv .

{r, max}-PROBLEM. In this problem, a best swap edge minimizes the function F{r,max},
that is, it is a swap edge minimizing the longest path from r to any node in Sv . Choosing
such a swap edge will therefore minimize the maximum delay in delivering a message
from the root to any node in Sv .

Similarly, when focusing on node u, the {u, �}-Problem, the {u, 	}-Problem, the
{u, min}-Problem and the {u, max}-Problem are defined.

3. The Swap Algorithms. In this section we present efficient swap algorithms for
all the problems listed in the previous section. These algorithms make use of a set of
techniques, which can be tailored on the problem that needs to be solved. To make the
presentation more concise, we present in detail only the solutions for all the problems
in which the root r is considered, while their variations for the case in which u takes the
place of r are given in the Appendix.

3.1. One-to-One Swap Algorithms

3.1.1. Solving the {r, v}-Problem. Remember that the {r, v}-Problem asks for a swap
edge minimizing the distance from r to v, when the edge e = (u, v) fails. A brute-force
approach for solving this problem would require the inspection, for each failing edge e
of S(r), of the O(m) edges in Ce: for each swap edge e′, we can compute in O(1) time
de/e′(r, v), and thus we spend O(m) time to select a best swap edge, i.e., a total O(n · m)

time to solve the problem. We now show how the above time bound can be improved
substantially. Let α(m, n) denote the functional inverse of the Ackermann function [11].
The following can be proved:

THEOREM 3.1. There exists a swap algorithm solving the {r, v}-Problem in O(m ·
α(m, n)) time and O(m) space.

PROOF. A swap algorithm needs to process all the edges in Ce, for any e ∈ ES . To do
that, we make use of a transmuter [13]. A transmuter DG(T ) is a directed acyclic graph
that represents the set of fundamental cycles of a graph G with respect to a spanning tree
T . Basically, DG(T ) contains one source node s(e) representing each tree edge e, one
sink node t (e′) representing each nontree edge e′, and an arbitrary number of additional
nodes. The fundamental property of a transmuter is that there is a path from a given
source s(e) to a given sink t (e′) if and only if e and e′ form a cycle in T . It is clear that
in S(r), all and only the edges belonging to Ce form a cycle with e. Therefore, we can
build a transmuter having as source nodes all the edges belonging to S(r) and as sink
nodes all the nontree edges. This can be done in O(m · α(m, n)) time and O(m) space
[14]. To associate e with its best swap edge, it remains to establish the value that has



62 E. Nardelli, G. Proietti, and P. Widmayer

to be given to a sink node. Since we have to minimize the value of de/e′(r, v), ∀e′ ∈ Ce,
it follows that a best swap edge will be an edge f = (x, y) such that

d(r, x) + | f | + d(v, y) = min{d(r, u′) + |e′| + d(v, v′): e′ = (u′, v′) ∈ Ce}.(1)

If e′ = (u′, v′) ∈ Ce forms a cycle with e1 = (u0 ≡ v′, u1), e2 = (u1, u2), . . . , ek =
(uk−1, uk ≡ u′), ei ∈ ES, i = 1 . . . k, then the value of (1) depends on which ei

is considered. Hence, the question is: which value c(e′) in the transmuter should be
associated with e′ such that c(e′) is independent of ei ? To overcome this problem, we
associate in O(1) time with e′ the length of the (not simple) cycle in S(r) starting from
r and passing through e′, that is,

c(e′) = d(r, u′) + |e′| + d(r, v′).

In fact, de/e′(r, v) = c(e′) − d(r, v) for any edge e′ ∈ Ce and, therefore, with a shortest
cycle is associated a best swap edge, and vice versa. Hence, we can solve the {r, v}-
Problem by processing the nodes of the transmuter in reverse topological order, labeling
each node with the minimum of the labels of its immediate successors. When the process
is complete, each source node s(e) is labeled with the minimum cost c( f ) of a best swap
edge f ∈ Ce. This completes the proof.

3.1.2. Solving the {u, v}-Problem. Remember that the {u, v}-Problem asks for a swap
edge minimizing the distance from u to v, when the edge (u, v) fails. A brute-force
approach for solving this problem would require the inspection, for each failing edge e
of S(r), of the O(m) edges in Ce: for each swap edge e′ = (u′, v′), let ze′ be the nearest
common ancestor in S(r) of u′ and v′. Recall that the nearest common ancestors of all
nontree edges can be computed in O(m · α(m, n)) time and O(n) space [6]. Since

de/e′(u, v) = d(r, u′) + d(r, v′) + |e′| − |e| − 2d(r, ze′),

we can compute in O(1) time de/e′(u, v), and thus we spend O(m) time to select a best
swap edge. Hence, it follows that we spend a total O(n·m+m·α(m, n)) = O(n·m) time to
solve the problem. However, similarly to the {r, v}-Problem, the following improvement
can be proved:

THEOREM 3.2. There exists a swap algorithm solving the {u, v}-Problem in O(m ·
α(m, n)) time and O(m) space.

PROOF. See the Appendix.

