
S∗–Tree: An Improved S+-Tree

for Coloured Images?

Enrico Nardelli1,2 and Guido Proietti1

1 Dipartimento di Matematica Pura ed Applicata, Università di L’Aquila,
Via Vetoio, 67010 L’Aquila, Italy
{nardelli,proietti}@univaq.it

2 Ist. di Analisi dei Sistemi e Informatica,
CNR, V.le Manzoni 30, 00185 Roma, Italy

Abstract. In this paper we propose and analyze a new spatial access
method, namely the S∗-tree, for the efficient secondary memory encoding
and manipulation of images containing multiple non-overlapping features
(i.e., coloured images). We show that the S∗-tree is more space efficient
than its precursor, namely the S+-tree, which was explicitly designed for
binary images, and whose straightforward extension to coloured images
can lead to large space wastage. Moreover, we tested time efficiency of
the S∗-tree in answering classical window queries, comparing it against
a previous efficient access method, namely the HL-quadtree [7]. Our ex-
periments show that the S∗-tree can reach up to a 30% of time saving.

Keywords: Spatial databases, bintree, quadtree, window queries.

1 Introduction

In this work we focus on secondary memory representations of images contain-
ing multiple non-overlapping spatial features, like for instance agricultural maps,
thematic maps, satellite views and many others. This is a very hot research topic,
especially with the increasing interest of the database community towards the de-
velopment of efficient management systems for geographical data (GIS). There-
fore, we are implicitly assuming that the underlying images have all the peculiar
aspects of images containing region data, and specifically the most prominent
one, that is the aggregation of pixels of a given colour into patches. This induces
a couple of observations: first, the number of features (i.e., colours) in the rep-
resenting picture is limited (generally, from 8 to 32), second, and perhaps more
important, it makes sense to apply hierarchical methods of representation of the
image to save space and time.

One of the most successful hierarchical strategy for representing images con-
taining region data is based on the decomposition of the image space containing
the data into recursively nested subimages, until an homogeneous pattern is
? This research was partially supported by the CHOROCHRONOS TMR Program of

the European Community.

Eder et al. (Eds.): ADBIS’99, LNCS 1691, pp. 156–168, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

S∗–Tree: An Improved S+-Tree for Coloured Images 157

obtained. The most popular decomposition techniques are the binary decompo-
sition (which splits the image into two equal parts alternating an horizontal and
a vertical subdivision) and the quaternary decomposition (which splits the image
into four equal quadrants). The corresponding main memory representations of
such split policies are the bintree [12] and the region quadtree [9]. Both data
structures are easy to implement in main memory. On the other hand, when
a secondary memory representation is needed (which is usually the case, given
the large amount of data to be stored), things become more complicated. The
problem is that of mapping a 2-dimensional set onto a 1-dimensional universe,
while attempting to preserve as much as possible spatial proximity properties.

For images containing multiple non-overlapping features (for the sake of
brevity, coloured images in the following, even though this term could be mis-
leading, since it does not convey the concept that the underlying image is repre-
sentative of region data and therefore well-suited to be managed by hierarchical
spatial data structures), a number of different secondary memory implementa-
tions have been proposed. These can be subdivide into two categories: leafcode
representations, obtained as a collection of the leaf nodes in the tree (such as,
for example, the linear quadtree [5]), and treecode representations, obtained by a
preorder tree traversal of the nodes in the quadtree (also called DF-expressions
[6]). The latter approach is asymptotically more compact than the former one,
but it has suffered for a long time the lacking of a paged version able to support
the access to a given element without being forced to scan, in the worst case,
the entire database. This difficulty have been overcome by de Jonge et al. [3],
who developed the S+-tree, a spatial access method combining the advantages
of treecode and leafcode representations, essentially by indexing through loca-
tional codes the space-compact DF-expression. However, as we shall see in the
rest of the paper, the S+-tree is tailored on binary images, and a straightforward
extension of it to coloured images has a severe space utilization drawback, which
affects in its turn the time efficiency in solving classical operations that can be
posed on the stored data.

