William Stallings
Computer Organization
and Architecture

Chapter 10
Instruction Sets:
Characteristics and Functions

Rev. 3.3.4 (2011-12) by Enrico Nardelli

10 -

What is an instruction set?

e The complete collection of instructions that are
understood by a CPU

e The instruction set is the specification of the
expected behaviour of the CPU

e How this behaviour is obtained is a matter of
CPU implementation

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10 -

Elements of an Instruction

e Operation code (Opcode)
= Do this

e Source Operand(s) reference(s)
= To this (and this ...)

e Result Operand reference
= Put the answer here

e The Opcode is the only mandatory element

Rev. 3.3.4 (2011-12) by Enrico Nardelli

10 -

Instruction Types

e Data processing

e Data storage (main memory)

o Data movement (internal transfer and I/O)
e Program flow control

Rev. 3.3.4 (2011-12) by Enrico Nardelli

10 -

Instruction Representation

4bits 6 bits 6 bits
Opcode Operand 1 Refer. Operand 2 Ref.
16 bits

e There may be many instruction formats

e For human convenience a symbolic

representation is used for both opcodes (MPY)
and operand references (RA RB)

= e.g. 0110 001000 001001 MPY RA RB

(machine code) (symbolic - assembly code)

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10 -

Design Decisions (1)

e Operation repertoire

= How many opcodes?
= What can they do?
= How complex are they?

e Data types

e Instruction formats
= Length and structure of opcode field
= Number and length of reference fields

Rev. 3.3.4 (2011-12) by Enrico Nardelli

10 -

Design Decisions (2)

e Registers
= Number of CPU registers available

= Which operations can be performed on which
registers?

e Addressing modes (later...)

Rev. 3.3.4 (2011-12) by Enrico Nardelli

10 -

Types of Operand references

e Main memory
e Virtual memory (usually slower)
o Cache (usually faster)

e I/O device (slower)
e CPU registers (faster)

Rev. 3.3.4 (2011-12) by Enrico Nardelli

10 -

Number of References/
Addresses/ Operands

e 3 references
= ADD RA RB RC RA+RB — RC

e 2 references (reuse of operands)
= ADD RA RB RA+RB — RA

e 1 reference (some implicit operands)
= ADD RA Acc+RA — Acc

e O references (all operands are implicit)
= S ADD Acc+Buf — Acc

Rev. 3.3.4 (2011-12) by Enrico Nardelli

10 -

How Many References

e More references
= More complex (powerful?) instructions
= Fewer instructions per program
= Slower instruction cycle

e Fewer references
= Less complex (powerful?) instructions
= More instructions per program
= Faster instruction cycle

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 10

Example

o Compute (A-B)/(A+(C*D)), assuming each of
them is in a read-only register which cannot be
modified.

o Additional writable registers X and Y can be
used if needed.

e Try to minimize the number of operations

e Incremental constraints on the number of
operands allowed for instructions

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 11

Example: three operands (1)

e Syntax
<operation><destination><source-1><source-2>
e Meaning
<source-1><operation><source-2> - <destination>
e Remember
<source-m> isany of A, B, C, D, X, Y
<destination> is any of X, Y

e Arithmetic instructions
ADD, SUB, MUL, DIV

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 12

Example: three operands (2)

e A solution
= MULXCD C*D->X
= ADDXAX A+X->X
= SUBYAB AB-Y
= DIV XYX Y/X->X

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 13

Example: two operands (1)

o Syntax
<operation><destination><source>
e Meaning
<destination><operation><source> - <destination>
(the destination is also the first source operand)
e Remember
<source-m> isany of A, B,C, D, X, Y
<destination> is any of X, Y
e Arithmetic instructions
ADD, SUB, MUL, DIV

e One more instruction for moving data

MOV <destination> <source> (<source> — <destination>)
Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 14

Example: two operands (2)

e A solution (using the new movement instruction)
= MOV X C C-X

= MULXD X*D - X
= ADD X A X+A - X
= MOVYA A-Y

= SUBYB Y-B->Y

= DIVY X Y/X->Y

e Can we avoid using MOV ?