3.2. One-to-Many Swap Algorithms

3.2.1. Solving the {r, �}-Problem. Remember that the {r, �}-Problem asks for a swap
edge minimizing the sum of the lengths of all the paths in the swap tree from r to each
node in Sv , when the edge (u, v) fails. A straightforward solution for this problem is the
following: for each failing edge e of S(r), consider the O(m) edges in Ce; for each swap
edge e′, compute in O(n) time the sum of the lengths of all the paths starting from r ,



Swapping a Failing Edge of a Single Source Shortest Paths Tree Is Good and Fast 63

passing through e′ and leading to a node in Sv , and finally select an edge minimizing
such a sum. Hence, the total time spent is O(n2 · m).

We now show how the above time bound can be improved to O(n2). Let v ∈ V and
let t be any node in Sv . First, we define the auxiliary values associated by the algorithm
with v:

• |Sv|: number of nodes in Sv;
• down(v): total length of all the paths in Sv starting from v; if v is a leaf, then set

down(v) = 0;
• up(t, v): total length of all the paths in Sv starting from t and leading to nodes which

are not descendants of t in S(r);
• min path(t, v): after the removal of the edge e = (u, v) in S(r), this is the length of

a shortest path from r to t making use of edges in Su plus a swap edge leading to t .
More formally

min path(t, v) = min{d(r, u′) + |e′|: e′ = (u′, t) ∈ Ce}.(2)

If no such edge e′ exists, then set min path(t, v) = +∞;
• all paths(t, v): after the removal of the edge e = (u, v) in S(r), this is the total length

of all the paths starting from r , making use of edges of Su , passing through the edge
selected as specified at the previous item and leading to nodes in Sv . It is not hard to
see that

all paths(t, v) = min path(t, v) · |Sv| + down(t) + up(t, v).(3)

Figure 2 shows an example in which the above values are computed for two fixed
nodes t, v.

A high-level description of our algorithm for solving this problem is the following.
We consider all the edges of S(r) in any arbitrary postorder. We now fix such an edge
e = (u, v). For each node t in Sv , we compute all paths(t, v), as specified above;
then we select the minimum over these values for all the nodes t in Sv and we return
the corresponding best swap edge. The crucial point is the efficient computation of
all paths(t, v), which in its turn requires the computation of min path(t, v) and up(t, v).
The former is computed in advance by computing, for each v ∈ V , a selected swap edge
(i.e., a swap edge minimizing (2)) for any of its ancestors in S(r), while the latter is
computed by keeping track, during the postorder traversal, of the total length of all the
paths from t that stay within Sv . More specifically, the algorithm is the following:

S(r) r

3

21

3

v

2

u
Sv

6

5
3

2
t

1

Fig. 2. A weighted graph and an SPT S(r) (solid edges); nontree edges are dashed, while the removed edge
is dotted. Then |Sv | = 5, down(t) = 1 + 2, up(t, v) = 3 + 5, min path(t, v) = 9 (using the swap edge of
length 5), all paths(t, v) = 9 + 10 + 11 + 12 + 15 = 56, which coincides with definition (3).



64 E. Nardelli, G. Proietti, and P. Widmayer

Algorithm SIGMA(G, S(r))

Input: A weighted, 2-edge connected graph G = (V, E) and an SPT S(r) =
(V, ES);

Output: ∀e = (u, v) ∈ ES , a swap edge f such that
∑

t∈V (Sv)
de/ f (r, t) =

min{∑t∈V (Sv)
de/e′(r, t): e′ ∈ Ce}.

Step 1. For each node v ∈ V as considered by any postorder visit
Step 2. Compute down(v);
Step 3. For each ancestor w 
= r of v (including v) compute

min path(v, w);
Step 4. For each edge e=(u, v) ∈ ES as considered by any postorder

visit
Step 5. For each children vi of v

Step 6. up(vi , v) = down(v) − down(vi ) + (|Sv| − |Svi | − 1)

·|(vi , v)|;
Step 7. For each node t ∈ V (Svi ), set up(t, v) = up(t, vi ) +

(|Sv| − |Svi |) · d(vi , t) + up(vi , v);
Step 8. For each node t ∈ V (Sv), set all paths(t, v) = min path(t, v)

·|Sv| + down(t) + up(t, v);
Step 9. Compute tmin such that all paths(tmin) = min{all paths(t, v):

t ∈ V (Sv)};
Step 10. Return the edge associated with min path(tmin, v).

THEOREM 3.3. The swap algorithm SIGMA(G, S(r)) solves the {r, �}-Problem in
O(n2) time and space.

PROOF. The correctness of the algorithm is a consequence of the fact that it considers
exhaustively at each step all the possible best swap edges. To establish the running time
and the space requirements of the algorithm, we analyze it step by step.

Concerning Step 2, we can compute down(v) in O(n) time and space by simply
performing a postorder visit of S(r).

Step 3 can be accomplished in O(n2) time and space for all the nodes in the following
way: let 〈r ≡ w0, w1, . . . , wk ≡ v〉 be the path in S(r) joining r and v. We start by
bucketing the nontree edges adjacent to v with respect to their nearest common ancestors.
This can be done in O(α(m, n)) amortized time for each edge [6], that is, it will cost
O(m · α(m, n)) time for all the nodes. Let b(v, wi ) be the bucket containing the edges
associated with wi , i = 0, . . . , k − 1. We initially search for the edge in b(v, w0)

minimizing the path from r to v. This can be done in time and space proportional to
the number of elements in b(v, w0). This value defines min path(v, w1). Afterwards, we
repeat the step for b(v, w1): if the found value is less than min path(v, w1), then this
becomes min path(v, w2), otherwise we set min path(v, w2) = min path(v, w1). The
process goes on iteratively, up to b(v, wk−1). This way, we spend O(n) time and space
for each node to process the buckets. Thus, since O(α(n2, n)) = O(1), then Step 3 can
be done in O(n2 + m · α(m, n)) = O(n2) time and space for all the nodes.

