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Introduction

Conformal symmetry

What is the conformal symmetry?

Poincaré group + dilation and special conformal group (preserving
the angle).

conformal symmetry appears in string theory, statistical mechanics,
massless particles.

A traditional set of mathematical objects is

Wightman field (operator valued distribution on Minkowski space)

Unitary representation of conformal symmetry group with spectrum
condition

the vacuum vector
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Introduction

Diff(S1) symmetry

Why do we consider Diff(S1) symmetry?

1 consider a conformal field on 2 dimensional space parametrized (t, x).

2 some important observables (e.g. stress energy tensor) decompose
into components depending only on t + x or t − x .

3 under the assumption of dilation symmetry and spectrum condition,
each component of stress energy tensor can be extended to S1 and
has a certain commutation relations (Lüscher-Mack theorem).

4 the commutation relations are same as the Lie algebra of Diff(S1).

5 the component of stress energy tensor is Diff(S1) covariant.
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Introduction

So our minimal mathematical objects are

Projective unitary irreducible representations of Diff(S1) with
spectrum condition.

We need to include representations without vacuum, since they appear in
charged sectors.
Moreover, if we drop the existence of vacuum, the extension of stress
energy tensor to S1 (Lüscher-Mack theorem) is no longer true in general.
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Introduction

So our minimal mathematical objects are

Projective unitary irreducible representations of the stabilizer subgroup
B0 of the point at infinity in Diff(S1) with spectrum condition.

And our main result is

Theorem

There are representations of B0 which does not extend to Diff(S1).
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representations of Diff(S1)

Let U be a representation of Diff(S1).

Diff(S1) includes important one-parameter subgroups:

Möbius group

rotation ρs(z) = e isz , for z ∈ S1 ⊂ C

translation τs(x) = x + s, for x ∈ R

dilation δs(x) = esx , for x ∈ R

Spectrum condition
⇐⇒ the spectrum of translation is positive
⇐⇒ the spectrum of rotation is positive
The rotation group is compact =⇒ the rotation group has the lowest
eigenvector with eigenvalue h.
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representations of Diff(S1)

U is a projective representation.

⇐⇒ U(g)U(h) = c(g , h)U(gh) where c(g , h) ∈ S1 ⊂ C

The form of c(g , h) is very restricted (second cohomology).

fact

the second cohomology of Diff(S1) is one dimensional.

c(g , h) is determined by a real number c .
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representations of Diff(S1)

fact

projective unitary, positive energy, irreducible representations of Diff(S1)
are completely classified by c and h.

There exists such a representation if
and only if there exist natural numbers m, r , s such that

c = 1− 6

(m + 2)(m + 3)
, 0 ≤ m

h =
{(m + 3)r − (m + 2)s}2 − 1

4(m + 2)(m + 3)
, 1 ≤ s ≤ r ≤ m + 1,

or c ≥ 1 and h ≥ 0.
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representations of Möbius group

Möb: generated by rotation, translation, dilation

P : generated by translation, dilation

Diff(S1) ⊃ B0

∪ ∪
Möb ⊃ P
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Möb ⊃ P

Y. Tanimoto (University of Rome II) The stabilizer subgroup in Diff(S1) 31/8/2009 9 / 21



representations of Möbius group
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representations of Möb ⊃ P

Again Möb includes the rotation group, so any positive energy
representation has a lowest energy h.

fact

the second cohomology of Möb is trivial.

fact

projective unitary, positive energy, irreducible representations of Möb is
classified by the lowest eigenvalue h of rotation, and any value of h ≥ 0 is
possible.

fact

projective unitary, positive energy, irreducible representations of P is
unique. Any restriction of irreducible representations of Möb is irreducible.
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restrictions of representations of Diff(S1) to B0

Diff(S1) ⊃ B0

∪ ∪
Möb ⊃ P

Theorem (Weiner ‘07)

Any restriction of representations πc
h |B0 of Diff(S1) is irreducible.

