William Stallings
Computer Organization and Architecture

Chapter 5
External Memory
Types of External Memory

- Magnetic Disk
 - Fixed/Removable
 - RAID
- Magnetic Tape
- Optical
 - CD-ROM
 - CD-R
 - CD-RW
 - DVD
Magnetic Disk

- Metal or plastic disk coated, on one or both sides, with magnetizable material (iron oxide, i.e. rust)
- Data read and written through a magnetic head (coil) by means of induction
- Range of packaging
 - Floppy
 - “Winchester” hard disk
 - Removable hard disk
Disk Data Layout
Data Organization and Formatting

- Concentric rings or tracks
 - Gaps between tracks
 - Reduce gap to increase capacity
 - Same number of bits per track (variable density)
 - Constant angular velocity

- Tracks divided into sectors

- Data read/written in blocks
 - Minimum block size is one sector
 - May have more than one sector per block
Finding Sectors

Must be able to identify start of track and sector

Format disk

- Additional information not available to user
- Marks tracks and sectors
An example format

Track:

Gap | Sector | Gap | Sector | ...

Gap1 | Id | Gap2 | Data | Gap3

Sync Byte | Track # | Head # | Sector # | CRC

Sync Byte | Data | CRC
Characteristics of magnetic disks

- Removable or fixed
- Fixed or movable head
- Single or double (usually) sided
- Single or multiple platter
- Speed
- Head mechanism
 - Contact (Floppy)
 - Fixed gap
 - Aerodynamic gap or flying head (Winchester)
Removable or Not

- Removable disk
 - Can be removed from drive and replaced with another disk
 - Provides unlimited storage capacity (by changing disk)
 - Easy data transfer between systems

- Nonremovable disk
 - Permanently mounted in the drive
Removable Hard Disk

ZIP
- Cheap
- Very common
- Only 100M

JAZ
- Not cheap
- 1G
Fixed/Movable Head Disk

- **Fixed head**
 - One read/write head per track
 - Heads mounted on a fixed arm

- **Movable head**
 - One read/write head per side
 - Mounted on a movable arm
Multiple Platters

- One head per side
- Heads are joined and aligned
- Aligned tracks on each platter form cylinders
- Data is striped by cylinder
 - Reduces head movement
 - Increases speed (transfer rate)
Speed

- **Seek time**
 - Moving head to the right track

- **(Rotational) latency**
 - Waiting for data to rotate under head

- **Access time = Seek + Latency**

- **Transfer rate**: speed of copying bytes from disk
Floppy Disk

- 8” (very old), 5.25” (old), 3.5”
- Small capacity
 - Up to 1.44Mbyte (2.88M never popular)
- Slow
- Universal
- Very cheap
Winchester Hard Disk (1)

- Developed by IBM in Winchester (USA)
- Sealed unit
- One or more platters (disks)
- Heads fly on boundary layer of air as disk spins
- Very small head-to-disk gap
- Getting more robust
Winchester Hard Disk (2)

- Universal
- Cheap
- Fastest external storage
- Getting larger all the time
 - Multiple Gigabyte now usual
RAID

- Redundant Array of **Independent** Disks, originally Redundant Array of **Inexpensive** Disks
- At least 7 different versions in common use (Not a hierarchy)
- Set of physical disks viewed as single logical drive by the operating system
- Data distributed (**striped**) across physical drives
- Can use redundant capacity to store parity information and provide fault tolerants
- Used in servers
Magnetic Tape

- Only sequential access
- Slower than magnetic and optical disks
- Very very cheap
- Backup and archive
Digital Audio Tape (DAT)

- Uses rotating head (like video)
- High capacity on small tape
 - 4 Gbyte uncompressed
 - 8 Gbyte compressed
- Backup of PC/network servers
Optical Storage: CD-ROM

- Originally for audio
- 650 Mbytes giving over 70 minutes audio
- Polycarbonate coated with highly reflective coat, usually aluminum
- Data stored as pits
- Read by reflecting laser
- Constant packing density
- Constant linear velocity
Comparison of variable/fixed density

(a) Constant angular velocity
(b) Constant linear velocity
CD-ROM Drive Speeds

» Audio is single speed
 ▶ Constant linear velocity
 ▶ 1.2 m/s
 ▶ Track (spiral) is 5.27km long
 ▶ Gives 4391 seconds = 73.2 minutes

» Other speeds are quoted as multiples, e.g. 24x
» The quoted figure is the maximum the drive can achieve
Random Access on CD-ROM

- Difficult, due to constant density and single track
- Move head to rough position
- Set correct speed
- Read address
- Adjust to required location
CD-ROM for & against

- Large capacity
- Easy to mass produce
- Removable
- Robust

- Expensive for small runs
- Slower than magnetic disk
- Read only
Other Optical Storage

- **CD-R (for Recordable)**
 - Writable, but ... Write Once Read Many (WORM)
 - Now affordable
 - Compatible with CD-ROM drives

- **CD-RW (for ReWritable)**
 - Erasable, hence writable many times (~1000)
 - Different technology (phase change vs pit)
 - Getting cheaper
 - Mostly, but not always, CD-ROM drive compatible
DVD - Digital Video/Versatile Disk

- Optical (CD-sized) disk with a very high capacity:
 - 4.7 GB per layer (smaller pits and closer tracks)
 - Up to 2 layers on each of the 2 sides (total 17 GB)
- Full length movie on single disk
 - Using MPEG-2 compression
- Drives are CD-ROM compatible
- Also writable (DVD-R, DVD-RW), but not yet fully standardized
HD-ROM - the future?

- High-Density ROM
- Very narrow laser beam (50 nm vs 350 for DVD and 800 for CD)
- Capable to store up to 165 GB on a CD-sized disk