Step 6 can be accomplished in O(1) time for each node and in O(n) total time for
all the nodes. Steps 7–9 can be executed in O(n) time, and therefore they require a total



Swapping a Failing Edge of a Single Source Shortest Paths Tree Is Good and Fast 65

O(n2) time for all the nodes. Finally, Step 10 costs O(1) time per node. Therefore, the
overall running time and the space requirements are O(n2).

3.2.2. Solving the {r, 	}-Problem. Remember that the {r, 	}-Problem asks for a swap
edge minimizing the maximum increase of the distance from r to any node in Sv , when the
edge e = (u, v) fails. Similarly to the {r, �}-Problem, a brute-force solution for solving
this problem would require O(n2 · m) time (in fact, rather than computing the sum of
the path lengths, we now check the increment of the length of each path). However, the
following result improving the above time bound can be proved:

THEOREM 3.4. There exists a swap algorithm solving the {r, 	}-Problem in O(m ·
α(m, n)) time and O(m) space.

PROOF. A best swap edge by definition is an edge f such that

max{de/ f (r, t) − d(r, t): t ∈ V (Sv)}(4)

= min{max{de/e′(r, t) − d(r, t): t ∈ V (Sv)}: e′ ∈ Ce}.
For any swap edge e′ and for any node t ∈ V (Sv) we have

de/e′(r, t) − d(r, t) ≤ de/e′(r, v) + de/e′(v, t) − d(r, t)

= de/e′(r, v) + d(v, t) − d(r, t) = de/e′(r, v) − d(r, v).

Then (4) becomes de/ f (r, v)−d(r, v) = min{de/e′(r, v)−d(r, v): e′ ∈ Ce}, and therefore

de/ f (r, v) = min{de/e′(r, v): e′ ∈ Ce}.
Hence, the {r, 	}-Problem reduces to the {r, v}-Problem, and therefore it can be solved
using the approach described in Theorem 3.1. This completes the proof.

3.2.3. Solving the {r, min}-Problem. Remember that the {r, min}-Problem asks for a
swap edge e′ ∈ Ce minimizing the distance from r to a node in Sv , when the edge
e = (u, v) fails. Trivially, the node in Sv closest to r as a consequence of the swap with
e′ = (u′, v′) is v′, and then we have to minimize de/e′(r, v′) over all the swap edges.
Hence, similarly to the {r, v}-Problem, a brute-force approach for solving this problem
would require O(n · m) time, since for each swap edge e′, we can compute in O(1) time
de/e′(r, v′), thus spending O(m) time for each failing edge to select a best swap edge.
We now show that the above time bound can be improved:

THEOREM 3.5. There exists a swap algorithm solving the {r, min}-Problem in O(m ·
α(m, n)) time and O(m) space.

PROOF. To associate e with its best swap edge f , we have to minimize the value of
de/e′(r, v′), ∀e′ ∈ Ce. It follows that a best swap edge will be an edge f = (x, y)

such that

d(r, x) + | f | = min{d(r, u′) + |e′|: e′ = (u′, v′) ∈ Ce}.(5)

Notice that if e′ = (u′, v′) ∈ Ce forms a cycle with e1 = (u0 ≡ v′, u1), e2 =



66 E. Nardelli, G. Proietti, and P. Widmayer

(u1, u2), . . . , ek = (uk−1, uk ≡ u′), ei ∈ ES, i = 1 · · · k, then the value of (5) depends
on which ei is considered, and then eventually it depends on (u, v). More precisely,
let ze′ ≡ ui , 0 ≤ i ≤ k, be the nearest common ancestor of u′ and v′ in S(r); then
we have that edge e′ remains associated either with the value d(r, u′) + |e′|, when-
ever an edge ej , j = 1, . . . , i , fails, or with the value d(r, v′) + |e′|, whenever an edge
ej , j = i + 1, . . . , k, fails. Therefore, to solve this problem, we simply substitute each
nontree edge e′ for which the corresponding nearest common ancestor does not coincide
with one of its endnodes, with a couple of edges r1(e′) = (ze′ , u′) and r2(e′) = (ze′ , v′),
of weight |e′|. In this way, the original graph G is transformed to a graph G ′ = (V, E ′)
with the same nodes and with at most 2m edges. Moreover, it is easy to see that an edge
f is a best swap edge for a given edge e in G if and only if either r1( f ) or r2( f ) is a best
swap edge for e in G ′. Since ze′ can be found in O(α(m, n)) amortized time for each
edge e′ ∈ E\ES [6], we have that G ′ can be computed in O(m) time. Then we build a
transmuter DG ′(S(r)) in which a sink node associated with a nontree edge e′ = (u′, v′),
such that ze′ ≡ u′, is labeled with c(e′) = d(r, v′)+|e′|, not depending on (u, v). Finally,
we can solve the {r, min}-Problem by processing the nodes of the transmuter in reverse
topological order. This completes the proof.