In this paper we present a new spatial access method, that we named S∗-tree,
which extends capabilities of the S+-tree to coloured images. We first show that
for practical cases the S∗-tree saves up to 25% of space with respect to the S+-
tree. We then prove that the S∗-tree performs asymptotically the same number
of disk accesses of the S+-tree to retrieve any given subset of the represented
image. Finally, to assess the practical usefulness of our method, we perform
experiments over an important class of queries on coloured images, namely the
window queries. Window queries have a primary importance since they are the
basis of a number of operations that can be executed in a spatial database.
Window-based queries we analyze are the following:

– exist(f,w): Determine whether or not the feature f exists inside window w;
– report(w): Report the identity of all the features that exist inside window w;
– select(f,w): Report the locations of all occurrences of the feature f inside

window w.

158 Enrico Nardelli and Guido Proietti

We compare our structure with the HL-quadtree [7], another hybrid access
method combining advantages of leafcode and treecode representations, by using
locational codes to represent all the nodes of a region quadtree. The HL-quadtree
has been shown to be very time efficient in solving window queries. Obtained
results are extremely encouraging, showing a superiority of our method both in
terms of space occupancy and time performances. Since we are comparing time
performances of secondary memory oriented data structures, when we state that
our new data structure outperforms previous approaches for answering window
queries, we refer to the fact that it reduces the number of accesses to the buckets
storing the data. This is the classical I/O complexity.

The paper proceeds as follows. In Section 2 we briefly recall the various pixel
tree (binary and quaternary) structures that have been proposed in the past
for managing coloured images. In Section 3 we present our new spatial access
method, namely the S∗-tree. In Section 4 we give experimental results assessing
the space and time efficiency of our approach, and finally, in Section 5 we present
considerations for further work and concluding remarks.

2 Survey

2.1 The Bintree and the Quadtree

The region quadtree is a progressive refinement of an image that saves storage
being based on regularity of the feature distribution. Assume we are given an
image space of size T × T (e.g., pixel elements), where T is such that T = 2m,
containing k non-overlapping features. We proceed in the following way: at level
0 there is the whole image, of side length T . The decomposition process carried
out by the quadtree recursively splits a quadrant into four equal size quadrants,
until each quadrant is covered by only one feature. In the worst case, the decom-
position can go on up to the pixel level, with squares of side length T

2m = 1. The
decomposition can be represented as a tree of outdegree 4, with the root (at level
0) corresponding to the whole image and each node (at level d) corresponding
to a square (or block) of side length T

2d . The sons of a node are, in preorder,
labelled NW, NE, SW and SE. For a given image, nodes are then homogeneous
(leaf nodes) or heterogeneous (non-leaf nodes). Correspondingly, we speak of ho-
mogeneous and heterogeneous blocks. Note that there exist several extensions of
the region quadtree, even for representing set of overlapping images [14].

The bintree is the binary version of the region quadtree: the image is pro-
gressively refined alternating horizontal and vertical splits, until an homogeneous
pattern is reached. Notice that in this case such a pattern is not necessarily a
square. Figure 1 shows an example of an image containing 4 non-overlapping
features (note that the white background is treated as a feature), along with its
representing quadtree and bintree.

The bintree and the quadtree can be implemented as a tree (pointer-based
representation) or as a list (pointerless representation). In the former, direct
access to specific image elements is privileged, while the latter makes sequential

S∗–Tree: An Improved S+-Tree for Coloured Images 159

S

NW

WEW

N

E

SE

NE SW

Fig. 1. Multiple non-overlapping features and their quadtree (left) and bintree
(right).

access easier and simplifies disk-based representations, absolutely needed for
large amounts of spatial data [10,11,13].

2.2 Secondary Memory Implementations

It should be clear from the definition that bintrees and quadtrees share a lot of
properties; therefore, a secondary memory implementation of a bintree can be
easily adapted to a quadtree, and vice versa. Henceforth, in the following we will
freely interexchange them.

