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Abstract. In this paper we provide a theoretical framework for estima-
ting the size of the intersection join between two line segment datasets
(e.g., roads, railways, utilities). For real datasets, it has been pointed
out that the line segment lengths and slopes are distributed according to
specific mathematical laws [14]. Starting from this result, we show how
to predict the size of the intersection join between two line segment data-
sets. We evaluate our formula through several experimentations, showing
that the estimation is accurate, as compared to that obtained by using
a naive uniform model.

1 Introduction

The spatial join between two spatial datasets is one of the most popular spatial
operation. It can be defined as follows: Given two datasets S and S ′ of spatial
objects and a binary spatial predicate θ : S × S ′ → {false, true}, find all
pairs of objects (s, s′) ∈ S × S ′ such that θ(s, s′) = true. Among the most
common spatial predicates, we recall intersects, crosses, contains, near, adjacent,
northwest, meets and many others [7]. Among them, the most popular is certainly
the intersects predicate, since it plays a crucial role for the computation of all
kinds of joins [8].

In the past, several processing techniques of the intersection join have been
developed. In particular, these techniques deal both when S and S ′ are indexed
through an R-tree [2], and when S and S ′ are not indexed [11,12]. Recently,
attention has been posed towards the more general problem of optimizing the
processing of multiway spatial join [13], where the number of datasets involved
in the join operation is larger than 2.

In recent years, line segment datasets (e.g., roadmaps, drainage systems, rail-
ways, utility networks and many others) are appearing more and more frequently
in numerous applications involving spatial data, such as GIS [8,10], multime-
dia [4], and even traditional databases. This is especially true with the advent
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and the rapid growing of spatio-temporal databases, where, for instance, mo-
ving points can be represented by means of polylines [5,6]. Therefore, database
management systems are usually concerned with intersection join operations in-
volving two datasets of this category, like for instance “Find all the roads that
are crossed by a drain in a given area”.

Since usually data are stored through their minimum bounding rectangles
(MBRs), together with a pointer to the corresponding database entry contai-
ning a detailed description of the object, the first step in order to optimize the
operation is to retrieve all possible candidates to the output of the join, through
a join performed over the MBRs of the objects: this is the so-called filter step.
Afterward, a refinement step takes place, where candidate objects retrieved from
the filter step are selected on the basis of effective intersection.

Therefore, to the aim of characterizing the computational effort required by
an intersection join and to optimize it as a whole, it is of primary importance
to estimate the size of the output of the refinement step, that is the number
of mutual intersections between the objects in S and S ′. Known techniques for
solving this problem generally assume that objects in S and S ′ are uniformly
and independently distributed, although it is well known that this assumption is
too restrictive when dealing with real spatial datasets [3]. In this paper we aban-
don this assumption, and we instead make use of an exponential law discovered
in the past [14], and concerned with the complementary cumulative distribution
function1 (CCDF) of the line segment lengths (expressing the number of line
segments F (`) having length at least `). We will show that using such a law, we
can obtain good estimations, by knowing only few and easy-to-retrieve parame-
ters. More precisely, we will present a large collection of experiments on several
line segment datasets, showing that our prediction is usually 40% far from the
reality, while the uniform model provides unreliable estimations, with a relative
error of up to 5000%. Since the intersection join is the most popular join ope-
ration, and given that line segment datasets are among the largest commonly
appearing spatial datasets, we conclude that we move an important step forward
in the hard task of estimating the size of spatial join operations.

The paper is organized as follows: Section 2 recalls some results achieved
in the past on the topic of query optimization and data modelling for multi-
dimensional data, and gives a short insight into the mathematical laws that
are used throughout the paper. In Section 3 we develop two formulae that can
be used to estimate the size of an intersection join between two line segment
datasets: the first one is based on a uniform model, while the second one is based
on the above mentioned laws. Section 4 provides a collection of experimental
results on real datasets, performed to measure the quality of the estimation
provided by our model as compared to the uniform model, and suggests some
ideas for a possible future improvement of our model. Finally, Section 5 contains
some open problems and concluding remarks.