3.2.4. Solving the {r, max}-Problem. Remember that the {r, max}-Problem asks for a
swap edge minimizing the length of a longest path starting from r and ending in Sv .
Similarly to the {r, �}-Problem, a brute-force solution for solving this problem would
require O(n2 · m) time (in fact, rather than computing the sum of the path lengths, we
now check the length of each path). However, the above time bound can be lowered, as
the following theorem shows:

THEOREM 3.6. There exists a swap algorithm solving the {r, max}-Problem in O(n
√

m)

time and O(m) space.

PROOF. This problem can be solved by slightly modifying the approach used in [9],
where the problem of computing all the best swap edges for a minimum diameter span-
ning tree has been solved. In fact, as a subroutine of the main algorithm, the length of
a longest path starting from t ∈ V (Sv) and staying within Sv (which is exactly what we
need, once that we add de/e′(r, t)) is there computed, and this costs O(n

√
m) time and

O(m) space.

3.2.5. Solving the One-to-Many Swap Problems When u Takes the Place of r . The
one-to-many swap problems in which u takes the place of r can be similarly treated.
More precisely, the following result holds:

THEOREM 3.7. There exist swap algorithms solving:

1. the {u, �}-Problem in O(n2) time and space;
2. the {u, 	}-Problem in O(m · α(m, n)) time and O(m) space;
3. the {u, min}-Problem in O(m · α(m, n)) time and O(m) space;
4. the {u, max}-Problem in O(n

√
m) time and O(m) space.

PROOF. See the Appendix.



Swapping a Failing Edge of a Single Source Shortest Paths Tree Is Good and Fast 67

4. Swapping versus Recomputing from Scratch. Since swapping a single edge for
a failed one is fast and involves very few changes in the underlying network (e.g., as
to routing information) it is interesting to see how the tree obtained from swapping
compares (according to some of the functions we have introduced) with a true SPT
S′

e(r) of G − e. It is worth noting that recomputing from scratch S′
e(r) for each failing

edge e ∈ ES is much more costly than applying any swap algorithm, since no dynamic
solution for this problem is known to be asymptotically better than recomputing n times
an SPT [3]. Since the fastest algorithm for computing an SPT in a comparison-based
model requires O(m + n log n) time [2], it follows that recomputing from scratch S′

e(r)

for each failing edge e ∈ ES results in an O(mn + n2 log n) time algorithm.
Although it might appear unfair to compare S′

e(r) and Se/ f (r), since the latter might
seem at a first glance quite different from the former, we will show that this is not the
case, at least for some of the swap algorithms. However, what does it mean to compare
two trees? In fact, while S′

e(r) is well defined, this is not the case for Se/ f (r), since this
depends on the function whose minimization it aimed at. In particular, for the functions
involving u, it appears more reasonable to perform a comparison between Se/ f (r) and
S′

e(u), an SPT of G − e rooted at u. Therefore, we here restrict our attention to all
the problems in which the root r is concerned. Moreover, since the {r, 	}-Problem and
the {r, v}-Problem are equivalent, we analyze the features captured by the functions
associated with the {r, �}-Problem, the {r, 	}-Problem, the {r, min}-Problem and the
{r, max}-Problem, respectively.

While it is natural to study each of the four quality criteria (functions) for the algo-
rithms that optimize the corresponding swap, we go one step further: we also study the
effect that a swap algorithm has on the other criteria (that it does not aim at). This will
give us a general idea of the effectiveness of each swap algorithm. Moreover, in a general
context in which a balancing of the above criteria is needed, one is allowed to perform
a satisfying choice. Let d ′(v, v′) denote the distance in S′

e(r) between any two nodes v

and v′. For each of the above swap algorithm, we therefore consider the following ratios
in the two trees:

ρ� =
∑

t∈V (Sv)
de/ f (r, t)

∑
t∈V (Sv)

d ′(r, t)
; ρ	 = de/ f (r, v)

d ′(r, v)
;

ρmin = min{de/ f (r, t): t ∈ V (Sv)}
min{d ′(r, t): t ∈ V (Sv)} ; ρmax = max{de/ f (r, t): t ∈ V (Sv)}

max{d ′(r, t): t ∈ V (Sv)} .

In what follows, h(Sv) denotes the height of Sv , that is, the length of a longest path
between v and any node in Sv , while  denotes the height of S(r) restricted to Sv , that is,
the length of a longest path in S(r) between r and any node in Sv . Similarly, ′ and e/ f

denote the heights of S′
e(r) and Se/ f (r) restricted to Sv . Note that h(Sv) ≤ , h(Sv) ≤ ′

and h(Sv) ≤ e/ f .

4.1. Ratios for the Swap Algorithm Solving the {r, �}-Problem. We can prove the
following result:

THEOREM 4.1. For the swap algorithm solving the {r, �}-Problem, we have ρ� ≤ 3,
ρ	 unbounded, ρmin unbounded and ρmax ≤ 4. The bounds are tight.