There exist substantially two categories of list-based representation of a pixel
tree: the collection of the leaf nodes and the linear list resulting from a preorder
traversal of the tree. One of the most attractive approaches in the first category
is the FL linear quadtree [5] (simply linear quadtree in the following), introduced
by Gargantini with reference to a binary image. The extension to multiple non-
overlapping features is straightforward. In fact, also in this case the collection of
leaf nodes can be stored as a sorted linear list, but each node now contains two
fields: the locational key, whose digits resemble the path in the tree from the root
to the node, and the value string, that contains the index of the feature associated
with the node. Representing a pixel tree as an ordered list of the homogeneous
nodes is efficient since space occupancy is reduced and performances of sequential
operations are improved.

Concerning representations in the form of a linear list resulting from a pre-
order traversal of the pixel tree, the DF-expression [6] is surely one of the most
used techniques. The DF-expression for multiple non-overlapping features can be
viewed, treating the background as a feature, as a string containing two symbols:
‘N’, denoting non-leaf (internal) nodes, and ‘L’, denoting leaf nodes, followed by
the index of the contained feature for leaf nodes. The representing tree is visited
in preorder, and an ’N’ is emitted whenever an internal node is encountered,
while an ’L’ followed by the index of the contained feature is emitted whenever
a leaf node is encountered. As an example, suppose that the four features in
Figure 1 have index 0 for the white, 1 for the light gray, 2 for the dark gray
and 3 for the black. The following string is the DF-expression for the bintree in
Figure 1:

NNNNNNL0L2L0L2NL1NN L3L0NL0L3L0NL1NNL3L0L0.

160 Enrico Nardelli and Guido Proietti

Representing a pixel tree as a DF-expression is space efficient because of the
data compression, but accessing specific blocks is time-consuming, since index-
ing is not provided. and this is a serious handicap for window queries processing.
Therefore, an implementation based on B+-trees for a linear quadtree represen-
tation is straightforward [1], while it is not possible for a DF-expression.

A first step towards the integration of leafcode and treecode representations
has been done by de Jonge et al. [3], who defined a secondary memory represen-
tation of binary images named S+-tree. The S+-tree is obtained in the following
way: preliminary, we visit in preorder the pixel tree, emitting a ’0’ (’1’) when
an internal (leaf) node is encountered. The bitstring thus produced is called a
linear bintree. An additional bitstring, called colour table, records the colours
of the leaves in preorder, by letting a ’0’ (’1’) represent a white (black) leaf.
The two bitstrings thus obtained are named S-tree. The S+-tree is then built
by indexing with a B+-tree a list of data pages containing a segmented and
augmented S-tree representation of the image. Each data page constitutes a self-
contained local S-tree that can be searched independently. A data page consists
of a bitstring merging the linear bintree (which grows from the beginning of the
page) and the colour table (which grows from the tail of the page) of the local
S-tree. Between them there is some unused space (actually, this unused space is
negligible for binary images but it is not for coloured images, as we shall see in
the next section). Moreover, at the very beginning of the page there is a linear
prefix which can be regarded as the summary of all the data pages preceding
the actual one. This linear prefix is determined in the following way: when a
data page becomes full during the building process, a new page is created and
a separator between the pages is stored in the index. Such a separator is built
by encoding the path from the root of the bintree to the node which caused the
filling of the page, emitting a ’0’ when moving towards left, a ’1’ otherwise. Since
it is imposed that the last node stored in a page must be a leaf (we will analyze
this constraint more in detail in the next section), it follows from the preorder
visit properties that the last bit of a separator is always a 11. Consequently, the
linear prefix is built by encoding with a ’0’ a 0 in the separator, and with a
’01’ a 1 in the separator. The 0 added before the 1 actually represents a dummy
leaf, staying for a left subtree (stored in a previous page) along the path to the
node which caused the filling. The linear prefix therefore provides the informa-
tion needed to retrieve a node in a page, since it resembles the whole bintree
preceding the nodes in such a page by condensing all the left subtrees in leaves.

3 The S�-Tree

In the previous section, we mentioned that a tight constraint during the process
of building the S+-tree is that the last node stored in a page must be a leaf.
There are several convincing reasons to do that for binary images:
1 In fact, if the last stored node is a left leaf, then the node which caused the filling is

a right leaf (its sibling), while if the last stored node is a right leaf, then the node
which caused the filling is some right son of an ancestor of the right leaf

S∗–Tree: An Improved S+-Tree for Coloured Images 161

1. Since the last node is a leaf, by preorder visit properties it follows that
the first node on the next page is a right son, and therefore the separator
between the pages will end with a 1. This is important, since it allows to store
the separators using only 2m bits, where m is the resolution of the image,
without encoding the depth of the node the separator refers to which.