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 15

Example: two operands (3)

o A different solution (a trick avoids using the new
movement instruction)

= SUB X X X-X - X (set X to zero)
= ADD X C X+C > X (move C to X)
= MULXD X*D - X

= ADD X A X+A - X

= SUBYY Y-Y >Y (set Y to zero)
= ADDY A Y+A - Y (move Ato Y)
= SUBY B Y-B->Y

= DIVY X Y/IX->Y

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 16

Example: one operand (1)

e Syntax
<operation><source>
e Meaning
ACCUMUL. <operation><source> — ACCUMUL.
(the accumulator is both the destination and the first source operand)

e Remember
<source>isany of A, B, C, D, X, Y
The only destination is by default the accumulator !

e Arithmetic instructions
ADD, SUB, MUL, DIV

e Two more instructions
LOAD <source> (<source> — Acc)
STORE <destination> (Acc — <destination>)
<destination> is any of X, Y

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 17

Example: one operand (2)

e A solution éusing the new instructions to move

data to and from the accumulator)
= LOAD C C - Acc
= MULD Acc*D - Acc
= ADD A Acc+A - Acc
= STORE X Acc - X
= LOAD A A - Acc
= SUB B Acc-B - Acc
= DIV X Acc/X - Acc

e Can we avoid using LOAD and STORE?

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 18

Example: one operand (3)

e A different solution
- requires at the beginning the accumulator stores zero
- uses the accumulator as a source operand
- STORE is needed: no other instruction moves data into a register

= ADD C

= MULD

= ADD A
= STORE X
= SUB Acc
= ADD A
= SUBB

= DIV X

Acc+C - Acc (move C to Accumul.)
Acc*D — Acc

Acc+A - Acc

Acc » X

Acc-Acc - Acc (set Acc. to zero)
Acc+A - Acc (move A to Accumul.)
Acc-B — Acc

Acc/X - Acc

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 19

Example: zero operands (1)

Syntax

<operation>

Meaning
(all arithmetic operations make reference to the accumulator and a buffer)
ACCUMUL. <operation> BUFFER - ACCUMUL.

Arithmetic instructions
ADD, SUB, MUL, DIV

Three more instructions to move data into/from registers (no

STORE!)
LOAD <source> (<source> — Acc)
PUSH <source> (<source> - Buf)
TOP <destination> (Buf - <destination>)
Remember

<source> isany of A, B, C, D, X, Y, and Acc
<destination> is any of X, Y, and Acc

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 20

Example: zero operands (2)

e Here is a solution

= LOAD C C — Acc

= PUSHD D — Buf

= MUL Acc*Buf — Acc
= PUSH A A — Buf

= ADD Acc+Buf — Acc
= PUSH Acc Acc — Buf

= TOP X Buf — X

= PUSH B B — Buf

= LOAD A A — Acc

= SUB Acc-Buf — Acc

= PUSH X X — Buf

= DIV Acc/Buf — Acc

e Can we avoid using LOAD ?

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 21

Example: zero operands (3)

e For a given register R
= LOAD <R> <R> — Acc

e The following two instructions have the same effect
= PUSH <R> <R> — Buf
= TOP Acc Buf — Acc

... unless the buffer contains something not to be lost...

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 22

Example: zero operands (4)

e This solution uses only PUSH and POP to load values
into the Accumulator

PUSH C
TOP Acc
PUSH D
MUL
PUSH A
ADD
PUSH Acc
TOP X
PUSH A
TOP Acc
PUSH B
SUB
PUSH X
DIV

C — Buf (equiv. to LOAD C)
Buf — Acc (equiv. to LOAD C)
D — Buf

Acc*Buf — Acc

A — Buf

Acc+Buf — Acc

Acc — Buf

Buf — X

A — Buf (equiv. to LOAD A)
Buf — Acc (equiv. to LOAD A)
B — Buf note the inversion
Acc-Buf — Acc

X — Buf

Acc/Buf — Acc

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 23

Types of Operand

e Addresses

e Numbers

= Integer/floating point
e Characters

= ASCII etc.

e Logical Data
= Bits or flags

e The type of operand is determined by the used
instruction

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 24

Instruction Types (more detail)

o Arithmetic

e Logical

e Conversion

e Transfer of data (internal)
e I/O

e Transfer of Control

e System Control

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 25

Arithmetic

e Add, Subtract, Multiply, Divide
e Signed Integer
e Floating point ?
e May include
= Increment (a++)
= Decrement (a--)
Negate (-a)
Absolute (]al)
Arithmetic shift (take care of sign bit and overflow!)