68 E. Nardelli, G. Proietti, and P. Widmayer

PROOF. Let f = (x, y) be a best swap edge and let f ′ = (x ′, y′) be the (only) swap
edge such that f ′ ∈ E(S′

e(r)) and f ′ is on a shortest path from r to v in S′
e(r). Concerning

ρ� , let e/ f and ′ denote the average length of a path from r to t ∈ V (Sv) in Se/ f (r) and
S′

e(r), respectively. Of course, ρ� = e/ f /′. We have

e/ f ≤ e/ f ′ ≤ de/ f ′(r, y′) + de/ f ′(y′, v) +
∑

t∈V (Sv)
d(v, t)

|Sv|
and given that de/ f ′(r, y′) = d ′(r, y′) and de/ f ′(y′, v) = d(y′, v) = d ′(y′, v) (since the
old path from v to y′ was a shortest path), it follows that

e/ f ≤ d ′(r, v) +
∑

t∈V (Sv)
d(v, t)

|Sv| .

Moreover, we have that for any t ∈ V (Sv),

d ′(r, v) ≤ d ′(r, t) + d(t, v) ≤ d ′(r, t) + d(r, t) ≤ 2d ′(r, t)

from which, for any node t in Sv , it follows that d ′(r, v) ≤ 2′. Furthermore,

∑
t∈V (Sv)

d(v, t)

|Sv| ≤
∑

t∈V (Sv)
d(r, t)

|Sv| ≤
∑

t∈V (Sv)
d ′(r, t)

|Sv| = ′.

Therefore, we have that e/ f ≤ 3′, that is, ρ� ≤ 3. The bound is tight as shown in
Figure 3(a).

Concerning ρ	 and ρmin, they are unbounded, as shown in Figure 3(b).
Finally, concerning ρmax, we have e/ f ≤ de/ f (r, y) + 2h(Sv) ≤ de/ f (r, y) + 2′.

Moreover, de/ f (r, y) ≤ de/ f ′(r, y) ≤ de/ f ′(r, v)+de/ f ′(v, y), and given that de/ f ′(r, v) =
de/ f ′(r, y′) + de/ f ′(y′, v) = d ′(r, v) (since f ′ is on a shortest path from r to v in S′

e(r),

(a)

v
``

distance ` from v
many nodes at

y

`
v

y

distance � from y

(c)

`� �

u0

v0�

many nodes at

(b)

many nodes at
distance � from y

`� �
x

3� 0

`

r � ur � ur � u

�

`

edges of length
2`+ 2� to v

the other nodes
in Sv n fvg

0
and `+ 2� to all

��

x

�

` `

�

v
0`+ 3�

`

�

�
y

x: : :

: : : : : :

`

��

Fig. 3. Ratios for the swap algorithm solving the {r, �}-Problem. All parts: S(r) (solid edges) with the removed
edge (u, v); nontree edges are dashed and the best swap edge is f = (x, y). (a) In Se/ f (r), e/ f → 3 + ε,

while ′ →  + 2ε, ε ≥ 0, since in S′
e(r) we have all the edges of length  + 2ε from r to Sv\{v, y}; then

ρ� → 3 for ε → 0. (b) The distance to node v in Se/ f (r) is 2, while in S′
e(r) it is 3ε, ε ≥ 0, from which ρ	

and ρmin are unbounded. (c) The distance to node v′ in Se/ f (r) (i.e., e/ f ) is 4 − ε, while ′ =  + 3ε, ε ≥ 0,
from which ρmax → 4 for ε → 0.



Swapping a Failing Edge of a Single Source Shortest Paths Tree Is Good and Fast 69

and this path contains the old shortest path from v to y′), it follows that

de/ f (r, y) ≤ d ′(r, v) + d(v, y) ≤ ′ + h(Sv) ≤ 2′,

that is, e/ f ≤ 4′ or ρmax ≤ 4. The bound is tight as shown in Figure 3(c).

4.2. Ratios for the Swap Algorithm Solving the {r, 	}-Problem. We can prove the
following result:

THEOREM 4.2. For the swap algorithm solving the {r, 	}-Problem, we have ρ� ≤ 3,
ρ	 = 1, ρmin ≤ 2 and ρmax ≤ 2. The bounds are tight.

PROOF. Let f be a best swap edge and let t be any node in Sv . Concerning ρ� , from
the fact that the {r, 	}-Problem reduces to the {r, v}-Problem, it follows that f is on a
shortest path in G − e from r to v. Hence, Se/ f (r) and S′

e(r) share that path, and then
de/ f (r, v) = d ′(r, v). From this, we have that

de/ f (r, t) ≤ de/ f (r, v) + d(v, t) = d ′(r, v) + d(v, t).

Since d ′(r, v) ≤ d ′(r, t) + d(v, t) and d(v, t) ≤ d(r, t) ≤ d ′(r, t), it follows that
de/ f (r, t) ≤ 3d ′(r, t), that is, ρ� ≤ 3. The bound is tight as shown in Figure 4(a).

Concerning ρ	, since de/ f (r, v) = d ′(r, v), it follows that ρ	 = 1.
Concerning ρmin, let t ∈ V (Sv) be a closest node to r in G − e. We have

de/ f (r, y) + d(y, v) ≤ d ′(r, t) + d(t, v)

from which

de/ f (r, y) ≤ d ′(r, t) + d(t, v) − d(y, v) ≤ d ′(r, t) + d(r, t) ≤ 2d ′(r, t)

and then ρmin ≤ 2. The bound is tight as shown in Figure 4(b).
Finally, concerning ρmax, we have that e/ f ≤ de/ f (r, v)+h(Sv) = d ′(r, v)+h(Sv) ≤

′ + ′ = 2′, that is, ρmax ≤ 2. The bound is tight as shown in Figure 4(c).