1 Remember that the cumulative distribution function of f(x) : < → < is defined
as F (x) =

∫ x

−∞ f(t)dt, while the complementary cumulative distribution function is
defined as F (x) =

∫ +∞
x

f(t)dt.
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2 Previous Work

The main topic within the spatial database field which is related to our present
work is query optimization, and, more specifically, size estimation of the inters-
ection join between two line segment datasets. As we will show in the following,
we will develop an analytical formula based on a non-uniform distribution of the
underlying data. In fact, the uniformity assumption generally lead to pessimistic
results [3].

Whereas for one-dimensional data some developed non-uniform distributions
(like for example the Zipf distribution [16]) have met with success, for multi-
dimensional data difficulties have not been overcome yet. Most of the previous
analysis efforts have focused on point data [1]. In fact, for point data, the count
and the fractal dimension of the dataset are sufficient to accurately estimate
selectivities for window queries, spatial joins and nearest neighbor queries. For
region data, novel results have been proposed in [15], where the authors deve-
loped a realistic statistical model, and showed how to use it to compute the
selectivity of window queries.

Concerning line segment data, the selectivity of window queries has been
estimated making use of an exponential law for the CCDF of the segment
lengths [14]. More formally, given two points p1 = (x1, y1) and p2 = (x2, y2) in
the Euclidean plane E

2, a convex combination of p1 and p2 is a point p = (x, y)
such that

x = (1 − α) · x1 + α · x2 and y = (1 − α) · y1 + α · y2,

with α ∈ R, 0 ≤ α ≤ 1. A line segment (or simply segment) s = p1p2 is the set
of convex combinations of its endpoints p1 and p2. Without loss of generality, we
will assume in the rest of the paper that x1 ≤ x2 (if x1 = x2, then we assume
that y1 ≤ y2). The length of s is

`(s) =
√

(x1 − x2)2 + (y1 − y2)2,

while its slope θ(s) is the angle that s forms with the horizontal ray

ρ(s) = {(x, y) ∈ E
2|x ≥ x1, y = y1}.

Therefore, we have −π
2 < θ(s) ≤ π

2 . Let S = {s1, s2, . . . , sn} be a real dataset
of line segments. In [14], it has been observed that the CCDF of the segment
lengths, say F (`), obeys to the following exponential law

F (`) = n ·
(
n

1
`max

)−`

` ≥ 0, (1)

where `max is the length of the longest line segment in S. Hence, the CCDF of
the lengths of S can be synthetically described by means of a mathematical law
(named SLED law) containing only two constants that can be easily determined:
the count of objects n and the length `max of the longest line.
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Moreover, in the same paper it has been observed that in many real line
segment datasets the orientation of the segments is uniformly distributed. This
has been named the SUD law. In the next section, we will use both the SLED
and the SUD law to predict the size of the intersection join between two line
segment datasets.

3 Proposed Method

In this section, we first give the problem definition, and we then propose two
estimations of the intersection join between two line segment datasets: the first
one is based on a naive uniform model, while the second one makes use of the
above mentioned laws.

3.1 Problem Definition

Let us rigorously state the problem we are concerned with. For the sake of clarity,
we focus on the 2-dimensional space, but all the results can be extended to the
d-dimensional space.

PROBLEM: size of the intersection join between two line segment
datasets

Given: In the address space U = [0, 1] × [0, 1], two line segment datasets
S = {s1, s2, . . . , sn} and S ′ = {s′

1, s
′
2, . . . , s

′
m}, whose longest segments have

length `max and `′
max, respectively;

Find: the size of the intersection join between S and S ′, that is the number of
mutual intersections between segments of S and S ′, say Size(S ∩ S ′).

3.2 A Naive Estimation Based on the Uniform Model

Assuming that S and S ′ obey to a uniform model, we have that each segment
in S has length `max, while each segment in S ′ has length `′

max. The following
can be proved:

Theorem 1. Let be given in U = [0, 1] × [0, 1] two line segment datasets S =
{s1, s2, . . . , sn} and S ′ = {s′

1, s
′
2, . . . , s

′
m}, whose longest segments have length

`max and `′
max, respectively. If we assume that segments in S and S ′ are distri-

buted according to a uniform model, then we have

Size(S ∩ S ′) =
2
π

· n · m · `max · `′
max. (2)

Proof. To estimate Size(S ∩ S ′), we handle the spatial join operation as a se-
quence of intersection queries posed on S ′ of each segment belonging to S. Firstly,
observe that given two segments s and s′ in U , the probability they intersect is



Size Estimation of the Intersection Join between Two Line Segment Datasets 233

s

s′

Fig. 1. Two segments s and s′ intersect iff the right endpoint of s falls into the grey
area.

p(s ∩ s′) = `(s) · `(s′) · | sin(θ(s) − θ(s′))|.

