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Execution of the 

Instruction Cycle

• It has many elementary phases, each executed in a 
single clock cycle (remember pipelining)

• In each phase only very simple operations (called 
micro-operations) are executed:

� Move contents between registers (internals, interface with ALU, 
interface with memory)

� Activate devices (ALU, memory)

• Micro-operations are the CPU atomic operations, hence 
define its low-level behaviour

• A micro-operation is the set of actions (data flows and 
controls) that can be completed in a single clock cycle
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Constituent Elements of 

Program Execution
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Sequence of micro-operations 

for instruction fetch

• t1: MAR <- PC <DF1 >

• t2: MBR <- memory <DF2 DF3 DF4 DF5 >

PC <- PC +1 <DF7 > 

• t3: IR <- MBR <DF6 >

(each ti is a clock cycle, 

i.e. an atomic time unit)

An alternative organization

• t1: MAR <- PC

• t2: MBR <- memory

• t3: PC <- PC +1 
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Rules for micro-operation 

sequencing

• Proper precedence must be observed
� MAR <- PC must precede MBR <- memory

• Conflicts must be avoided
� Must not read & write same register at same time

• MBR <- memory & IR <- MBR must not be in same cycle

� Must not use the same commun. path at the same time

• Also:  PC <- PC +1 involves addition
� Depending on the kind of ALU may need additional 
micro-operations, hence it is better to have it in t2

• Minimization of the number of micro-operations is 
an algorithmic problem on graphs
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Sequence of micro-operations 

for direct addressing

• t1: MAR <- IRaddress <DF1 >

• t2: MBR <- memory <DF2 DF3 DF4 DF5 >

IR MBR
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• t1: Reg. <- IRregister-address <DF1 >
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Sequence of micro-operations 

for register addressing
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Sequence of micro-operations 

for register indirect addressing

• t1: MAR <- (IRregister-address) <DF1 DF2 >

• t2: MBR <- memory <DF3 DF4 DF5 DF6 >

IR MBR
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Sequence of micro-operations 

for indirect addressing

• t1: MAR <- IRaddress <DF1 >

• t2: MBR <- memory <DF2 DF3 DF4 DF5 >

• t3: MAR <- MBR <DF6 >

• t4: MBR <- memory <DF7 DF8 DF9 DF10 >
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Sequence of micro-operations 

for relative addressing

• t1: MAR <- IRaddress + PC <DF1 DF2 DF3 DF4 >

• t2: MBR <- memory <DF5 DF6 DF7 DF8 >
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Sequence of micro-operations 

for base and indexed addressing

• t1: MAR <- (IRregister-address) + IRaddress
<DF1 DF2 DF3 DF4 DF5 >

• t2: MBR <- memory <DF6 DF7 DF8 DF9 >
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Sequence of micro-operations for 

combination of displacement and 

indirect addressing

• Try them yourself !
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Sequence of micro-operations 

for interrupt handling
• t1: MBR <- PC <DF1a >

MAR <- Stack-Pointer <DF1b>
• t2: memory <- MBR <DF1c DF1d DF1e >

Stack-Pointer <- Stack-Pointer + 1 <DF non visualizzati>
• t3: MAR <- Interrupt_Address <DF2a >
• t4: MBR <- memory <DF2b DF2c DF2d DF2e >
• t5: PC <- MBR <DF2f >
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• NOTE: We assume 
Interrupt_Address is a 
fixed location known 
by the Control Unit
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Micro-operation sequencing 

for the execution phase (1)

• Different for each instruction

• SUM X – sum the contents of memory cell X and 
Accumulator and store back the result in cell X

Assuming that after the operand fetch phase content of 
cell at address X is in MBR :

� t1: ALU <- AC + MBR

� t2: AC <- ALU

� t3: MBR <- AC;   MAR <- IRaddress
� t4: memory <- MBR
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Micro-operation sequencing 

for the execution phase (2)

• ISZ X - increment memory cell X and if it’s zero skip 
the next instruction

Assuming that content of cell at address X is in MBR after 
the operand fetch phase:

� t1: ALU <- MBR + 1

� t2: MBR <- ALU

� t3: memory <- MBR

IF MBR == 0 THEN PC <- PC + 1

• Note:

� IF-THEN is a single micro-operation
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Micro-operation sequencing 

for the execution phase (3)