(b)

y

t

`

2�

`
�

v 2`

r � u � x

v

x

`

y �
: : :

distance ` from v
(a)

many nodes at

edges of length

the nodes in
Sv n fvg

`+ 2� to all
r � u

0

`
`

0

`

t

`
v

y

(c)

r � u

0

x

edges of length
`+ 2� to all
the nodes in Sv `=2

`=2

�

Fig. 4. Ratios for the swap algorithm solving the {r, 	}-Problem. All parts: S(r) (solid edges) with the
removed edge (u, v); nontree edges are dashed and the best swap edge is f = (x, y). (a) e/ f → 3 + ε,
while ̄′ →  + 2ε, ε ≥ 0, since in S′

e(r) we have all the edges of length  + 2ε from r to Sv\{v}, from which
ρ� → 3 for ε → 0. (b) The closest node to the root in Se/ f (r) is y, and de/ f (r, y) = 2 + ε, while in S′

e(r)

the distance from the root to the closest node t is d ′(r, t) =  + 2ε, ε ≥ 0, from which ρmin → 2 for ε → 0.
(c) The distance to node t in Se/ f (r) (i.e., e/ f ) is 2 + ε, while ′ =  + 2ε, ε ≥ 0, from which ρmax → 2 for
ε → 0.



70 E. Nardelli, G. Proietti, and P. Widmayer

t

`

edges of length
`+ 2� to all
the nodes in Sv

y

`

(c)

r � u

`

x
�

v
0

v

`

y
: : :

distance ` from v

(a)

many nodes at

edges of length
`+ 2� to all

`

the nodes in Sv

r � u

`

x
�

`

0

y

`

(b)

r � u

0
v

`

x
�

`+ 2�

Fig. 5. Ratios for the swap algorithm solving the {r, min}-Problem. All parts: S(r) (solid edges) with the
removed edge (u, v); nontree edges are dashed and the best swap edge is f = (x, y). (a) e/ f → 3+ ε, while

′ →  + 2ε, ε ≥ 0, since in S′
e(r) we have all the edges of length  + 2ε from r to Sv , from which ρ� → 3

for ε → 0. (b) The distance to node v in Se/ f (r) is 2 + ε, while in S′
e(r) it is  + 2ε, ε ≥ 0, from which

ρ	 → 2 for ε → 0. (c) The distance to node t in Se/ f (r) (i.e., e/ f ) is 3 + ε, while ′ =  + 2ε, ε ≥ 0, from
which ρmax → 2 for ε → 0.

4.3. Ratios for the Swap Algorithm Solving the {r, min}-Problem. We can prove the
following result:

THEOREM 4.3. For the swap algorithm solving the {r, min}-Problem, we have ρ� ≤ 3,

ρ	 ≤ 3, ρmin = 1 and ρmax ≤ 2. The bounds are tight.

PROOF. Note that f = (x, y) belongs to both the trees, since y is the node of Sv closest
to r . Therefore, trivially ρmin = 1.

Concerning ρ� and ρmax, let t be any node in Sv . Let z be the nearest common ancestor
of y and t in Sv . We have that

de/ f (r, t) = de/ f (r, y) + d(y, z) + d(z, t) ≤ d ′(r, y) + d(y, v) + d(v, t)

and given that d ′(r, y) ≤ d ′(r, t), since y is the node of Sv closest to r , and d(y, v) ≤
d(r, y) ≤ d ′(r, y) ≤ d ′(r, t), and d(v, t) ≤ d ′(r, t), it follows that de/ f (r, t) ≤ 3d ′(r, t).
Therefore, we have ρ� ≤ 3 and ρmax ≤ 3. The bounds are tight as shown in Figure 5(a)
and 5(c).

Concerning ρ	, since

de/ f (r, v) = de/ f (r, y) + d(y, v) = d ′(r, y) + d(y, v)

≤ d ′(r, v) + d(r, y) ≤ d ′(r, v) + d ′(r, y) ≤ 2d ′(r, v)

it follows that ρ	 ≤ 2. The bound is tight as shown in Figure 5(b).

4.4. Ratios for the Swap Algorithm Solving the {r, max}-Problem. We can prove the
following result:

THEOREM 4.4. For the swap algorithm solving the {r, max}-Problem, we have ρ� un-
bounded, ρ	 unbounded, ρmin unbounded and ρmax ≤ 2. The bounds are tight.

PROOF. Let f and f ′ be defined as for Theorem 4.1. Concerning ρ� , ρ	 and ρmin, they
are unbounded as shown in Figure 6(a).



Swapping a Failing Edge of a Single Source Shortest Paths Tree Is Good and Fast 71

x �

: : :

many nodes at
distance � from v

t
(a)

y

0

r � u

��

`=2

(b)

0

v � y

`+ �3�

r � u � x

`+ 2�
`

t

v`=2

`=2

Fig. 6. Ratios for the swap algorithm solving the {r, max}-Problem. All parts: S(r) (solid edges) with the
removed edge (u, v); nontree edges are dashed and the best swap edge is f = (x, y). (a) e/ f → +2ε, while

′ → 4ε, and the distance to node v in Se/ f (r) is  + ε, while in S′
e(r) it is 3ε, ε ≥ 0, from which ρ� , ρ	 and

ρmin are unbounded. (b) The distance to node t in Se/ f (r) (i.e., e/ f ) is 2 + ε, while in S′
e(r) the height is

′ =  + 2ε, ε ≥ 0, from which ρmax → 2 for ε → 0.