2. Since for binary images no information is associated to internal nodes (they
are simply gray), we have at most 2m− 1 unused bits per page. Considering
that a page is generally 512 bytes in size and that a reasonable upper bound
on m is 16, it follows that we waste in the worst case less than 1% of space.

However, the latter observation does not hold any more for coloured images.
In such a case an internal node has an amount of information associated with
it: more precisely, to each internal node we have to associate a colour string of
k bits (where k is the number of features contained in the image), in which the
ith bit is 1 iff the node contains the ith feature. In fact, associating a colour
string to internal nodes greatly improves the performances in executing several
spatial operations [7]. Thus, if m = 16 and k = 32, the wasted space could be
as big as 124 bytes, i.e., about a 25% of the page size! Therefore, it is clear
that for coloured images we have to abandon the constraint that the last node
stored in a page must be a leaf node. The question is: can this be done without
modifying the separators, i.e., without augmenting the space used for the index?
The answer is yes, on condition that a small overhead is paid in terms of the
time spent when a search to a given node is performed. In fact, a problem arises
letting the last node stored inside a page to be internal, that is, it fails the
statement that the last bit of a separator is always a 1. This is because the node
which caused the filling could be a left son, and iteratively its parent could be a
left son and so on. Therefore, in the separator, after the rightmost 1, there could
be some meaningful 0s (actually, as many as 2m−1), i.e., 0s that effectively lead
to the node which caused the filling. Does this affect the search of a given node
through the structure? Only to a small extent, as the following theorem states:

Theorem 1. Let ` = 2m be the length of the index keys in the B+-tree storing
the S∗-tree, and let π(x) = {0, 1}t with t ≤ `, be the path from the root to a
node x to be retrieved in the S∗-tree. Then, as soon as each page in the B+-tree
contains at least ` nodes of the bintree, it follows that at most two contiguous
pages in the B+-tree must be visited to retrieve x.

Proof. We start by noting that the assumption that each node in the B+-tree
contains at least ` nodes of the bintree is not restrictive in applicative cases: for
example, for m = 16 and k = 32, it suffices to fix the page size of the B+-tree
to 128 bytes.

Let πi ∈ {0, 1}, i ≤ ` be the ith bit of π(x) and let πr be the rightmost
1 of π(x). We can therefore write π(x) = π1 . . . πrπr+1 . . . πt, with πr+1 =
. . . = πt = 0. To retrieve x, we will search in the B+-tree for the key kx =
π1 πrπr+1 . . . π`, with πr+1 = . . . = π` = 0. Let ka be the key in the B+-
tree reached by searching kx and let P1, P2 be the two pages separated by ka.
Without loss of generality, let us assume that ka ≤ kx. We will show that x

162 Enrico Nardelli and Guido Proietti

must be either in P1 or in P2. Notice that ka represents a separator, i.e. a node
in the associated bintree, say a, having a path π(a) from the root. Of course,
π(a) ≤ ka. Two cases are possible: ka < kx or ka = kx.

The former case is trivial. In fact, if ka < kx, then in a preorder visit, a must
precede x, i.e., a ≺ x, from which it follows that x must be in P2.

Let us now analyze the latter case, i.e., ka = kx. Remember that π(a) is the
path to the first node stored in P2. To establish the thesis, we have to prove that
x cannot be stored in any page preceding P1. We start by noting that kx does
not only represent the sequence π(x), but also all the sequences of the following
set:

S = {σ ∈ {0, 1}s|σ = π1 . . . πrπr+1 . . . πs, πr = 1, πr+1 = . . . = πs = 0, r ≤ s ≤ `}.

