
Distributed Searching of k-Dimensional Data
with Almost Constant Costs

Adriano Di Pasquale1 and Enrico Nardelli1,2

1 Dipartimento di Matematica Pura ed Applicata, Univ. of L’Aquila,
Via Vetoio, Coppito, I-67010 L’Aquila, Italia.

{dipasqua,nardelli}@univaq.it
2 Istituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche,

Viale Manzoni 30, I-00185 Roma, Italia.

Abstract. In this paper we consider the dictionary problem in the scala-
ble distributed data structure paradigm introduced by Litwin, Neimat
and Schneider and analyze costs for insert and exact searches in an amor-
tized framework. We show that both for the 1-dimensional and the k -
dimensional case insert and exact searches have an amortized almost
constant costs, namely O

(
log(1+A) n

)
messages, where n is the total

number of servers of the structure, b is the capacity of each server, and
A = b

2 . Considering that A is a large value in real applications, in the
order of thousands, we can assume to have a constant cost in real distri-
buted structures.
Only worst case analysis has been previously considered and the almost
constant cost for the amortized analysis of the general k -dimensional case
appears to be very promising in the light of the well known difficulties
in proving optimal worst case bounds for k -dimensions.

Keywords: distributed data structure, message passing environment,
multi-dimensional search.

1 Introduction

The constant increase of PCs and workstations connected by a network and
the need to manage greater and greater amount of data motivates the research
focusing on the design and analysis of distributed databases. The technological
framework we make reference to is the so called network computing : fast commu-
nication networks and many powerful and cheap workstations. There are several
aspects making this environment attractive. The most important one is that a
set of sites has more power and resources with respect to a single site, inde-
pendently from the equipment of a site. Moreover the network offers a transfer
speed that is not comparable with the magnetic or optical disks one. Therefore
this framework is a suitable environment for the newer applications with high
performance requirements, like, for example, spatio-temporal databases [14,3].

In this work we consider the dictionary problem in a message passing distri-
buted environment and we follow the paradigm of the SDDS (Scalable Distributed
Data Structure) defined by Litwin, Neimat e Schneider [8]. The main properties
of SDDS paradigm are:

J. Štuller et al. (Eds.): ADBIS-DASFAA 2000, LNCS 1884, pp. 239–250, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

240 A. Di Pasquale and E. Nardelli

1. Keep a good performance level while the number of managed objects chan-
ges.

2. Perform operations locally.

We assume that data are distributed among a variable number of servers and
accessed by a set of clients. Both servers and clients are distributed among the
nodes of the network. Clients and servers communicate by sending and receiving
point-to-point messages. We assume network communication is free of errors.
Servers store objects uniquely identified by a key. Every server stores a single
block (called bucket) of at most b data items, for a fixed number b. New servers
are brought in as the volume of data increases to maintain the performance level.

The fundamental measure of the efficiency of an operation in this distributed
context is the number of messages exchanged between the sites of the network.
The internal work of a site is neglected. In order to minimize the number of
messages, in a search operation it is possible to use some index locally to a site
to better address the search towards another site. The search process in the local
index performed by a site is not accounted in the complexity analysis.

The clients are not, in general, up-to-date with the evolution of the structure,
in the sense they have some local indexing structure, but do not know, in general,
the overall status of the data structure. Different clients may therefore have
different and incomplete views of the data structure.

In an extreme case we can design the following distributed structure: there
is a server root knowing all the other servers. When a split occurs, the new
server which is brought in sends a messages to root to communicate its presence.
When a server is not pertinent for a request, it sends the request to root, that
looks for the correct server in its local index and sends it the request. Each
access has thus a cost of at most 2 messages. But with this solution root is a
bottleneck, because it has to manage each address error, and this violates the
basic scalability requirement of the SDDS paradigm.

However, the above example shows that we can have, within this distributed
computing framework, a worst case constant cost for the search process, while
in the centralized case the lower bound is well known to be logarithmic.