Concerning ρmax, we have

e/ f ≤ e/ f ′ ≤ de/ f ′(r, v) + h(Sv) = d ′(r, v) + h(Sv) ≤ ′ + h(Sv) ≤ 2′

from which ρmax ≤ 2. The bound is tight as shown in Figure 6(b).

5. Concluding Remarks

5.1. Summary of the Obtained Results. In this paper we have introduced the notion
of best swap edge for a failing edge of an SPT, and we have presented several efficient
algorithms for computing all the best swap edges of an SPT. These algorithms are very
effective, in the sense that the swap tree they create is functionally very close to S′

e(r);
moreover, computing a swap tree is much faster than rebuilding from scratch a new SPT
S′

e(r) of G − e, for each edge e ∈ ES . Table 1 summarizes the bounds and the ratios
of the various algorithms for which we have performed comparisons between Se/ f (r)

and S′
e(r).

Interestingly, the swap algorithm for the {r, 	}-Problem, which is the cheapest in
terms of running time, is also the best with respect to the measures of quality we have
defined. Our interpretation is that choosing as a best swap edge that one belonging to

Table 1. Running time, space requirements and ratios for the studied swap algorithms.

Algorithm

Measure {r, �} {r, 	} {r, min} {r, max}
Time O(n2) O(m · α(m, n)) O(m · α(m, n)) O(n

√
m)

Space O(n2) O(m) O(m) O(m)

ρ� 3 3 3 Unbounded
ρ	 Unbounded 1 2 Unbounded
ρmin Unbounded 2 1 Unbounded
ρmax 4 2 3 2



72 E. Nardelli, G. Proietti, and P. Widmayer

a new shortest path from r to v (as the swap algorithm for the {r, 	}-Problem does)
produces a swap tree topologically and then functionally similar to the old SPT.

It is impressive to note that using such a swap algorithm will save an O(max{n/α(m,

n), n2 log n/(m·α(m, n))}) time factor with respect to recomputing from scratch S′
e(r) for

each edge e ∈ ES , while the most important features of Se/ f (r) and S′
e(r) are extremely

similar.

5.2. Possible Extensions. A large amount of work concerning swap problems in SPTs
remains to be done. For example, objective functions others than those we considered
in this paper could be defined. As interesting examples in this direction, we mention
the class of many-to-one swap problems, arising when the function focuses on a subset
of nodes in Su and a fixed node in Sv , and the class of many-to-many swap problems,
arising when the function focuses on a subset of nodes in Su and on a subset of nodes in
Sv . These classes of problems are quite different from those analyzed in this paper, since
they focus on a subset of nodes in Su , and therefore they de-emphasize the importance
of nodes r and u. However, there can be practical situations in which it makes sense to
study the above classes of problems.

For example, imagine a scenario in which a message sent from the root r to a destina-
tion node t is stored in each node it passes through. Then, as soon as an edge e = (u, v)

along the path from r to t fails, we have that all the nodes along the path P = 〈r, . . . , u〉
in S(r) can send the same message to v, and we are interested in doing that as fast as
possible. The above situation, for e = (u, v) ∈ ES and e′ ∈ Ce, can be modeled by the
following function:

F{P,v}(Se/e′(r)) = min{de/e′(s, v): s ∈ V (P)}.
Hence, this problem belongs to the class of many-to-one swap problems, and it can be
shown that it is solvable in O(m · α(m, n)) time and O(m) space.

Similarly, interesting examples of many-to-many problems can be obtained by com-
bining many-to-one and one-to-many problems.

5.3. Open Problems. Among the problems left open, we mention the case of transient
node failures and that of multiple simultaneous link failures. Moreover, it would be
very interesting to study the average values of the ratios we have considered. Clearly, it
also remains to establish whether the algorithms we have proposed are optimal. All the
algorithms making use of a transmuter will need time �(m · α(m, n)), the size of the
transmuter [12]; to improve beyond that, a different approach must be used. Finally, swap
problems in other network topologies (e.g., bipartite networks, spanners, etc.) deserve
further study.

Acknowledgments. The authors thank the anonymous referees for the useful sugges-
tions that helped improve the presentation of the paper.

Appendix. In this Appendix we present the proofs for the swap problems in which the
node u takes the place of r .



Swapping a Failing Edge of a Single Source Shortest Paths Tree Is Good and Fast 73

PROOF OF THEOREM 3.2. The proof is similar to that of Theorem 3.1. We start by
computing in O(α(m, n)) amortized time the nearest common ancestor ze′ in S(r) of u′

and v′, with e′ = (u′, v′) ∈ Ce [6]. Clearly, ze′ belong to the path in S(r) from r to u. To
associate e with its best swap edge, we have to minimize the value of de/e′(u, v), ∀e′ ∈ Ce.
It follows that a best swap edge will be an edge f = (x, y) such that

d(u, z f ) + d(z f , x) + | f | + d(v, y)(6)

= min{d(u, ze′) + d(ze′ , u′) + |e′| + d(v, v′): e′ = (u′, v′) ∈ Ce},
which depends on (u, v). To avoid this problem, we associate with e′ the length of the
cycle in S(r) passing through e′, that is,

c(e′) = d(u, ze′) + d(ze′ , u′) + |e′| + d(u, v′).