Notice that |S| = ` − r ≤ ` and that π(a), π(x) ∈ S. If x is stored in a
page preceding P1, then for any node y stored in P1, it will be x ≺ y ≺ a, from
which it follows that π(y) ∈ S. This means, all the nodes in P1 have a path
belonging to S. But this is a contradiction, since P1 contains at least ` nodes
and |S \ x| ≤ `− 1. ut

The above result guarantees that the only delicate case to be managed is
when the returned key from the searching in the B+-tree equals the key we are
looking for. In this case, we will load in main memory both the pages pointed by
such a key, thus performing an extra access on secondary memory. This scenario
is quite unlike to happen, and therefore we conclude that our approach works
well for all practical purposes.

We finally remark that we choose in our design of the S∗-tree to eliminate
the linear prefix from the pages, since it can easily be recomputed from the
separators in the B+-tree. This will add a small overhead in terms of CPU time,
but, on the other hand, we will reduce the space occupancy and simplify the
standard B+-tree merging operation: in fact, when two pages of the B+-tree are
merged together as a consequence of an underflow, the separator in the B+-tree
must be changed, and so for the linear prefix inside the page. This can produce
a time expensive shifting of all the bits inside the page. Eliminating the linear
prefix will eliminate this problem. The actual layout of a page of the S∗-tree
is given in Figure 2. Note that the free space will be at most k bits. The tree
pointer points to the next available position in the linear tree stack, the colour
pointer points to the next available position in the colour string stack while next
is a pointer to the next page in the sequence set [3]. The field length stores the
length of the separator.

lineartree freespace colourstring

bitstring

tree

pointer

colour

pointer length next

Fig. 2. Layout of a page of the S∗-tree.

S∗–Tree: An Improved S+-Tree for Coloured Images 163

Figure 3 provides the complete B+-tree containing the bintree of Figure 1.
Note that we set the size of the bitstring to 36 bits. With any external node
we have associated a colour key: we encoded the white feature with ’00’, the
light gray with ’01’, the dark grey with ’10’ and the black with ’11’. For internal
nodes, the associated colour string has 4 bits associated, from left to right, to
white, light gray, dark gray and black. A bit in the colour string is set to 1 iff the
associated feature is contained in the subimage individuated by the node. The
two separators of the resulting three pages are 00001 and 001110, respectively.
Thus, the second separator will be ambiguous, since its last digit is a 0. For
example, looking for the node 00111 will retrieve the key 001110 from the B+-
tree. As proved above, in this case we will not visit only the page following the
retrieved key; instead, we will preliminary visit the page preceding the key: we
compute the linear prefix by using the key 000010 and the length 5 stored in
the page (thus the separator will be 00001 and the linear prefix will be 000001,
since we codify a ’0’ with a ’0’ and a ’1’ with a ’01’). Using the linear prefix, we
are then able to retrieve the node 00111 as the last one of the second page (see
[3] for details).

110100110x10010111100110010111011000

page3

page2

page1

11 6

5

0800000011 10 01 1010 1010 1010 1111 1111 1111 9

9 9

10

page 1 page 2 page 3

000010 001110

1110100111 00 00 11 1001 1001 01 1101 00 11 00

Fig. 3. The resulting B+-tree storing the S∗-tree.

4 Experimental Results

In this section we present detailed experiments comparing the S∗-tree with the
HL-quadtree, since this latter spatial access method for coloured images has been
shown to be very efficient with respect to other linear quadtree implementations
[7]. We implemented both methods in C language and run the experiments on a
SUN SPARC workstation with UNIX operating system. We executed the window
queries on a set of images of size 210 × 210 containing multiple non-overlapping
features, ranging from satellite views to landuse maps. For the sake of brevity, we
here present results for a set of 10 images containing 32 features and consisting of
meteorological satellite views of North America. Figure 4 shows a sample image.

164 Enrico Nardelli and Guido Proietti

Fig. 4. A sample image (North America) containing 32 features.

We considered the following window queries, of primary importance for mul-
tiple non-overlapping features [2]:

– exist(f,w): Determine whether or not the feature f exists inside window w;
– report(w): Report the identity of all the features that exist inside window w;
– select(f,w): Report the locations of all occurrences of the feature f inside

window w. This means to output all blocks homogeneous for feature f .

