Isometric coactions of compact quantum groups on compact quantum metric spaces

Marie Sabbe

K.U.Leuven

September 1, 2009

Table of contents

Introductory definitions

2 Isometric coactions of CQGs on CQMSs

3 Quantum subgroup works isometrically

Table of contents

Introductory definitions

2 Isometric coactions of CQGs on CQMSs

3 Quantum subgroup works isometrically

Compact Quantum Groups

Definition (CQG - Woronowicz)

A compact quantum group (CQG) is a pair (A, Δ) where

- A is a unital C*-algebra
- the 'comultiplication' $\Delta:A\to A\otimes A$ is a *-homomorphism

such that

- Δ is 'coassociative': $(\iota \otimes \Delta) \ \Delta = (\Delta \otimes \iota) \ \Delta$
- the sets $\Delta(A)(1 \otimes A)$ and $\Delta(A)(A \otimes 1)$ are dense in $A \otimes A$.

A classical compact group (G,*) is a CQG too: take the unital (commutative) C*-algebra C(G), and define the comultiplication

$$\Delta: C(G) \to C(G) \otimes C(G) \cong C(G \times G)$$

$$f \mapsto (G \times G \to \mathbb{C}: (g, h) \mapsto f(g * h)).$$

Quantise metric spaces

Classical definition

C*-algebra's

• Compact space *X*

• Commutative C*-algebra C(X)

Quantise metric spaces

Classical definition

- Compact space X
- Metric $d: X \times X \to [0, \infty)$

C*-algebra's

- Commutative C*-algebra C(X)
- $L_d: C(X) \to [0,\infty]$

$$L_d(f) = \sup \left\{ \frac{|f(x) - f(y)|}{d(x, y)} \middle| x, y \in X, x \neq y \right\}$$

Quantise metric spaces

Classical definition

- Compact space X
- Metric $d: X \times X \to [0, \infty)$

C*-algebra's

- Commutative C*-algebra C(X)
- $L_d: C(X) \rightarrow [0, \infty]$

$$L_d(f) = \sup \left\{ \left. \frac{|f(x) - f(y)|}{d(x, y)} \right| x, y \in X, x \neq y \right\}$$

- \bullet L_d is a seminorm
- $L_d(f) = L_d(\bar{f})$
- $L_d(f) = 0 \Leftrightarrow f$ is a constant function

From L_d to d

Define a metric ρ_{L_d} on the state space $\mathcal{S}(C(X))$:

$$\rho_{L_d}(\mu,\nu)=\sup\{|\mu(f)-\nu(f)|\;|L_d(f)\leq 1\}.$$

On the extreme states $\mu_X : C(G) \to \mathbb{C} : f \mapsto f(x)$ for $x \in X$, this metric coincides with the metric d:

$$\rho_{L_d}(\mu_x, \mu_y) = \sup\{|f(x) - f(y)| |L_d(f) \le 1\} = d(x, y)$$

Definition (CQMS - Rieffel, 1999)

A compact quantum metric space (CQMS) is a pair (B, L) where

- B is a unital C*-algebra
- L is a Lipnorm on B.

Definition (CQMS - Rieffel, 1999)

A compact quantum metric space (CQMS) is a pair (B, L) where

- B is a unital C*-algebra
- L is a Lipnorm on B.

Definition (Lipnorm)

A Lipnorm L on a unital C*-algebra B is a seminorm $L: B \to [0, \infty]$ such that

- $L(b) = L(b^*)$ for every $b \in B$
- $\forall b \in B : L(b) = 0 \Leftrightarrow b \in \mathbb{C}1$

Definition (CQMS - Rieffel, 1999)

A compact quantum metric space (CQMS) is a pair (B, L) where

- B is a unital C*-algebra
- L is a Lipnorm on B.