In fact, de/e′(u, v) = c(e′)−|e| for any edge e′ ∈ Ce and therefore, with a shortest cycle is
associated a best swap edge, and vice versa. Since the above distances can be computed
in O(1) time, we have that c(e′) can be computed in O(1) time. Finally, we can solve the
{u, v}-Problem by processing the nodes of the transmuter in reverse topological order.
This completes the proof.

PROOF OF THEOREM 3.7. The proof is given point by point.
1. {u, �}-Problem. The algorithm is similar to that used for solving the {r, �}-

Problem. The only exception is that (2) is now transformed as follows, where ze′ denotes
the nearest common ancestor of u′ and t in S(r):

min path(t, v) = min{d(u, ze′) + d(ze′ , u′) + |e′|: e′ = (u′, t) ∈ Ce}.
2. {u, 	}-Problem. The proof is similar to that of Theorem 3.4. In fact, also in this

case it is easy to see that

max{de/ f (u, t) − d(u, t): t ∈ V (Sv)} = min{de/e′(u, v): e′ ∈ Ce}.
Hence, the {u, 	}-Problem reduces to the {u, v}-Problem, and therefore it can be solved
using the approach described in Theorem 3.2. This completes the proof.

3. {u, min}-Problem. The proof is similar to to that of Theorem 3.5. For any swap edge
e′ = (u′, v′), let ze′ denote the nearest common ancestor of u′ and v′ in S(r). To associate
e with its best swap edge f , we have to minimize the value of de/e′(u, v′), ∀e′ ∈ Ce. It
follows that a best swap edge will be an edge f = (x, y) such that

d(u, x) + | f | = min{d(u, u′) + |e′|: e′ = (u′, v′) ∈ Ce},(7)

which depends on (u, v). As for the {r, min}-Problem, we initially transform G to the
graph G ′ there introduced. Then we build a transmuter DG ′(S(r)) in which a sink node
associated with a nontree edge e′ = (u′, v′), such that ze′ ≡ u′, is labeled with

c(e′) = d(u′, v′) + |e′| − d(r, u′),

not depending on (u, v). In fact, de/e′(u, v′) = c(e′)+d(u, u′)+d(r, u′) = c(e′)+d(r, u)

for any edge e′ ∈ Ce (now considered in G ′). Finally, we can solve the {u, min}-Problem



74 E. Nardelli, G. Proietti, and P. Widmayer

by processing the nodes of the transmuter in reverse topological order. This completes
the proof.

4. {u, max}-Problem. The proof is similar to that of Theorem 3.6, except that for any
swap edge e′ = (u′, v′), we now add to the length of a longest path starting from v′ and
staying within Sv the length de/e′(u, v′) = d(u, ze′)+ d(ze′ , u′)+|e′|, where as usual ze′

denotes the nearest common ancestor of u′ and v′.

References

[1] B. Dixon, M. Rauch and R.E. Tarjan, Verification and sensitivity analysis of minimum spanning trees
in linear time, SIAM J. Comput., 21(6) (1992), 1184–1192.

[2] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization
algorithms, J. Assoc. Comput. Mach., 34(3) (1987), 596–615.

[3] D. Frigioni, A. Marchetti-Spaccamela and U. Nanni, Fully dynamic output bounded single source
shortest path problem, Proc. 7th ACM–SIAM Symposium on Discrete Algorithms (SODA ’96), 1996,
pp. 212–221.

[4] M. Grötschel, C.L. Monma and M. Stoer, Design of survivable networks, Handbook in OR and MS,
Vol. 7, Elsevier, Amsterdam, 1995, pp. 617–672.

[5] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[6] D. Harel and R.E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J. Comput.,

13(2) (1984), 338–355.
[7] G.F. Italiano and R. Ramaswami, Maintaining spanning trees of small diameter, Algorithmica, 22(3)

(1998), 275–304.
[8] K. Iwano and N. Katoh, Efficient algorithms for finding the most vital edge of a minimum spanning

tree, Inform. Process. Lett., 48(5) (1993), 211–213.
[9] E. Nardelli, G. Proietti and P. Widmayer, Finding all the best swaps of a minimum diameter spanning

tree under transient edge failures, J. Graph Algorithms Appl., 5(5) (2001), 39–57.
[10] E. Nardelli, G. Proietti and P. Widmayer, How to swap a failing edge of a single source shortest

paths tree, Proc. 5th Annual International Computing and Combinatorics Conference (COCOON ’99),
Vol. 1627 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1999, pp. 144–153.

[11] R.E. Tarjan, Efficiency of a good but not linear set union algorithm, J. Assoc. Comput. Mach., 22 (1975),
215–225.

[12] R.E. Tarjan, Complexity of monotone networks of computing conjunctions, Ann. Discrete Math., 2
(1975), 121–133.

[13] R.E. Tarjan, Applications of path compression on balanced trees, J. Assoc. Comput. Mach., 26 (1979),
690–715.

[14] R.E. Tarjan, Sensitivity analysis of minimum spanning trees and shortest path trees, Inform. Process.
Lett., 14(1) (1982), 30–33.


