
16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 1

William Stallings

Computer Organization

and Architecture

Chapter 16

Control Unit Operations

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 2

Execution of the

Instruction Cycle

• It has many elementary phases, each executed in a
single clock cycle (remember pipelining)

• In each phase only very simple operations (called
micro-operations) are executed:

� Move contents between registers (internals, interface with ALU,
interface with memory)

� Activate devices (ALU, memory)

• Micro-operations are the CPU atomic operations, hence
define its low-level behaviour

• A micro-operation is the set of actions (data flows and
controls) that can be completed in a single clock cycle

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 3

Constituent Elements of

Program Execution

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 4

Sequence of micro-operations

for instruction fetch

• t1: MAR <- PC <DF1 >

• t2: MBR <- memory <DF2 DF3 DF4 DF5 >

PC <- PC +1 <DF7 >

• t3: IR <- MBR <DF6 >

(each ti is a clock cycle,

i.e. an atomic time unit)

An alternative organization

• t1: MAR <- PC

• t2: MBR <- memory

• t3: PC <- PC +1

IR <- MBR

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

PC
2

3

3

4

4

5

1

6

7

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

PC
2

3

3

4

4

5

1

6

7

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 5

Rules for micro-operation

sequencing

• Proper precedence must be observed
� MAR <- PC must precede MBR <- memory

• Conflicts must be avoided
� Must not read & write same register at same time

• MBR <- memory & IR <- MBR must not be in same cycle

� Must not use the same commun. path at the same time

• Also: PC <- PC +1 involves addition
� Depending on the kind of ALU may need additional
micro-operations, hence it is better to have it in t2

• Minimization of the number of micro-operations is
an algorithmic problem on graphs

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 6

Sequence of micro-operations

for direct addressing

• t1: MAR <- IRaddress <DF1 >

• t2: MBR <- memory <DF2 DF3 DF4 DF5 >

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

2

3

3

4

4

5

1

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

2

3

3

4

4

5

1

16 -

• t1: Reg. <- IRregister-address <DF1 >

Rev. 3.2.1 (2010-11) by Enrico Nardelli 7

Sequence of micro-operations

for register addressing

IR

Control

Unit
Registers

Data

Bus

Address

Bus

Control

Bus

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

1

1

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 8

Sequence of micro-operations

for register indirect addressing

• t1: MAR <- (IRregister-address) <DF1 DF2 >

• t2: MBR <- memory <DF3 DF4 DF5 DF6 >

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

Registers

3

4

4

5

5

6

1

1

2

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

Registers

3

4

4

5

5

6

1

1

2

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 9

Sequence of micro-operations

for indirect addressing

• t1: MAR <- IRaddress <DF1 >

• t2: MBR <- memory <DF2 DF3 DF4 DF5 >

• t3: MAR <- MBR <DF6 >

• t4: MBR <- memory <DF7 DF8 DF9 DF10 >

MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

2 - 7

3 - 8

3 - 8

4 - 9

4 - 9

5 - 10

1

IR

6

MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

2 - 7

3 - 8

3 - 8

4 - 9

4 - 9

5 - 10

1

IR

6

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 10

Sequence of micro-operations

for relative addressing

• t1: MAR <- IRaddress + PC <DF1 DF2 DF3 DF4 >

• t2: MBR <- memory <DF5 DF6 DF7 DF8 >

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

ALU = Arithmetic Logic Unit

ALU

PC

5

6

6

7

7

8

1

2

3

4

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

ALU = Arithmetic Logic Unit

ALU

PC

5

6

6

7

7

8

1

2

3

4

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 11

Sequence of micro-operations

for base and indexed addressing

• t1: MAR <- (IRregister-address) + IRaddress
<DF1 DF2 DF3 DF4 DF5 >

• t2: MBR <- memory <DF6 DF7 DF8 DF9 >

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

ALU = Arithmetic Logic Unit

Registers

1

1

2

3

5

ALU

4

6

7

7

8

8

9

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

ALU = Arithmetic Logic Unit

Registers

1

1

2

3

5

ALU

4

6

7

7

8

8

9

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 12

Sequence of micro-operations for

combination of displacement and

indirect addressing

• Try them yourself !