• CALL  X - Save in stack the return address and 
jump to address X

� t1: MBR <- PC

MAR <- SP

� t2: memory <- MBR

ALU <- SP + 1

PC <- IRaddress
� t3: SP <- ALU



16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 17

A simplified flow diagram for the 

execution of instruction cycle
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Functions of Control Unit

• Sequencing

� Causing the CPU to step through a series of micro-
operations

• Execution

� Causing the execution of each micro-op

• ALL THESE ACTIONS are performed by means 
of Control Signals
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A simplified data flow diagram 

of a Control Unit
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Control Unit’s Input Signals

• Clock
� One micro-op (or set of parallel ops) per clock cycle

� Different signals are needed for different steps

• Instruction register
� Op-code for current instruction

� Determines which micro-instructions are performed

• Flags
� State of CPU

� Results of previous operations

• Control Bus
� Interrupts

� Acknowledgments
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Control Unit’s Output Signals

• To other CPU components

� For data movement

� To activate specific functions

• To the Control Bus

� To control memory

� To control I/O modules

• Output signals from the control unit (i.e., Control 
Signals) make all micro-operations happen
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Simplified schema of a CPU: 

connections and control gates
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Example of Control Signal 

Sequence – Instruction Fetch (1)

• t1: MAR <- PC

� Control unit (CU) activates signal C2 to open gate 
from PC to MAR

• t2-1: MBR <- memory

� CU activates C0 to open gate from MAR to address 
bus

� CU activates the memory read control signal (CR -
not shown) to the memory

� CU activates C5 to open gate from data bus to MBR
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Example of Control Signal 

Sequence – Instruction Fetch (2)

• t2-2: PC <- PC +1
� In the considered CPU’s internal schema, ALU’s 
output is not directly connected to PC but only to AC. 
Therefore this micro-operation has to be split in two 
subsequent time units.

� What would happen if we had ALU’s output directly 
connected to PC?

• t3: IR <- MBR
� CU activates C4 to open gate from MBR to IR
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Example of Control Signal 

Sequence – Instruction Fetch (3)

• Splitting the increment of Program Counter
� ALU is a fast combinational circuit whose inputs and 
output are not buffered

� ALU has a specific control signal CA for unitary 
increment without a second input

• t2-2: PC <- PC +1
� t2-2-1: ALU <- PC CU activates C14 from PC to ALU

increment ALU CU act. control signal CA (not
shown) for ALU

AC <- ALU CU activates C9 from ALU to PC
� t2-2-2: PC <- AC CU activates C15 from AC to PC
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Example of Control Signal 

Sequence – Instruction Fetch (4)

• Optimization

� t2-1 and t2-2-1 can be executed together

� t2-2-2 and t3 can be executer together

• New organization

� t1: MAR <- PC C2

� t2: MBR <- memory C0 CR C5

ALU <- PC C14

increment ALU CA

AC <- ALU C9

� t3: PC <- AC C15

IR <- MBR C4
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Example of Control Signal 

Sequence - Direct Addressing

• Direct addressing is executed right after instruction 
fetch in our simplified flow diagram for the execution 
of an instruction cycle. Hence: 

• t4: MAR <- IRaddress
� CU activates C16 to open gate from IR to MAR 

• t5: MBR <- memory

� CU act. C0 to open gate from MAR to address bus

� CU act. the memory read control signal CR

� CU act. C5 to open gate from data bus to MBR



16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 28

Example of Control Signal 

Sequence - Indirect Addressing

• t1: MAR <- IRaddress
� CU activates C16 to open gate from IR to MAR 

• t2: MBR <- memory

� CU act. C0 to open gate from MAR to address bus

� CU act. the memory read control signal CR

� CU act. C5 to open gate from data bus to MBR

• t3: MAR <- MBR

� CU activates C8 to open gate from MBR to MAR

• t4: MBR <- memory

� CU activates C0, CR and C5 as above
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Example of Control Signal 

Sequence – Execution: SUM

• t1: ALU <- AC + MBR
� CU activates C6 to open gate from MBR to ALU
� CU activates C7 to open gate from AC to ALU
� CU activates for the ALU the sum control signal CS

• t2: AC <- ALU
� CU activates C9 to open gate from ALU to AC

• t3: MBR <- AC; MAR <- IRaddress
� CU activates C11 to open gate from AC to MBR
� CU activates C16 to open gate from IR to MAR

• t4: memory <- MBR
� CU activates C0 to open gate from MAR to address bus
� CU activates C12 to open gate from MBR to data bus
� CU activates the memory write control signal CW