There are various proposal in the literature addressing the dictionary problem
within the paradigm of the SDDS: LH∗ [8], RP∗ [9], DRT [7], lazy k-d-tree [10],
RBST [1], BDST [4] distributed B+-trees [2].

In this work we propose a variant of the management technique for distribu-
ted data used in the DRT [7]. We conduct an amortized analysis of the proposed
strategy showing it has an almost constant cost for insert and search and we
show how to adapt the strategy to the multi-dimensional case.

2 Description of the Structure

2.1 Split Management

Servers manage their bucket in the usual way. We say a server goes in overflow
when it is managing b keys and a new one is sent to it, where b is the capacity
of a server. For the sake of simplicity, we assume b is even. When a server goes

Distributed Searching of k -Dimensional Data with Almost Constant Costs 241

in overflow it has to split: it finds a new server to bring in (for example asking
to a special site, called Split Coordinator), and sends it half of its keys.

The interval of the keys managed by s is divided by the split in two sub-
intervals. From now on, the server s manages one of this sub-intervals (the one
that contains the keys remaining in s), while s′ manages the other one. We
assume that after a split the splitting server s always manages the lower half
of the two intervals resulting from the split and the new server s′ manages the
upper half. Also, after this split, s knows that s′ is the server brought in by itself.

After a split, one of the two resulting servers manages b
2 keys and the other

one b
2 +1 keys. Let A = b

2 . Whit m requests, it follows directly that we can have
at most

⌊
m
A

⌋
splits.

2.2 Local Tree

The clients and the servers have a local indexing structure, called local tree.
From a logical point of view this is a tree composed by an incomplete collection
of servers. For each server s the managed interval of keys I(s) is also stored.
The local tree of a client can be wrong, in the sense that in the reality a server
s is managing an interval smaller than what the client currently knows, due
to a split performed by s and unknown to the client. In particular, given the
split management policy above described, if Ir = [a, b) is the real interval of s,
and Ilt = [c, d) is the interval of s in some local tree, then a = c and b ≤ d.
For example in reality Ir(s) = [100, 200), while in a local tree we could have
Ilt(s) = [100, 250). The local tree can be managed internally with any data
structure: list, tree,etc.

Note that for each request of a key k received by a server s, k is within the
interval I that s managed before its first division. This is due to the fact that if
a client has information on s, then certainly s manages an interval I ′ ⊆ I, due
to the way overflow is managed through splits. Therefore if s is chosen as server
to which to send the request of a key k, it means that k ∈ I ′ ⇒ k ∈ I.

The local tree of a client c is set up and updated using the answers of servers
to request of c. The local tree of a server s is composed at least by the servers
generated by s through a split. In particular, since a server always knows the next
ones brought in by itself through its splits, this always guarantees the existence
of a path between the initial server and any other server. A server always adds
its local tree in every message to update clients with information about its view
of the overall structure.

2.3 Requests Management

A client c that wants to perform a request chooses in its local tree the server s
that should manage the request and sends it a request message.

If s is pertinent for the request then performs it (see figure 1-a). In general,
if the request is a search operation then an answer is always sent back to the
client; if it is an insert no answer is sent.

If s is not pertinent we have an address error. In this case s looks for the
pertinent server s′ in its local tree and forwards it the request.

242 A. Di Pasquale and E. Nardelli

Since also s′ can be not pertinent, thus forwarding the request to still another
server, in general we can have a series of address error that causes a chain of
messages between the servers s1,s2,..,sk. Finally, server sk is pertinent and can
satisfy the request. Moreover, sk receives the local trees of the server s1,s2,..,sk−1
which have been traversed by the request. It first builds a correction tree C ag-
gregating the local trees received and its own one, and then sends Local Tree
Correction (LTC) messages with C to the client (even if it was an insert opera-
tion) and to all servers s1,s2,..,sk−1, so to allow them to correct their local trees
(see figure 1-b).