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 13

Sequence of micro-operations

for interrupt handling
• t1: MBR <- PC <DF1a >

MAR <- Stack-Pointer <DF1b>
• t2: memory <- MBR <DF1c DF1d DF1e >

Stack-Pointer <- Stack-Pointer + 1 <DF non visualizzati>
• t3: MAR <- Interrupt_Address <DF2a >
• t4: MBR <- memory <DF2b DF2c DF2d DF2e >
• t5: PC <- MBR <DF2f >

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

Registers

PC

Control

Unit

MBR

1b

1a

1b

1c - 2b

1c

1d - 2c

1d - 2c

1e

1e - 2d

2a

2d

2e2f

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

Registers

PC

Control

Unit

MBR

1b

1a

1b

1c - 2b

1c

1d - 2c

1d - 2c

1e

1e - 2d

2a

2d

2e2f

• NOTE: We assume
Interrupt_Address is a
fixed location known
by the Control Unit

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 14

Micro-operation sequencing

for the execution phase (1)

• Different for each instruction

• SUM X – sum the contents of memory cell X and
Accumulator and store back the result in cell X

Assuming that after the operand fetch phase content of
cell at address X is in MBR :

� t1: ALU <- AC + MBR

� t2: AC <- ALU

� t3: MBR <- AC; MAR <- IRaddress
� t4: memory <- MBR

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 15

Micro-operation sequencing

for the execution phase (2)

• ISZ X - increment memory cell X and if it’s zero skip
the next instruction

Assuming that content of cell at address X is in MBR after
the operand fetch phase:

� t1: ALU <- MBR + 1

� t2: MBR <- ALU

� t3: memory <- MBR

IF MBR == 0 THEN PC <- PC + 1

• Note:

� IF-THEN is a single micro-operation

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 16

Micro-operation sequencing

for the execution phase (3)

• CALL X - Save in stack the return address and
jump to address X

� t1: MBR <- PC

MAR <- SP

� t2: memory <- MBR

ALU <- SP + 1

PC <- IRaddress
� t3: SP <- ALU

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 17

A simplified flow diagram for the

execution of instruction cycle

Interrupt
enabled?

Execute
interrupt
handling
micro-ops

Opcode?

ICC?

Indirect

addressing?

Execute
instruction fetch

micro-opsExecute
indirect

addressing
micro-ops

ICC = 10

ICC = 01

ICC = 10ICC = 00ICC = 11

ICC = 00

Execute micro-ops
for the given opcode

11 (Interrupt) 00 (Fetch)

01 (Indirect Addressing)10 (Execution)

ICC = Instruction Cycle Code

YesNo

Execute
direct addressing

micro-ops

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 18

Functions of Control Unit

• Sequencing

� Causing the CPU to step through a series of micro-
operations

• Execution

� Causing the execution of each micro-op

• ALL THESE ACTIONS are performed by means
of Control Signals

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 19

A simplified data flow diagram

of a Control Unit

Control

Unit

Instruction

Register

C
o
n
tro

l B
u
s

Control Signals

Control Signals

Signals internal to CPU

Clock

Flags

…

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 20

Control Unit’s Input Signals

• Clock
� One micro-op (or set of parallel ops) per clock cycle

� Different signals are needed for different steps

• Instruction register
� Op-code for current instruction

� Determines which micro-instructions are performed

• Flags
� State of CPU

� Results of previous operations

• Control Bus
� Interrupts

� Acknowledgments

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 21

Control Unit’s Output Signals

• To other CPU components

� For data movement

� To activate specific functions

• To the Control Bus

� To control memory

� To control I/O modules

• Output signals from the control unit (i.e., Control
Signals) make all micro-operations happen

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 22

Simplified schema of a CPU:

connections and control gates

M

B

R

M

A

R

C5

C12

C0

PC IR

AC

Control

Unit

ALU

C11

C9C7

C10

C6

C4

C13

C3C1

C2

C8

Clock

…
Control signals Cx

Flags

Cx

Control Gate x:

The flow of data is

enabled when the Control

Signal x is enabled

…
Control signals Cx

C14

C15

C16 Decod.