In fact, this is the probability that the right endpoint of s falls into the grey
polygon depicted in Figure 1.

It follows that the expected number of segments in S ′ intersected in U by s1,
say T (s1,S ′), is

T (s1,S ′) =
m∑

j=1

p(s1, s
′
j) = `(s1) ·

m∑
j=1

`(s′
j) · | sin(θ(s1) − θ(s′

j))|.

Analogously, when considering the i-th segment in S, we have that

T (si,S ′) =
m∑

j=1

p(si, s
′
j) = `(si) ·

m∑
j=1

`(s′
j) · | sin(θ(si) − θ(s′

j))|.

Therefore, we have that

Size(S ∩ S ′) =
n∑

i=1

T (si,S ′) =
n∑

i=1

`(si) ·

 m∑

j=1

`(s′
j) · | sin(θ(si) − θ(s′

j))|

 . (3)

Since segments in S and S ′ are oriented according to a uniform model, we
have that the average value of | sin(θ(si) − θ(s′

j))| equals the average value of
sin θ in [0, π/2], that is 2/π [14]. Moreover, since segment lengths in S and S ′

are uniformly distributed as well, we have that `(si) = `max and `(s′
j) = `′

max,
for all i and j. Hence, we eventually have that

Size(S ∩ S ′) =
2
π

· n · m · `max · `′
max. (4)

�
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3.3 A More Accurate Estimation

A more accurate estimation for real line datasets can be obtained by assuming
that segments in S and S ′ obey to the SLED and to the SUD law. Let F (`)
and F ′(`) be the CCDFs associated with S and S ′, respectively. ¿From our
assumptions, we have that

F (`) = n ·
(
n

1
`max

)−`

F ′(`) = m ·
(
m

1
`′
max

)−`

` ≥ 0. (5)

The following can be proved:

Theorem 2. Let be given in U = [0, 1] × [0, 1] two line segment datasets S =
{s1, s2, . . . , sn} and S ′ = {s′

1, s
′
2, . . . , s

′
m}, whose longest segments have length

`max and `′
max, respectively. If we assume that segments in S and S ′ are distri-

buted according to the SLED and to the SUD law, then we have that 2

Size(S ∩ S ′) ≈ 2
π

· `max

lnn
· `′

max

lnm
· (m − lnm − 1) · (n − lnn − 1). (6)

Proof. The proof is based on the approach used for Theorem 1. Without loss of
generality, let us assume that the segments in S and S ′ are sorted in decreasing
order according to their length, that is `(s1) = `max and `(s′

1) = `′
max. ¿From

the inverse relation3 of (5), we have that

`(F ) =
1

ln
(
n

1
`max

) · ln
n

F
=

`max

lnn
· ln

n

F

and analogously for `(F ′)

`(F ′) =
`′
max

lnm
· ln

m

F ′ .

Following (3), and given that S and S ′ obey to the SUD law, we have that

Size(S ∩ S ′) =
2
π

·
n∑

i=1

m∑
j=1

`(si) · `(s′
j). (7)

To estimate Size(S∩S ′), we replace the above summation by an integral. This
approximation is based on the Euler’s summation formula, which for sufficiently
smooth functions (like F (`) and F ′(`) are) turns out to be very accurate [9].
Therefore, we have that (7) can be rewritten as follows
2 In the rest of the paper, all logarithms are natural.
3 Remember that given a one-to-one function f(x) : < → <, its inverse f−1(x) is

defined by f(f−1(x)) = f−1(f(x)) ≡ x.
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Size(S ∩ S ′) ≈ 2
π

·
∫ n

1

∫ m

1
`(F ) · `(F ′)dF dF ′ =

2
π

· `max

lnn
· `′

max

lnm
·
∫ n

1

∫ m

1
ln

n

F
· ln

m

F ′ dF dF ′ =

2
π

· `max

lnn
· `′

max

lnm
· (m − lnm − 1) · (n − lnn − 1).