In figure 1 the possible cases of search process are shown. We have that each
request has a cost, without counting the initial request and the final answer
messages, either 0 (case a) or 2(k − 1)(case b).

This strategy to manage the distributed structure, is very similar to the one
defined by Kröll and Widmayer for DRT [7] and therefore we call it DRT*.

Client s

a)

Client sks2s1

b)
request

forwards

LTCs
answer+LTC

request

answer

Fig. 1. Possible cases of the search process.

2.4 Split Tree

From the description above of the local trees and how they change due to the
distribution of information about the overall structure through LTC messages,
it is clear that the number of messages needed to answer a request changes with
the increase of the number of requests. To analyze how changes in the content
and structure of local trees affect the cost of answering to requests we associate
to each server s of DRT* a rooted tree ST (s), called the split tree of s. The
nodes of ST (s) are the servers pertinent for a request arriving to s. The tree has
an arbitrary structure except that the root is s. An arc (s1, s2) in ST (s) means
that s1 is in the local tree of s2. When a server updates its local tree using LTC
messages the structure of ST (s) changes.

We call ST0(s) the split tree of server s obtained from a sequence of requests
over a DRT* without applying the correction of the local trees of the servers
using LTC messages, i.e. ST0(s) is shaped only by splits of the servers. Initially
ST0(s) is made up only by s. Whenever s splits, with s′ as new server, the node
s′ and a new arc (s′, s) are added to ST0(s). The same holds for the splits of
servers which are nodes in ST0(s) (for example, in figure 2-center, the split of
server e adds the node s′ and the arc (s′, e) in ST0(a)).

Distributed Searching of k -Dimensional Data with Almost Constant Costs 243

Since each server s′ in ST0(s) was created by a chain of splits emanating
from s, then s′ manages a sub-interval of the initial interval managed by s.

If we consider the correction of local trees, the structure of the split tree of s
changes. Infact, due to the correction, after a request to a server d, s adds all the
servers in the path between s and d in its local tree. The consequence is that now
s can address directly these servers in the future. In order to describe this new
situation in the split tree of s, we delete the arcs of the traversed path and add
to s the arcs between s and the traversed servers. The result is a compression of
the path between s and d (see figure 2-right).

We denote with ST (s) the split tree of s whose structure has been determined
by the use of LTC messages. We denote with Ts(s′) the sub-tree of ST (s) rooted
at server s′. We give some immediate properties of split trees:

Lemma 1. Each request arriving to s is pertinent for a server in ST (s).

Lemma 2. Let s′ be a server in ST (s). Let Qs(s′) be the set of servers in the
sub-tree of ST0(s) rooted at s′, but for s′ itself. Let p(s′, s) be the set of servers
belonging to the path in ST0(s) from s′ (excluded) to s (included).

As long as no request pertinent for a server x ∈ Qs(s′) arrives to a server
y ∈ p(s′, s), it is ST (s′) = Ts(s′).

For example, by comparing figure 2-left and figure 2-right, you can check
that ST (c) does not correspond anymore with the sub-tree Ta(c) of ST (a) after
the request pertinent for d arrives to a and is forwarded to d.

We use the split trees to takes into account in the amortized analysis the use
of LTC messages to reduce the cost of satisfying the request.

a

b

c

d

e

a

bcd e
s’

a

b

c

d

e
s’

Fig. 2. The splits build up ST0(a) (e splits, with s′ as new server)(left and center).
The effect of a compression after a request pertinent for d and arrived to a (right).
ST (c) does not correspond anymore to the sub-tree Ta(c) of ST (a). The same for b.

3 Amortized Analysis

Since the way local trees change during the evolution of the overall structure is
similar to the structural changes happening in the set union problem we now first
briefly recall it and then analyze amortized complexity of operations in DRT*.