…

A
d
d
re

ss
 B

u
s

D
at

a
B

u
s

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 23

Example of Control Signal

Sequence – Instruction Fetch (1)

• t1: MAR <- PC

� Control unit (CU) activates signal C2 to open gate
from PC to MAR

• t2-1: MBR <- memory

� CU activates C0 to open gate from MAR to address
bus

� CU activates the memory read control signal (CR -
not shown) to the memory

� CU activates C5 to open gate from data bus to MBR

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 24

Example of Control Signal

Sequence – Instruction Fetch (2)

• t2-2: PC <- PC +1
� In the considered CPU’s internal schema, ALU’s
output is not directly connected to PC but only to AC.
Therefore this micro-operation has to be split in two
subsequent time units.

� What would happen if we had ALU’s output directly
connected to PC?

• t3: IR <- MBR
� CU activates C4 to open gate from MBR to IR

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 25

Example of Control Signal

Sequence – Instruction Fetch (3)

• Splitting the increment of Program Counter
� ALU is a fast combinational circuit whose inputs and
output are not buffered

� ALU has a specific control signal CA for unitary
increment without a second input

• t2-2: PC <- PC +1
� t2-2-1: ALU <- PC CU activates C14 from PC to ALU

increment ALU CU act. control signal CA (not
shown) for ALU

AC <- ALU CU activates C9 from ALU to PC
� t2-2-2: PC <- AC CU activates C15 from AC to PC

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 26

Example of Control Signal

Sequence – Instruction Fetch (4)

• Optimization

� t2-1 and t2-2-1 can be executed together

� t2-2-2 and t3 can be executer together

• New organization

� t1: MAR <- PC C2

� t2: MBR <- memory C0 CR C5

ALU <- PC C14

increment ALU CA

AC <- ALU C9

� t3: PC <- AC C15

IR <- MBR C4

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 27

Example of Control Signal

Sequence - Direct Addressing

• Direct addressing is executed right after instruction
fetch in our simplified flow diagram for the execution
of an instruction cycle. Hence:

• t4: MAR <- IRaddress
� CU activates C16 to open gate from IR to MAR

• t5: MBR <- memory

� CU act. C0 to open gate from MAR to address bus

� CU act. the memory read control signal CR

� CU act. C5 to open gate from data bus to MBR

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 28

Example of Control Signal

Sequence - Indirect Addressing

• t1: MAR <- IRaddress
� CU activates C16 to open gate from IR to MAR

• t2: MBR <- memory

� CU act. C0 to open gate from MAR to address bus

� CU act. the memory read control signal CR

� CU act. C5 to open gate from data bus to MBR

• t3: MAR <- MBR

� CU activates C8 to open gate from MBR to MAR

• t4: MBR <- memory

� CU activates C0, CR and C5 as above

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 29

Example of Control Signal

Sequence – Execution: SUM

• t1: ALU <- AC + MBR
� CU activates C6 to open gate from MBR to ALU
� CU activates C7 to open gate from AC to ALU
� CU activates for the ALU the sum control signal CS

• t2: AC <- ALU
� CU activates C9 to open gate from ALU to AC

• t3: MBR <- AC; MAR <- IRaddress
� CU activates C11 to open gate from AC to MBR
� CU activates C16 to open gate from IR to MAR

• t4: memory <- MBR
� CU activates C0 to open gate from MAR to address bus
� CU activates C12 to open gate from MBR to data bus
� CU activates the memory write control signal CW

• NOTE: Now ALU’s output needs to be “buffered”: this means that its output lines are
not directly coming from the internal combinational circuits but from a registry
(buffer) that receives combinational circuits outputs and store them for a subsequent
reading

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 30

Limitations

• The simplified internal schema of a CPU does
not show registers, hence we cannot show
� Register addressing

� Register indirect addressing

� Base addressing

� Indexed addressing

� Combination of displacement and indirect addressing

� Try adding to the simplified schema one or more of
the above addressing modalities and derive the
required micro-operations!

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 31

Internal Organization of CPU

• Usually a single internal bus

� less complex then having direct data paths between
registers and ALU

• Control gates control movement of data onto and
off the internal bus

• Control signals control also data transfer to and
from external systems bus

• Temporary registers (i.e., buffers) in input to ALU
are now needed for proper operation of ALU

• After Appendix B try yourself deriving the control
signal sequences for a single internal bus CPU!

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 32

How to implement the

instruction cycle in hardware?

Interrupt
enabled?

Execute
interrupt
handling
micro-ops

Opcode?