Definition (Lipnorm)

A Lipnorm L on a unital C*-algebra B is a seminorm $L: B \to [0, \infty]$ such that

- $L(b) = L(b^*)$ for every $b \in B$
- $\forall b \in B : L(b) = 0 \Leftrightarrow b \in \mathbb{C}1$
- the ρ_L topology coincides with the weak *-topology on S(B), where

$$\rho_L(\mu, \nu) = \sup\{|\mu(b) - \nu(b)| | b \in B, L(b) \le 1\}$$

for every $\mu, \nu \in \mathcal{S}(B)$.

Definition (CQMS - Rieffel, 1999)

A compact quantum metric space (CQMS) is a pair (B, L) where

- B is a unital C*-algebra
- L is a Lipnorm on B.

A spectral triple (A, \mathcal{H}, D) is a *-algebra A in $\mathcal{B}(\mathcal{H})$, where \mathcal{H} is a Hilbertspace, and a Diracoperator D on \mathcal{H} .

The closure of A can become a CQMS with L(a) = ||[D, a]||.

A classical action of a group (G,*) on a metric space (X,d) is a mapping

$$\cdot: X \times G \rightarrow X: (x,g) \mapsto x \cdot g$$

$$\alpha: C(X) \to C(X \times G) \cong C(X) \otimes C(G)$$
$$f \mapsto (X \times G \to \mathbb{C}: (x, g) \mapsto f(x \cdot g))$$

Definition

A coaction of a CQG (A, Δ) on a unital C*-algebra B is a unital *-homomorphism $\alpha: B \to B \otimes A$ such that

A classical action of a group (G,*) on a metric space (X,d) is a mapping

$$\cdot: X \times G \rightarrow X: (x,g) \mapsto x \cdot g$$

$$\alpha: C(X) \to C(X \times G) \cong C(X) \otimes C(G)$$

$$f \mapsto (X \times G \to \mathbb{C}: (x,g) \mapsto f(x \cdot g))$$

Definition

A coaction of a CQG (A, Δ) on a unital C*-algebra B is a unital

- *-homomorphism $\alpha: B \to B \otimes A$ such that
 - 'coassociativity' holds: $(\iota \otimes \Delta) \alpha = (\alpha \otimes \iota) \alpha$

A classical action of a group (G, *) on a metric space (X, d) is a mapping

$$\cdot: X \times G \rightarrow X: (x,g) \mapsto x \cdot g$$

$$\alpha: C(X) \to C(X \times G) \cong C(X) \otimes C(G)$$

$$f \mapsto (X \times G \to \mathbb{C}: (x,g) \mapsto f(x \cdot g))$$

Definition

A coaction of a CQG (A, Δ) on a unital C*-algebra B is a unital

- *-homomorphism $\alpha: B \to B \otimes A$ such that
 - 'coassociativity' holds: $(\iota \otimes \Delta) \alpha = (\alpha \otimes \iota) \alpha$
 - the set $\alpha(B)$ (1 \otimes A) is norm dense in $B \otimes A$.

A classical action of a group (G,*) on a metric space (X,d) is a mapping

$$\cdot: X \times G \rightarrow X: (x,g) \mapsto x \cdot g$$

$$\alpha: C(X) \to C(X \times G) \cong C(X) \otimes C(G)$$

$$f \mapsto (X \times G \to \mathbb{C}: (x,g) \mapsto f(x \cdot g))$$

Definition

A coaction of a CQG (A, Δ) on a unital C*-algebra B is a unital

- *-homomorphism $\alpha: B \to B \otimes A$ such that
 - 'coassociativity' holds: $(\iota \otimes \Delta) \alpha = (\alpha \otimes \iota) \alpha$
 - the set $\alpha(B)$ (1 \otimes A) is norm dense in $B \otimes A$.

If *B* has the structure of a CQMS, when will we call such a coaction 'isometric'?

Table of contents

Introductory definitions

2 Isometric coactions of CQGs on CQMSs

3 Quantum subgroup works isometrically

Classical case

An action \cdot of a group (G,*) on a metric space (X,d) is called isometric if and only if

$$d(g \cdot x, g \cdot y) = d(x, y)$$

$$\forall x, y \in X, \ \forall g \in G$$

CQG on finite classical space - T. Banica, 2004

Let $\alpha: C(X) \to C(X) \otimes A$ be a coaction of the CQG (A, Δ) on the finite metric space (X, d) with n points.