The basic approach to process all window queries was to decompose the
query over a window into a sequence of smaller queries onto the maximal blocks
contained inside the window [2]. Given a square window query of side n, these
maximal blocks are O(n) [4] and can be determined in linear time [8]. A detailed
description of the algorithms used to process the queries can be found in [7].
For our purposes, it suffices to recall here that the exist(f, w) and the report(w)
queries can be answered in O(n logr T) I/O time, where r is the order of the
B+-tree, while the select(f, w) query can be answered in O(n logr T + n2/r) I/O
time [7]. In our experiments, the page size of the storing B+-tree was fixed to
512 bytes, while the order r has been fixed to 16.

4.1 Space Usage

A first comparison has been made on the space used by the HL-quadtree and
the S∗-tree. To this aim, we let the resolution of the images change from 28× 28

to 210 × 210. Figure 5 shows the results. From the drawing, it emerges that the
S∗-tree uses about 1/4 of the space used by the HL-quadtree. Therefore, the
improving is substantial. This positively influences time performances, as we
shall see in the next section.

S∗–Tree: An Improved S+-Tree for Coloured Images 165

0

1000

2000

3000

4000

5000

6000

7000

8000

8 9 10

U
se

d
pa

ge
s

Image resolution

Space occupancy

S*-tree
HL-quadtree

Fig. 5. Space occupancy comparison between the two methods.

4.2 Time Performances

To analyze the time performances of the HL-quadtree and the S∗-tree, we used
the classical measure of I/O complexity, that is, the number of disk accesses on
secondary memory. The CPU time is indeed negligible with respect to the time
spent in retrieving a page on secondary memory. In the following, we make the
standard assumption that each secondary memory access transmits one page of
data (a bucket), and we count this as one operation. We tested the two methods
for each of the window queries and for each of the considered images. We ran-
domly generated the anchor of 100 square windows of side n = 50 · i, i = 1, . . . , 8
(i.e., a total of 800 query windows). The windows have been “wrapped around”
the image space whenever they extended beyond the borders of the image. Then,
we computed the number of disk accesses for solving the queries using the two
approaches, for each of the images, and we computed the arithmetic mean.

Concerning the exist(f, w) query, we focused on two different densities of
feature distribution, namely features covering about 5% and 30% of the image
space, respectively. We found such features for all the images, since the images
were statistically similar. Figure 6 shows the results. From the drawings, we
derive that in both cases there is approximately a 20% of saving in the number
of accesses using the S∗-tree. It is worth noting that as soon as the feature
density increases, the I/O complexity decreases dramatically, and even though
the theoretical I/O complexity depends on the window side, the query is solved
in much less time. In fact, in case of high density, the probability of finding the
feature after few accesses is very high.

Concerning the report(w) query, Figure 7(a) shows the results. Here, the I/O
complexity of the two methods increases as soon as does the window side, since
all the maximal blocks of the window need to be examined. In general, the S∗-
tree answers the query by doing about 20% less of the I/O accesses done by the
HL-quadtree.

166 Enrico Nardelli and Guido Proietti

0

200

400

600

800

1000

50 100 150 200 250 300 350 400

D
is

k
ac

ce
ss

es

Window side

I/O complexity exist query (5% feature)

S*-tree
HL-quadtree

0

20

40

60

80

100

50 100 150 200 250 300 350 400

D
is

k
ac

ce
ss

es

Window side

I/O complexity exist query (30% feature)

S*-tree
HL-quadtree

(a) (b)

Fig. 6. Time performances of the two methods for the exist(f, w) query: (a)
feature covering 5% of the image space; (b) feature covering 30% of the image
space.

Finally, concerning the select(f, w) query, we focused on the feature covering
about 30% of the image space. As for the report(w) query, the I/O complexity
of the two methods increases as soon as does the window side, since also in this
case all the maximal blocks of the window need to be examined. Furthermore,
we here have a larger number of disk accesses, since to return all the occurrences
of a feature we need to examine all the descendants of a node corresponding to a
given maximal block. Figure 7(b) presents the results, showing that the S∗-tree
answers the query using about 70% of the I/O accesses used by the HL-quadtree.
Therefore, we have up to 30% of time saving.