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 26

Logical

e Bit manipulation operations
= shift, rotate, ...

e Boolean logic operations (bitwise)
= AND, OR, NOT, ...

e Test operations

= To check control bits in the Program Status Word
e (they may be set only indirectly through the ALU)

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 27

Shift and rotate operations

Ve W WL WO e eV 1 ™ AT P il
[] - i_ ——| |,.’ L] [] L g|
Logical right shift Arithmetic left shift
i L e Y ¥ u.; i VL i Ve rain Vg B
L & - ;j & i
Logical left shift Right rotate
i W W P woa x:'.' Y Y S S P
e i [: E : Lo,
Arithmetic right shift Left rotate
Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 28

Conversion

e e.g. Binary to Decimal

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 29

Transfer of data

o Specify
= Source and Destination
= Amount of data
e May be different instructions for different
movements
= e.g. MOVE, STORE, LOAD, PUSH

e Or one instruction and different addresses
= e.g. MOVE B C, MOVE AM, MOVE M A, MOVE A S

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 30

Input/Output

e May be specific instructions

e May be done using data movement instructions
(memory mapped)

e May be done by a separate controller (DMA)

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10 - 31

Transfer of Control (1)

* Needed to
= Take decisions (branch)
= Execute repetitive operations (loop)
= Structure programs (subroutines)

e Branch (examples)
= BRA X: branch (i.e., go) to X (unconditional jump)

= BRZ X: branch to X if accumulator value is 0
= BRE R1, R2, X: branch to X if (R1)=(R2)

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 32

An example

200
201
— 202 SUBX, Y
203 BRZ 211 —

unconditional

branch conditional branch

210 BRA 202
211 ..

225 BRE R1, R2, 235

conditional branch

235 '

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 33

Transfer of control (2)

o Skip (example)

= Increment register R and skip next instruction if

resultis 0
) S

ISZR
BRA X (loop)
(exit)

o Interrupts (the basic form of control transfer)
o Subroutine call (a kind of interrupt serving)

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 34

System Control

e For managing the system is convenient to have
reserved instruction executable only by some
programs with special privileges (e.g., to halt a
running program)

e These privileged instructions may be executed
only if CPU is in a specific state (or mode)

o Kernel or supervisor or protected mode

e Privileged programs are part of the operating
system and run in protected mode

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 35

Interrupts

e Mechanism by which other modules (e.g. I/O) may
interrupt normal sequence of processing

e I/O operations (usually much slower)
= from I/O controller (end operation, error, ...)

e Program error
= e.g. overflow, division by zero

e Hardware failure
= e.g. memory parity error, power failure, ...

e Time scheduling
= Generated by internal processor timer
= Used to execute operations at reqgular intervals

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 36

Instruction Cycle with Interrupt

Fetch Cycle Execute Cycle Interrupt Cycle

Interrupts
Disabled

Check for
Interrupt;

Interrupts|Process Interrupt
Enabled

Execute
Instruction

Fetch Next
Instruction

HALT ’

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 37

Interrupt Cycle

e Added to instruction cycle

e Processor checks for interrupt
= Indicated by an interrupt signal
o If no interrupt, fetch next instruction
o If interrupt pending:
Suspend execution of current program
Save context
Set PC to start address of interrupt handler routine

Process interrupt
Restore context and continue interrupted program

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 38

Program Flow Control

User i) Lser i) Llser L)
Proeram Program Program Program Program Proeram
" | e " | I e " | ! e
I .'I‘L-"";: | .I'|I___."'r | | g:.:'Ir_l__.-ﬂ"-r:

@ I ~Fl | @ @ I _-"'I"-I I @ @ | P | @
TV PN P B R
I L I B e LS I R S A T8
WRITE " i :{'nmluumi WRITE o = 7 d Command WRITE ﬁ_..-ﬂ* I Commanid

C R ! I [- I--' I - I--' ;
r
: I," e : Q ' !y : .flr /
1 - B —— | fy | For
Lo / ND . | f
| ! s) - d I
@ K E N @ 1y
| Fo-
| 4 ‘J-" ' f‘jrk il [mterrupt : f f [nterrupt
|JI1' B @' gy xH‘ ™~ _. Handler i Handler
A | 1 1 I | — = I
Ly L L
F -
WRITLE .-rf WRITE ; v | @ WRITE S : | @
_ | — | S0t — : HJ‘I'.‘—~|_._,__|_| e
| A ND Y ND
I b s J"f : iy
| le | .ff r
| r - !
E}] I k- (3 Y
I | : _,Ilr J
| | r
| £
¥
— — — ’
WRITLE WRITE WRITE W

(@) No intermpts by Interrupts; short FO want (¢} Interrupts; long 1O wail

Temporal view of control flow
(short 1/0 wait)

INime

o

Processor I 1L/

/O
oAl t operation operation

U

L/O
opceration

Processor 1L/
walt operation

GG CISHOIEIRIS

(b)) With interrupts

B |

(a) Without interrupts

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10 - 40

Temporal view of control flow
(long 1/0 wait)

oS
el

-
Processor I":O_
“wrait opocration L/C
opceration
Processor
@ A alt
-
= 1
LA
Processor L/ operation
ealt operation e eeseeE
WAt
-

J 0
S

(b)) With interrupts

Ca) Without interrrupts find the impreCiSion !