�

4 Experiments on Real Datasets

To assess experimentally the accuracy of our formula (6), we have tested it on
different line segment datasets scattered all around the world (Italy, Germany,
Japan, California, Russia, etc.), available at http://www.gisdatadepot.com.
More precisely, we have downloaded all the line segment datasets available for
several different countries. Afterwards, we have computed the intersection join
between all pairs of datasets of each country, since it does not make much sense
to intersect two datasets from two different countries. Due to space limitations,
we here provide a small subset of the experiments, concerned with the following
data of North Italy:

– Drainage system (DRAIN), consisting of 18,923 segments;
– Railways network (RAIL), consisting of 4,469 segments;
– Roadmap (ROAD), consisting of 9,732 segments;
– Utility network (UTIL), consisting of 2,070 segments.

All the datasets were stored in vectorial format on a Digital DEC 3000 run-
ning UNIX V4.0B. Preliminarily, we have computed all the relevant features
needed for checking our results. Such a computation is very fast, since it can be
performed by means of a single scan of the datasets. These data are summarized
in Table 1. Figure 2 depicts the datasets, along with the CCDF of their segment
lengths. Notice that CCDFs are plotted in a log-linear diagram: The pictures
confirm that the CCDFs follow very well an exponential law, since they appear
as straight lines in the log-linear diagram.

To ascertain the accuracy of our formula (6) as compared with the estimation
provided by the uniform model (2), we have opposed them to the real size of the

Table 1. Datasets features.

Dataset Count `max Image Space Area
DRAIN 18,923 0.09961 23.842
RAIL 4,469 0.15468 23.242
ROAD 9,732 0.14578 23.529
UTIL 2,070 0.41221 22.342
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Fig. 2. Used datasets, together with their CCDF plots.
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Table 2. Experimental results: real size of the joins versus estimated ones using the
proposed technique (NEW) and the uniform model (OLD), together with their respec-
tive relative errors.

Dataset Actual NEW OLD % Err NEW % Err OLD
DRAIN ∩ RAIL 625 367.1 30482.9 -70.1 4777.2
DRAIN ∩ ROAD 1202 683.9 61956.2 -75.7 5054.4
DRAIN ∩ UTIL 875 510.8 38593.0 -71.2 4310.6
RAIL ∩ ROAD 601 347.0 26861.3 -42.2 4369.3
RAIL ∩ UTIL 385 250.2 16155.2 -38.5 4515.7
ROAD ∩ UTIL 675 489.6 34493.6 -27.5 5010.0

intersection joins between all possible pairs of datasets. The intersection join has
been performed by using segment trees implemented in C language. Given the
size of some datasets (of the order of several thousands of line segments), the
results have been obtained by paying a severe cost in terms of CPU time (up
to a hour). This confirms that the size estimation of spatial join operations is
a very crucial step in query optimization. Table 2 contains the obtained results
and their relative errors, both for our model (NEW) and the uniform one (OLD).

A first comment on the results is that our estimation maintains the error
within 75%, achieving an accuracy of 27%, while the uniform model is totally
unreliable, with an error in the (over)estimation up to 5,000%. Notice that our
model tends to underestimate the actual size of the intersection. Our explanation
for this fact is that the datasets from a given country tend to overlap (given that
they are defined over the same geographic space and therefore there is a strong
correlation among them). In some sense, we could interpret the deviation from
the predicted value as a measure of the correlation between the datasets!

We leave as a future study the problem of correcting our formulas so that
they take into account from the beginning of the correlation between the two
datasets that are going to be joined.

5 Conclusions

The main contribution of this paper is the estimation of the size of the intersec-
tion join between two spatial datasets containing line segments.

We showed that very few measures are needed (essentially the count of seg-
ments and the length of the longest segment), to achieve quite accurate results.
Our experiments on diverse, real datasets, scattered around the world showed
that our approach achieves estimates pretty close to the reality, while a straight-
forward estimation based on a uniform model provides result totally unreliable.

Promising future directions include the study of the intersection join on spa-
tial datasets other than line datasets, the extension to the case of multiway
intersection join, and the analysis of other spatial join operations. We also look
forward to improve our formulas by taking into account of a correlation factor
between the datasets.
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