244 A. Di Pasquale and E. Nardelli

3.1 The Set Union Problem

The set union is a classical problem that has been deeply analyzed [13,15]. It
is the problem of maintaining a collection of disjoint sets of elements under the
operation of union. All algorithms for the set union problem appearing in the
literature use an approach based on the canonical element. Within each set, we
distinguish an arbitrary but unique element called the canonical element, used
to represent the set. Operations defined in the set union problem are:

– make-set(e): create a new set containing the single element e, which at the
time of the operation does not belong to any set. The canonical element of
the new set is e.

– find(e): return the canonical element of the set containing element e.
– union(e,f): combine the sets whose canonical elements are e and f into a

single set, and make either e or f the canonical element of the new set. This
operation requires that e 6= f .

We represent each set by a rooted tree whose nodes are the elements of the
set and the root is the canonical element. Each node x contains a pointer p(x)
to its parent in the tree; the root points to itself. This is a compressed tree
representation [6].

To carry out find(e), we follow parent pointers from e until the root, which is
then returned. While traversing parent pointer, one can apply some techniques
for compressing the path from the elements to the root: compression, splitting,
and halving (see figure 3).

To carry out union various techniques can be applied: naive linking, linking
by rank and linking by size.

a

b

c

d

e

f f

a b c d e

a

c

e

b

d

a b

c d

e

ffi ii iii

Fig. 3. The compression (i), the splitting (ii), and the halving (iii) of a path a,b,c,d,e,f
.

In [15], Tarjan and Van Leeuwen have conducted a worst-case analysis on the
set union problem. In particular, they have shown that naive linking coupled with
any of the three above described path compression techniques gives a worst-case
running time of the set union problem of Θ

(
m log(1+m/n) n

)
, where m is the

number of finds and n is the number of elements, and it is assumed that m ≥ n.

Distributed Searching of k -Dimensional Data with Almost Constant Costs 245

3.2 Upper Bound

For shortness of space, in this paper we suppose to operate in an environment
where the clients work slowly. More precisely, we suppose that between two
requests the involved servers have the time to complete all updates of their
local tree. This restriction can be easily overcome through the introduction of a
suitable lock mechanism [5] providing similar complexity result.

The cost of a sequence of operations is the sum of the cost of each operation.
For the complexity analysis we can view insert and search operations as compo-
sed by two parts: the request part, possibly with forwarding and LTC messages,
and the split part. Then the cost of an operation is the sum of the cost for the
request part and of the cost for the split part. The cost of the request part is
the number of messages needed to answer it. We do not count the two messages
of request from the client and of answer to it, since these are always present in
any operation and add only a constant term to the analysis. For the cost of the
split part we assume that a split takes 4 messages (like in the DRT [7]).

In order to give an upper bound on the complexity of queries on DRT*, we
show an equivalence between split trees and the compressed trees used for the set
union problem solved by means of naive linking coupled with the compression
technique. In particular we show that there is an equivalence between:

– A server and an element.
– A compressed tree CT (s) with canonical element s and the split tree ST (s)

of the server s.
– A find(s′), where s′ is in the compressed tree CT (s) with canonical element

s, and a request (insert or search) pertinent for a server s′, where s′ is in the
split tree ST (s), and arriving to a server s.

– A make-set(s′) and a split of a server s, where s′ is the new server.

Please note that in union(e, f) with the naive linking technique we always make
e point to f . We now show that for each sequence of requests in a DRT* there
is a specific sequence of finds, make-sets and unions in the set union problem
whose complexity bounds the DRT* one.

Let us consider a request arrived at server s and pertinent for s′. This can
be a search or an insert of a key in a server s′. We can view this request as the
search of the server s′ in ST (s) and we call this view server search(s′, s). Please
note that a request and its view as a server search in the split tree have the
same cost. Therefore, in order to calculate the cost of a sequence of requests in
a DRT* we can consider a corresponding sequence of operations in split trees,
made up by server searches and splits, and calculate the cost of this sequence.

Lemma 3. Let σ be a sequence of requests in a DRT* and σ′ the corresponding
sequence of splits and server searches in split trees. Let σ′′ be a permutation of
σ′, keeping the relative order between the splits and between the server searches,
and such that all the splits are at the beginning of the sequence. Then σ′ and σ′′

have the same cost.