For $i, j = 1, \dots, n$, there are elements a_{ij} in A such that

$$\alpha(\delta_i) = \sum_{j=1}^n \delta_j \otimes a_{ji}$$

Notation:

- a is the $(n \times n)$ -matrix $(a_{ij})_{i,j}$
- d is the $(n \times n)$ -distancematrix $(d(i,j))_{i,j}$

CQG on finite classical space - T. Banica, 2004

Let $\alpha: C(X) \to C(X) \otimes A$ be a coaction of the CQG (A, Δ) on the finite metric space (X, d) with n points.

For $i, j = 1, \dots, n$, there are elements a_{ij} in A such that

$$\alpha(\delta_i) = \sum_{j=1}^n \delta_j \otimes \mathsf{a}_{ji}$$

Notation:

- a is the $(n \times n)$ -matrix $(a_{ij})_{i,j}$
- d is the $(n \times n)$ -distancematrix $(d(i,j))_{i,j}$

Definition

A coaction α of a CQG (A, Δ) on a metric space (X, d) is called isometric if and only if

$$a \cdot d = d \cdot a$$
.

CQG on spectral triples - D. Goswami and J. Bhowmick, 2008

A CQG (A, Δ) acts by orientation-preserving isometries on the spectral triple (B, \mathcal{H}, D) if there is a unitary representation U of A on \mathcal{H} such that

- $(\iota \otimes \phi)\alpha_U(b) \in (B)''$ for every state ϕ on A, where $\alpha_U(x) = \tilde{U}(a \otimes 1)\tilde{U}^*$ for $x \in \mathcal{B}(\mathcal{H})$.
- \tilde{U} commutes with $D \otimes 1$.

Here \tilde{U} is the extension to $\mathcal{M}(\mathcal{K}(\mathcal{H})\otimes A \text{ from } V \text{ given by } V(\xi\otimes a)=U(\xi)(1\otimes a) \text{ for } \xi\in\mathcal{H}, a\in A.$

CQG on spectral triples - D. Goswami and J. Bhowmick, 2008

A CQG (A, Δ) acts by orientation-preserving isometries on the spectral triple (B, \mathcal{H}, D) if there is a unitary representation U of A on \mathcal{H} such that

- $(\iota \otimes \phi)\alpha_U(b) \in (B)''$ for every state ϕ on A, where $\alpha_U(x) = \tilde{U}(a \otimes 1)\tilde{U}^*$ for $x \in \mathcal{B}(\mathcal{H})$.
- \tilde{U} commutes with $D \otimes 1$.

Here \tilde{U} is the extension to $\mathcal{M}(\mathcal{K}(\mathcal{H}) \otimes A \text{ from } V \text{ given by } V(\xi \otimes a) = U(\xi)(1 \otimes a) \text{ for } \xi \in \mathcal{H}, a \in A.$

We want to investigate this in the context of Rieffels definition of a CQMS.

Second half-classical case

Let $\alpha: B \to B \otimes \mathcal{C}(G)$ be a coaction of the group (G, \cdot) on the compact quantum metric space (B, L).

Identify $B \otimes C(G)$ with C(G, B), by

$$b\otimes f:g\mapsto f(g)b$$

Second half-classical case

Let $\alpha: B \to B \otimes C(G)$ be a coaction of the group (G, \cdot) on the compact quantum metric space (B, L).

Identify $B \otimes C(G)$ with C(G, B), by

$$b \otimes f : g \mapsto f(g)b$$

Definition

A coaction α of a group (G,\cdot) on a CQMS (B,L) is called isometric if and only if

$$L(\alpha(b)(g)) = L(b)$$

$$\forall b \in B, \ \forall g \in G$$

Second half-classical case

Let $\alpha: B \to B \otimes \mathcal{C}(G)$ be a coaction of the group (G, \cdot) on the compact quantum metric space (B, L).