• NOTE: Now ALU’s output needs to be “buffered”: this means that its output lines are 
not directly coming from the internal combinational circuits but from a registry 
(buffer) that receives combinational circuits outputs and store them for a subsequent 
reading
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Limitations

• The simplified internal schema of a CPU does 
not show registers, hence we cannot show
� Register addressing

� Register indirect addressing

� Base addressing

� Indexed addressing

� Combination of displacement and indirect addressing

� Try adding to the simplified schema one or more of 
the above addressing modalities and derive the 
required micro-operations!
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Internal Organization of CPU

• Usually a single internal bus 

� less complex then having direct data paths between 
registers and ALU

• Control gates control movement of data onto and 
off the internal bus

• Control signals control also data transfer to and 
from external systems bus

• Temporary registers (i.e., buffers) in input to ALU 
are now needed for proper operation of ALU

• After Appendix B try yourself deriving the control 
signal sequences for a single internal bus CPU!
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How to implement the 

instruction cycle in hardware?
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Hardwired Implementation (1)

• Consider the control unit as a combinational circuit
� Outputs of the circuit are the control signals

� Inputs of the circuit are:
• ICC register bits (note that ICC is not visualized in the CPU’s 
simplified internal schema)

• Status flags, including interrupt-enable/disable (T)

• Direct/indirect address bit (D)

• Decoded opcodes (OCn)

• Clocks (tn)

� For each configuration of inputs produce a proper output

� That is, the activation of a given control signal Cn has to 
happen when (condition A is true) OR (condition B is 
true) OR …
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Data flow diagram of the Control 

Unit for the hardwired implement. 

of the CPU’s simplified schema
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Hardwired Implementation (2)

• Control signals P and Q code ICC: then fetch (instruction + 
direct addr.) is coded by P’Q’, indirect by P’Q, execute by 
PQ’, and interrupt by PQ

• Direct addressing is coded by D (D’ = indirect)
• Decoded opcodes provide are further control signals
• Interrupt enable is coded by T (T’ = interrupt disabled)
• Each clock tn is a control signal
• Boolean expression activating C5 in the simplified schema of 
a CPU (see slides 26, 27, 28 and 13):
C5 = P’Q’(t2+ Dt5) + P’Q(t2+ t4) + PQ’B + PQ t4
� where B is the boolean expression representing, for all opcodes
activating C5, all micro-operations actually activating it

� example: if C5 is activated only by opcode 3 during t2 and t4 and by 
opcode 7 during t3 and t4 then B is: OC3(t2+t4)+OC7(t3+t4)
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Hardwired Implementation (3)

• Updating ICC:
� Assume no micro-procedure requires more than 5 time units
� Update P and Q using clock t6, current values of P and Q, interrupt 
enabled flag (T), direct address signal (D)

� At the end of direct addressing branch of fetch phase (00)
• P = P’Q’ t6 D Q’ = P’Q’ t6 D

� At the end of indirect addressing branch of fetch phase (00)
• P’ = P’Q’ t6 D’ Q = P’Q’ t6 D’

� At the end of indirect addressing phase (01)
• P = P’Q t6 Q’ = P’Q t6

� At the end of interrupt enabled branch of execution phase (10)
• P = PQ’ t6 T Q = PQ’ t6 T

� At the end of interrupt disabled branch of execution phase (10)
• P’ = PQ’ t6 T’ Q’ = PQ’ t6 T’

� At the end of interrupt phase (11)
• P’ = PQ t6 Q’ = PQ t6
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• Do we forget anything?

� Discarding t6 (present in all terms) we have

P = P’Q’ D + P’Q + PQ’ T and P’ = P’Q’ D’ + PQ’ T’ + PQ

Q = P’Q’ D’ + PQ’ T and Q’ = P’Q’ D + P’Q + PQ’ T’ + PQ

Hardwired Implementation (4)
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P P’Q’ P’Q PQ PQ’

00 01 11 10

T’D’ 00 0 1 0 0

T’D 01 1 1 0 0

TD 11 1 1 0 1

TD’ 10 0 1 0 1

Q P’Q’ P’Q PQ PQ’

00 01 11 10

T’D’ 00 1 0 0 0

T’D 01 0 0 0 0

TD 11 0 0 0 1

TD’ 10 1 0 0 1
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Problems with the 

Hardwired Implementation

• Complex sequencing & micro-operation logic

• Difficult to design and test

• Inflexible design

• Difficult to add new instruction