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10 - 41

Multiple Interrupts

o 1st solution: Disable interrupts

= Processor will ignore further interrupts whilst
processing one interrupt

= Interrupts remain pending and are checked after first
interrupt has been processed

= Interrupts handled in sequence as they occur

o 2nd solution: Define priorities
= Low priority interrupts can be interrupted by higher
priority interrupts
= When higher priority interrupt has been processed,
processor returns to(2[.))gevious interrupt

Rev. 3.3.4 -12) by Enrico Nardelli 10- 42

Multiple Interrupts - Sequential

User Program

|
I
I
|
|
|
|
3

-

e B)

-

I"-|.

|

I

I

|

|

|

|

I

I

|

|

|
w

-1

Interrupt
Handler X

Rev. 3.3.4 (2011-12) by Enrico Nardelli

Interrupt
Handler Y

I
T

!
I
f

'y

b

i)
’

10- 43

Multiple Interrupts - Nested

Interrupt
User Program Handler X
o I L
— L="
— | - |
= r__,ﬂ’ |
—_— -
E I ,-"-}. " ‘\'“-\,_
— - L .
= :‘J_fr : '“'H. . .
— . ~
E i-___-‘__"_—'l——..__‘__l__ } -h"-. “'—.‘_1
= | . . Interrupt
— . ~)
= “ ~~._Handler ¥
E | . -'h
= I ﬁ'x_ 1
— I '“'-5_ |
= | N |
—_— I - |
— | ﬂl'\. |
= | s |
— ™
= | L I
= ¥ S

- 44

Subroutine (or procedure) call

o Why?
= economy
= modularity

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10 - 45

Subroutine (or procedure) call

Main
Program

Procedure
100

Procedure
200

o A WO N =+ O

100
101
102
103

200
201
202
203

CALL 100

CALL 200

RET

RET

Rev. 3.3.4 (2011-12) by Enrico Nardelli

10- 46

Alternative for storing the return
address from a subroutine

e In a pre-specified register

= Limit the number of nested calls since for each
successive call a different register is needed

e In the first memory cell of the memory zone
storing the called procedure
= Does not allow recursive calls

o At the top of the stack (more flexible)

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10 - 47

Return using the stack (1)

e Use a reserved zone of memory managed with a
stack approach (last-in, first-out)

= In a stack of dirty dishes the last to become dirty is
the first to be cleaned

e Each time a subroutine is called, before starting
it the return address is put on top of the stack

e Even in the case of multiple calls or recursive
calls all return addresses keep their correct
order

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10 - 48

Return using the stack (2)

Main
Program

Procedure
100

Procedure
200

o b~ WO N =+ O

100
101
102
103

200
201
202
203

e The stack can be used also to
pass parameters to the called
procedure

102

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10 - 49

Passing parameters to a procedure

e In general, parameters to a procedure might be
passed
= Using registers

e Limit the number of parameters that can be passed, due to
the limited number of registers in the CPU

e Limit the number of nested calls, since each successive calls
has to use a different set of registers

= Using pre-defined zone of memory
e Does not allow recursive calls

= Through the stack (more flexible)

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 50

Byte Order

 What order do we read numbers that occupy more than

one cell (byte)

e 12.345.678 can be stored in 4 locations of 8 bits each as

it follows
Address Value (1) Value(2)
184 12 78
185 34 56
186 56 34
187 78 12

e j.e. read top down or bottom up ?

Rev. 3.3.4 (2011-12) by Enrico Nardelli

10 - 51

Byte Order Names

e The problem is called Endian

e The reference point is the INITIAL address of
bytes

e The system on the left has the MOST significant
byte in the INITIAL address

e This is called big-endian

e The system on the left has the LEAST significant
byte in the INITIAL address

e This is called /ittle-endian

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 52

Standard...What Standard?

e Pentium (80x86), VAX are little-endian
e IBM 370, Motorola 680x0 (Mac), and most RISC
are big-endian

e Internet is big-endian

= Makes writing Internet programs on PC more
awkward!

= WinSock provides Atoiand /toh (Host to Internet &
Internet to Host) functions to convert

Rev. 3.3.4 (2011-12) by Enrico Nardelli 10- 53