Proof. Note that since split is a local operation its cost does not depend on its
position in the sequence of operations on the split tree. Moreover its advance in

246 A. Di Pasquale and E. Nardelli

the sequence of operations on the split tree does not affect the cost of any server
searches.

Lemma 4. Let σ′′ be a sequence of operations in split trees, where all splits
are at beginning. The cost of the sequence does not change if the order of two
consecutive server searches is inverted.

Proof. Let p(x, y) be the set of nodes in the path from node x to its ancestor y
in a split tree. Let |p(x, y)| be the number of arcs in p(x, y). Let search(s′, s) and
search(t′, t) be two consecutive server searches for server s′ (resp. t′) in ST (s)
(resp. ST (t)). If p(t′, t)

⋂
p(s′, s) = ∅, then the two server searches do not affect

each other and their position can be exchanged. Let us assume p(t′, t)
⋂

p(s′, s) =
p 6= ∅ and without loss of generality let t ∈ p(s′, s) and search(s′, s) precedes
search(t′, t). Then search(s′, s) costs |p(s′, s)| and search(t′, t) costs 1+|p(t′, t)−
p|, because of the compression of path from s′ to s in ST (s) and of path p
in ST (t). Let us now exchange the position of the two server searches. Now
search(t′, t) costs |p(t′, t)| and search(s′, s) costs 1+ |p(s′, s)−p|, because of the
compression of path from t′ to t in ST (t) and of path p in ST (s). In both cases
the total cost of the two server searches is the same.

Lemma 5. Let σ′′ be a sequence of operations in split trees, where all splits are
at beginning. We say a server search(s′, s) in σ′′ is of height h(s), where h(s)
is the height of s in ST0(s0), assigning height 0 to s0. Let h be the height of
the highest server in ST0(s0). Let σ′′′ be a permutation of σ′′, obtained through
exchanges of adjacent server searches, where all server searches of height k pre-
cedes all server searches of height k − 1, for k = h, h − 1, ..., 1. Then σ′′ and σ′′′

have the same cost.

Proof. We reorder σ′′ exchanging consecutive server searches. For lemma 4 each
exchange does not change the total cost.

We now show how to build a sequence ρ of operations for the set union
problem that is equivalent to σ′′′. We can write σ′′′ = σ∗, σh, σh−1, ..., σ0, where
σ∗ is the initial sub-sequence of splits and σk denotes the sub-sequences of server
searches of height k, for k = h, h − 1, ..., 0. We start ρ with a sequence of make
set, each corresponding to a split in σ∗. Then we add to ρ a find for each server
search in σh. Then for each server s′ at height h−1 and satisfying the condition
that s′ is the parent of s′′ in ST (s0) we add to ρ operation union(s′′, s′). Now,
for each k = h − 1, h − 2, ..., 1 we repeat the above process of adding to ρ a find
operation for each server search in σk and a union for each server at height k−1
satisfying the above condition. Finally we add to ρ a find for each server search
in σ0.

Note that since the sequence σ′′′ has been reordered according to server
heights, each server search(s′, s) is executed when s satisfies the hypothesis of
lemma 2. Hence it is ST (s) = Ts0(s) and the cost of server search(s′, s) can be
analyzed in ST (s0).

Distributed Searching of k -Dimensional Data with Almost Constant Costs 247

Let pCT (s′, s) = 〈s′ = x1, x2, . . . , xr = s〉 be the path connecting s′ to
its ancestor s in CT (s). Let pST (t′, t) = 〈t′ = y1, y2, . . . , yr = t〉 be the path
connecting t to its descendant t′ in ST (s0). We say pCT (s′, s) and pST (t′, t) are
isomorphic if elements xi corresponds to server yi for i = 1, 2, ..., r.