ICC?

Indirect

addressing?

Execute
instruction fetch

micro-opsExecute
indirect

addressing
micro-ops

ICC = 10

ICC = 01

ICC = 10ICC = 00ICC = 11

ICC = 00

Execute micro-ops
for the given opcode

11 (Interrupt) 00 (Fetch)

01 (Indirect Addressing)10 (Execution)

ICC = Instruction Cycle Code

YesNo

Execute
direct addressing

micro-ops

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 33

Hardwired Implementation (1)

• Consider the control unit as a combinational circuit
� Outputs of the circuit are the control signals

� Inputs of the circuit are:
• ICC register bits (note that ICC is not visualized in the CPU’s
simplified internal schema)

• Status flags, including interrupt-enable/disable (T)

• Direct/indirect address bit (D)

• Decoded opcodes (OCn)

• Clocks (tn)

� For each configuration of inputs produce a proper output

� That is, the activation of a given control signal Cn has to
happen when (condition A is true) OR (condition B is
true) OR …

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 34

Data flow diagram of the Control

Unit for the hardwired implement.

of the CPU’s simplified schema

Control

Unit

Instruction

Register

C
o
n
tro

l B
u
s

External Control Signals

Control Signals

internal to CPU

Clock

Flags

…

clocks

for

mOPs

…t1

tn

Decoder

…OC1 OCmD

ICC

T

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 35

Hardwired Implementation (2)

• Control signals P and Q code ICC: then fetch (instruction +
direct addr.) is coded by P’Q’, indirect by P’Q, execute by
PQ’, and interrupt by PQ

• Direct addressing is coded by D (D’ = indirect)
• Decoded opcodes provide are further control signals
• Interrupt enable is coded by T (T’ = interrupt disabled)
• Each clock tn is a control signal
• Boolean expression activating C5 in the simplified schema of
a CPU (see slides 26, 27, 28 and 13):
C5 = P’Q’(t2+ Dt5) + P’Q(t2+ t4) + PQ’B + PQ t4
� where B is the boolean expression representing, for all opcodes
activating C5, all micro-operations actually activating it

� example: if C5 is activated only by opcode 3 during t2 and t4 and by
opcode 7 during t3 and t4 then B is: OC3(t2+t4)+OC7(t3+t4)

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 36

Hardwired Implementation (3)

• Updating ICC:
� Assume no micro-procedure requires more than 5 time units
� Update P and Q using clock t6, current values of P and Q, interrupt
enabled flag (T), direct address signal (D)

� At the end of direct addressing branch of fetch phase (00)
• P = P’Q’ t6 D Q’ = P’Q’ t6 D

� At the end of indirect addressing branch of fetch phase (00)
• P’ = P’Q’ t6 D’ Q = P’Q’ t6 D’

� At the end of indirect addressing phase (01)
• P = P’Q t6 Q’ = P’Q t6

� At the end of interrupt enabled branch of execution phase (10)
• P = PQ’ t6 T Q = PQ’ t6 T

� At the end of interrupt disabled branch of execution phase (10)
• P’ = PQ’ t6 T’ Q’ = PQ’ t6 T’

� At the end of interrupt phase (11)
• P’ = PQ t6 Q’ = PQ t6

16 -

• Do we forget anything?

� Discarding t6 (present in all terms) we have

P = P’Q’ D + P’Q + PQ’ T and P’ = P’Q’ D’ + PQ’ T’ + PQ

Q = P’Q’ D’ + PQ’ T and Q’ = P’Q’ D + P’Q + PQ’ T’ + PQ

Hardwired Implementation (4)

Rev. 3.2.1 (2010-11) by Enrico Nardelli 37

P P’Q’ P’Q PQ PQ’

00 01 11 10

T’D’ 00 0 1 0 0

T’D 01 1 1 0 0

TD 11 1 1 0 1

TD’ 10 0 1 0 1

Q P’Q’ P’Q PQ PQ’

00 01 11 10

T’D’ 00 1 0 0 0

T’D 01 0 0 0 0

TD 11 0 0 0 1

TD’ 10 1 0 0 1

16 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 38

Problems with the

Hardwired Implementation

• Complex sequencing & micro-operation logic

• Difficult to design and test

• Inflexible design

• Difficult to add new instruction