Theorem (Weiner ’07)

Two restricted representations πc
h |B0 , πc ′

h′ |B0 are equivalent only if c = c ′.
For c ≤ 1, all possible {π1

h|B0} are inequivalent. For c > 2, some
examples {πc

h1
|B0 , πc

h2
|B0} of equivalent restrictions are exhibited.
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What about nonextendable representations of B0?
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Lie algebra of Diff(S1)

group/algebra elements operation

Diff(S1) C ∞ diffeomorphisms of S1 f ◦ g (composition)

Vect(S1) C ∞ vector fields on S1 [f , g ] := fg ′ − f ′g
Witt Ln(θ) = ie inθ [Lm, Ln] = (m− n)Lm+n

fact

Witt is simple. In particular, the first cohomology of Witt on C is trivial
(Witt has no nontrivial one dimensional representation).
The second cohomology of Vir on C is one dimensional (Witt has the
unique central extension Vir).

The Virasoro algebra has the following commutation relations.

[Lm, Ln] = (m− n)Lm+n +
Cn(n2 − 1)

12
δm,−n
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Lowest weight representations of Vir

fact

For any c , h ∈ R there is a representation of Vir with a contravariant
sesquilinear form 〈·, ·〉 and a lowest weight vector v such that

Cv = cv , L0v = hv , Lnv = 0 for n > 0.

The sesquilinear form is positive semidefinite if and only if there exist
natural numbers m, r , s such that

c = 1− 6

(m + 2)(m + 3)
, 0 ≤ m

h =
{(m + 3)r − (m + 2)s}2 − 1

4(m + 2)(m + 3)
, 1 ≤ s ≤ r ≤ m + 1,

or c ≥ 1 and h ≥ 0. And in these cases it integrates to a representation of
Diff(S1).
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(m + 2)(m + 3)
, 0 ≤ m

h =
{(m + 3)r − (m + 2)s}2 − 1

4(m + 2)(m + 3)
, 1 ≤ s ≤ r ≤ m + 1,

or c ≥ 1 and h ≥ 0. And in these cases it integrates to a representation of
Diff(S1).
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Lie algebra of B0

group/algebra elements operation

B0 diffeomorphisms stabilizing θ = 0 f ◦ g (composition)

Vect(S1)0 vector fields f with f (0) = 0 [f , g ] := fg ′ − f ′g
K0 Kn(θ) = i(1− e inθ) Restriction of Vir

Theorem (T. ’09)

The ideal structure of K0 is determined as an infinite sequence of ideals

K0 ⊃ K1 ⊃ K2 ⊃ · · ·

and an exceptional ideal K1,3 ⊃ K3 and it holds that [Kn,Kn] = K2n+1.
In particular, K1 = [K0,K0] has codimension one in K0 and K0 has one
dimensional representation.
The second cohomology of K0 on C is one dimensional (K0 has the
unique central extension K).
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several representations of B0

We can consider a factor map

K0 7−→ K0/K2

K0/K2 ' the Lie algebra of P .

P has the unique positive energy representation.

the composition π gives rise to a positive energy representation of B0.

π has a big kernel.

Theorem (T. in preparation)

For c ≤ 1, π ⊗ πc
h is irreducible.

These representations are not associated with stress energy tensor.
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Verma modules of K

We can define a generalization of Verma modules for K.

Theorem (T. ’09, T. in preparation)

For any c ∈ R, h, λ ∈ C, there is a representation of K with a
contravariant sesquilinear form 〈·, ·〉 and a lowest weight vector v such that

Cv = cv , Knv = (h + nλ)v for n > 0.

(Note that Kn = L0 − Ln in Vir. If h ∈ R, λ = 0, this module reduces to a
restriction of Vir module.)
The sesquilinear form is positive semidefinite for some values of c ≥ 1,
h ∈ C \R, and λ ∈ C.

These modules are expected to integrate to representations of B0 but not
to Diff(S1).

Y. Tanimoto (University of Rome II) The stabilizer subgroup in Diff(S1) 31/8/2009 17 / 21



Verma modules of K

We can define a generalization of Verma modules for K.

Theorem (T. ’09, T. in preparation)

For any c ∈ R, h, λ ∈ C, there is a representation of K with a
contravariant sesquilinear form 〈·, ·〉 and a lowest weight vector v such that

Cv = cv , Knv = (h + nλ)v for n > 0.