Lemma 6. Let server-search(s′, s) belong to σk (k = h, h−1, ..., 0) and find(s′)
be the corresponding operation in ρ. Then find(s′) is executed in a compressed
tree CT (s), which has the same structure of Ts0(s), and after its execution CT (s)
has the same structure of Ts0(s) after the execution of server-search(s′, s).

Proof. Lemma is trivially true for server searches in σh, since CT (s) and TS0(s)
are made up only by s.

Let us now assume, by induction, that lemma is true for all k = h − 1, h −
2, ..., j. Let us consider unions in ρ following the finds corresponding to server
searches in σj . The execution of each of these union links an element of the
set union problem corresponding to a server s of height j − 1 to the sets of the
set union problem corresponding to servers s′ children of s in ST (s0). The new
CT (s) is made up by the compressed trees CT (s′) and the arcs (s′, s). Then
CT (s) has the same structure of Ts0(s) (see figure 4).

We now have to show that after the execution of server-search(s′, s) belon-
ging to σj−1 and the corresponding execution of find(s′) CT (s) has the same
structure of Ts0(s).

Since the execution of server-search(s′, s) in Ts0(s) follows a path pST (s′, s)
and the corresponding execution of find(s′) follows a path pCT (s′, s) in CT (s)
and pST (s′, s) and pCT (s′, s) are isomorphic, due to the fact that CT (s) and
Ts0(s) have the same structure before the execution of the operation, then their
executions compresses the two paths in an isomorphic way and we have the
thesis.

Theorem 1. Let C(m, n) be the cost in terms of number of messages of a se-
quence of m requests over a DRT* starting with one empty server and with n
servers at the end. We have:

C(m, n) = O
(
m log(1+m/n) n

)
.

Proof. We always have m > n, because of the result in section 2.1.
From lemma 6 we have that server-search(s′, s) and the corresponding

find(s′) have the same cost. Let Cs be the cost of the n − 1 splits that have
produced the n servers. Let Cm be the cost of the n make-sets, and Cl be the
cost of all the unions, which are at most n − 1. It is Cs = O(Cm + Cl), hence:

C(m, n) = O
(
m log(1+m/n) n

)
.

Since in DRT* there is a relation between m and n (see section 2.1), namely
n ≤ m

A , then we have:

248 A. Di Pasquale and E. Nardelli

links

SUP

after seq* after seq after links
height 0

height 1

height 2

height 3

height 4

2
DRT*

s0 s0 s0

s0

x y z

y zx y zx

Fig. 4. The evolution of ST (s0) in the DRT* and the set of compressed trees in the
set union problem (SUP) during the server searches in theorem 1.

Corollary 1. Let C(m, n) the cost in terms of number of messages of a sequence
of m requests over a DRT* starting with one empty server and with n servers
at the end. We have:

C(m, n) = O
(
m log(1+A) n

)
.

Please note that for A = 103 we have log(1+A) n ≤ 4 for n ≤ 1012servers. We
therefore can assume to have an amortized constant cost in real SDDSs.

4 Extension to the Multi-dimensional Case

In the multi-dimensional case we use as indexing structure a distributed version
of k-d tree called lazy k-d tree, introduced in [10] and extensively analyzed in [11,
12], with index on clients and servers. The local tree is also a lazy k-d tree.

Therefore for the multi-dimensional case we modify the search process of lazy
k-d trees as in the case of DRT*. More precisely, with reference to the figure 1,
when a request generates a chain of address error, the pertinent server builds up
the correction tree C and sends it within the LTC messages to each server in the
chain. In this case C is a connected portion of the overall k-d tree. It contains
the whole path from the node associated to s0 to the one associated to sk. A
server simply adjusts its local tree adding the unknown portion of the tree. The
analysis of previous section exactly applies to the multi-dimensional case.

Distributed Searching of k -Dimensional Data with Almost Constant Costs 249

5 Conclusions

We have introduced and analyzed a variant, called DRT*, of the addressing
method for SDDSs used in DRT [7]. Our variant, DRT*, has a very good behavior
in the amortized case, close to the optimality.