0

500

1000

1500

2000

50 100 150 200 250 300 350 400

D
is

k
ac

ce
ss

es

Window side

I/O complexity report query

S*-tree
HL-quadtree

0

500

1000

1500

2000

2500

3000

3500

4000

50 100 150 200 250 300 350 400

D
is

k
ac

ce
ss

es

Window side

I/O complexity select query (30% feature)

S*-tree
HL-quadtree

(a) (b)

Fig. 7. Time performances of the two methods: (a) report(w) query; (b)
select(f, w) query.

S∗–Tree: An Improved S+-Tree for Coloured Images 167

5 Conclusions

In this paper we have proposed and analyzed the S∗-tree, a new time and space
efficient disk-based representation of images containing multiple non-overlapping
features. We used as time performance measure the number of secondary storage
accesses for solving the classical window queries, and our experiments showed
that the new approach outperforms a previous efficient spatial access method
proposed in literature, namely the HL-quadtree [7]. More precisely, saving in
time and space is about 20%.

Future work will be in the direction of an extension of this new encoding
technique to the more general case of images containing multiple overlapping
features. We also plan to test the S∗-tree in performing other spatial operations.

References

1. W.G. Aref and H. Samet. A B+-tree structure for large quadtrees. Computer Vi-
sion, Graphics and Image Processing, 27(1):19–31, July 1984. 160

2. W.G. Aref and H. Samet. Efficient processing of window queries in the pyramid
data In Proc. of the 9th ACM-SIGMOD Symposium on Principles of Database
Systems, pages 265–272, Nashville, TN, 1990. 164, 164

3. W. de Jonge, P. Scheuermann, and A. Schijf. S+–trees: an efficient structure for the
representation of large pictures. Computer Vision, Graphics and Image Processing:
Image Understanding, 59(3):265–280, May 1994. 157, 160, 162, 163

4. C. Faloutsos, H.V. Jagadish, and Y. Manolopoulos. Analysis of the n-dimensional
quadtree decomposition for arbitrary hyperectangles. IEEE Transactions on
Knowledge and Data Engineering, 9(3):373–383, 1997. 164

5. I. Gargantini. An effective way to represent quadtrees. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 25(12):905–910, 1982. 157, 159

6. E. Kawaguchi, T. Endo, and M. Yokota. Depth-first expression viewed from digital
picture processing. IEEE Trans. on Pattern Analysis and Machine Intelligence,
pages 373–384, July 1983. 157, 159

7. E. Nardelli and G. Proietti. Time and space efficient secondary memory represen-
tation of quadtrees. Information Systems, 22(1):25–37, 1997. 156, 158, 161, 163,
164, 164, 167

8. G. Proietti. An optimal algorithm for decomposing a window into maximal
quadtree blocks. Acta Informatica, 1999. To appear. 164

9. H. Samet. The quadtree and related hierarchical data structures. Computing Sur-
veys, 16(2):187–260, June 1984. 157

10. H. Samet and R.E. Webber. A comparison of the space requirements of multi-
dimensional quadtree-based file structures. Visual Computer, 5(6):349–359, De-
cember 1989. 159

11. C.A. Shaffer and P.R. Brown. A paging scheme for pointer-based quadtrees. In D.
Abel and B.C. Ooi, editors, Advances in Spatial Databases, pages 89–104. Lecture
Notes in Computer Science 692, Springer Verlag, 1993. 159

12. M. Tamminen. Encoding pixel trees. Computer Vision, Graphics and Image Pro-
cessing, 2:174–196, 1984. 157

13. M. Vassilakopoulos and Y. Manolopoulos. Analytical comparison of two spatial
data structures. Information Systems, 19(7):269–282, 1994. 159

168 Enrico Nardelli and Guido Proietti

14. M. Vassilakopoulos, Y. Manolopoulos, and K. Economou. Overlapping quadtrees
for the representation of similar images. Image and Vision Computing, 11(5):257–
262, 1993. 158

	Introduction
	Survey
	The Bintree and the Quadtree
	Secondary Memory Implementations

	The S*-Tree
	Experimental Results
	Space Usage
	Time Performances

	Conclusions