(Note that Kn = L0 − Ln in Vir. If h ∈ R, λ = 0, this module reduces to a
restriction of Vir module.)
The sesquilinear form is positive semidefinite for some values of c ≥ 1,
h ∈ C \R, and λ ∈ C.

These modules are expected to integrate to representations of B0 but not
to Diff(S1).

Y. Tanimoto (University of Rome II) The stabilizer subgroup in Diff(S1) 31/8/2009 17 / 21



Verma modules of K

We can define a generalization of Verma modules for K.

Theorem (T. ’09, T. in preparation)

For any c ∈ R, h, λ ∈ C, there is a representation of K with a
contravariant sesquilinear form 〈·, ·〉 and a lowest weight vector v such that

Cv = cv , Knv = (h + nλ)v for n > 0.

(Note that Kn = L0 − Ln in Vir. If h ∈ R, λ = 0, this module reduces to a
restriction of Vir module.)

The sesquilinear form is positive semidefinite for some values of c ≥ 1,
h ∈ C \R, and λ ∈ C.

These modules are expected to integrate to representations of B0 but not
to Diff(S1).

Y. Tanimoto (University of Rome II) The stabilizer subgroup in Diff(S1) 31/8/2009 17 / 21



Verma modules of K

We can define a generalization of Verma modules for K.

Theorem (T. ’09, T. in preparation)

For any c ∈ R, h, λ ∈ C, there is a representation of K with a
contravariant sesquilinear form 〈·, ·〉 and a lowest weight vector v such that

Cv = cv , Knv = (h + nλ)v for n > 0.

(Note that Kn = L0 − Ln in Vir. If h ∈ R, λ = 0, this module reduces to a
restriction of Vir module.)
The sesquilinear form is positive semidefinite for some values of c ≥ 1,
h ∈ C \R, and λ ∈ C.

These modules are expected to integrate to representations of B0 but not
to Diff(S1).

Y. Tanimoto (University of Rome II) The stabilizer subgroup in Diff(S1) 31/8/2009 17 / 21



Verma modules of K

We can define a generalization of Verma modules for K.

Theorem (T. ’09, T. in preparation)

For any c ∈ R, h, λ ∈ C, there is a representation of K with a
contravariant sesquilinear form 〈·, ·〉 and a lowest weight vector v such that

Cv = cv , Knv = (h + nλ)v for n > 0.

(Note that Kn = L0 − Ln in Vir. If h ∈ R, λ = 0, this module reduces to a
restriction of Vir module.)
The sesquilinear form is positive semidefinite for some values of c ≥ 1,
h ∈ C \R, and λ ∈ C.

These modules are expected to integrate to representations of B0 but not
to Diff(S1).

Y. Tanimoto (University of Rome II) The stabilizer subgroup in Diff(S1) 31/8/2009 17 / 21



representations of Diff(R)c

What about much smaller subgroups?

Consider Diff(R)c = diffeomorphisms of R with compact supports.

Diff(R)c is simple (Thurston ’74, Mather ’74).

There is a notion of positivity of energy (Fewster and Hollands ’05).

Is there any representation of Diff(R)c other than restrictions of πc
h?
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representations of Diff(R)c

Consider U(1)-current J(z) on S1 with [J(z1), J(z2)] = iδ′(z1 − z2) in
vacuum representation.

The Fourier components of T (z) = 1
2 : J2 : (z) satisfy the Virasoro

commutation relations with c = 1, h = 0.
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representations of Diff(R)c

Buchholz-Mack-Todorov automorphisms ’90

For a smooth real function ρ(z), J(z) 7→ J(z) + ρ(z) is an automorphism.
If q :=

∫
dz

2πiz ρ(z) 6= 0, T (z) is mapped to the representation πc
q2 .

Theorem (T. in preparation)

If ρ is a function on S1 smooth except the point of infinity, divergent
sufficently strongly at infinity, then the transformed T (z) integrates to a
representation of Diff(R)c , but not to Diff(S1).
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summary and outlook

several representations of B0 and Diff(R)c exist.

some are not associated with stress energy tensor.

what about vacuum representation?

integrability and inequivalence of Verma modules? good invariant?

characterization of extendability to Diff(S1)?
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