The method is also extendible to the multi-dimensional case, applying the
same variation to the lazy k-d tree [10,12].

In particular for a real SDDS (made up by hundreds or thousands of servers)
we can assume to have an almost constant amortized cost for the insert and
search operations.

To prove the result we used a structural analogy between DRT* and compres-
sed trees used in the set union problem [13,15]. A deeper analysis of this analogy
might suggest other protocols, possibly more efficient, for the management of
distributed data.

In the k-dimensional case only worst case analysis was previously considered
and the almost constant cost for the general k-dimensional case appears to be
very promising in the light of well known difficulties in proving optimal worst
case bounds for such a case.

References

1. F. Barillari, E. Nardelli, M. Pepe: Fully Dinamic Distribuited Search Trees Can
Be Balanced in O(log2 N) Time, Technical Report 146, Dipartimento di Matematica
Pura ed Applicata, Universita’ di L’Aquila, July 1997, accepted for publication on
the Journal of Parallel and Distributed Computation.

2. Y. Breitbart, R. Vingralek: Addressing and Balancing Issues in Distributed B+-
Trees, 1st Workshop on Distributed Data and Structures (WDAS’98), 1998.

3. Chorochronos: A Research Network for Spatiotemporal Database Systems. SIG-
MOD Record 28(3): 12-21 (1999).

4. A.Di Pasquale, E. Nardelli: Balanced and Distributed Search Trees, Workshop on
Distributed Data and Structures (WDAS’99), Princeton, NJ, May 1999.

5. A.Di Pasquale, E. Nardelli: Design and analysis of distributed searching of k-
dimensional data with almost constant costs, Tech.Rep. 00/14, Dept. of Pure and
Applied Mathematics, Univ. of L’Aquila, May 2000.

6. B.A. Galler, M.J. Fisher, An improved equivalence algorithm, Commun. ACM 7,
5(1964), 301-303.

7. B. Kröll, P. Widmayer: Distributing a search tree among a growing number of
processor, in ACM SIGMOD Int. Conf. on Management of Data, pp 265-276 Min-
neapolis, MN, 1994.

8. W. Litwin, M.A. Neimat, D.A. Schneider: LH* - Linear hashing for distributed files,
ACM SIGMOD Int. Conf. on Management of Data, Washington, D. C., 1993.

9. W. Litwin, M.A. Neimat, D.A. Schneider: RP* - A family of order-preserving scala-
ble distributed data structure, in 20th Conf. on Very Large Data Bases, Santiago,
Chile, 1994.

10. E. Nardelli: Distribuited k-d trees, in XVI Int. Conf. of the Chilean Computer
Science Society (SCCC’96), Valdivia, Chile, November 1996.

11. E.Nardelli, F.Barillari and M.Pepe, Design issues in distributed searching of
multi-dimensional data, 3rd International Symposium on Programming and Systems
(ISPS’97), Algiers, Algeria, April 1997.

250 A. Di Pasquale and E. Nardelli

12. E. Nardelli, F.Barillari, M. Pepe: Distributed Searching of Multi-Dimensional Data:
a Performance Evaluation Study, Journal of Parallel and Distributed Computation,
49, 1998.

13. R.E. Tarjan, Efficiency of a good but non linear set union algorithm, J. Assoc.
Comput. Mach., 22(1975), pp. 215-225.

14. T.Tzouramanis, M.Vassilakopoulos, Y.Manolopoulos: Processing of Spatio-
Temporal Queries in Image Databases. ADBIS 1999, pp.85-97.

15. J. Van Leeuwen, R.E. Tarjan, Worst-case analysis of set union algorithms, J. Assoc.
Comput. Mach., 31(1984), pp. 245-281.

	Introduction
	Description of the Structure
	Split Management
	Local Tree
	Requests Management
	Split Tree

	Amortized Analysis
	The Set Union Problem
	Upper Bound

	Extension to the Multi-dimensional Case
	Conclusions