Identify $B \otimes C(G)$ with C(G, B), by

$$b \otimes f : g \mapsto f(g)b$$

Definition

A coaction α of a group (G,\cdot) on a CQMS (B,L) is called isometric if and only if

$$L(\alpha(b)(g)) = L(b)$$

$$\forall b \in B, \ \forall g \in G$$

Different notation: $L((\iota \otimes \omega_g)\alpha(b)) = L(b)$ where ω_g is the state on C(G) evaluating in g:

$$\omega_{\mathsf{g}}: \mathsf{C}(\mathsf{G}) \to \mathbb{C}: \mathsf{f} \mapsto \mathsf{f}(\mathsf{g}).$$

CQG on CQMS

One can write every linear mapping from C(G) to $\mathbb C$ as a linear combination of the mappings ω_g for $g \in G$: $\omega = \sum_{g \in G} \omega(g) \omega_g$. This means every state is a convex combination of the states ω_g .

CQG on CQMS

One can write every linear mapping from C(G) to $\mathbb C$ as a linear combination of the mappings ω_g for $g \in G$: $\omega = \sum_{g \in G} \omega(g) \omega_g$. This means every state is a convex combination of the states ω_g .

If the equality $L((\iota \otimes \omega_g)\alpha(b)) = L(b)$ holds, we have, for any $\omega \in \mathcal{S}(C(G))$, that

$$L((\iota \otimes \omega)\alpha(b)) \leq \sum_{g \in G} \omega(g)L((\iota \otimes \omega_g)\alpha(b)) = L(b)$$

voor alle $b \in B$.

CQG on CQMS

One can write every linear mapping from $\mathcal{C}(G)$ to \mathbb{C} as a linear combination of the mappings ω_g for $g \in G$: $\omega = \sum_{g \in G} \omega(g) \omega_g$. This means every state is a convex combination of the states ω_g .

If the equality $L((\iota \otimes \omega_g)\alpha(b)) = L(b)$ holds, we have, for any $\omega \in \mathcal{S}(C(G))$, that

$$L((\iota \otimes \omega)\alpha(b)) \leq \sum_{g \in G} \omega(g)L((\iota \otimes \omega_g)\alpha(b)) = L(b)$$

voor alle $b \in B$.

Definition (Isometric coaction)

A coaction α of a CQG (A, Δ) on a CQMS (B, L) is called isometric if and only if

$$L((\iota \otimes \omega)\alpha(b)) \leq L(b)$$

$$\forall b \in B, \ \forall \omega \in \mathcal{S}(A).$$

Comparison with existing definitions

Theorem

Let (X, d) be a finite metric space with n points and (A, Δ) a CQG working on X by the coaction $\alpha: C(X) \to C(X) \otimes A$.

Take elements a_{ij} in A such that $\alpha(\delta_i) = \sum_{j=1}^n \delta_j \otimes a_{ji}$ where δ_j is 1 on the j-th point of X and 0 elsewhere. Write

•
$$L_d(f) = \sup \left\{ \frac{|f(x) - f(y)|}{d(x,y)} \middle| x, y \in X, x \neq y \right\}$$
 for $f \in C(X)$

- ullet a for the $(n \times n)$ -matrix $(a_{ij})_{i,j=1\cdots n}$
- d for the $(n \times n)$ -matrix $(d(i,j))_{i,i=1\cdots n}$.

Then

$$a \cdot d = d \cdot a$$

if and only if

 $L_d((\iota \otimes \omega)\alpha(f)) \leq L_d(f)$, for every $f \in C(X)$ and every $\omega \in S(A)$.

$$L_d((\iota \otimes \omega)\alpha(f)) \leq L_d(f) \Rightarrow a \cdot d = d \cdot a$$

$$L_d((\iota \otimes \omega)\alpha(f)) \leq L_d(f) \Rightarrow a \cdot d = d \cdot a$$

The colorcomponent d_{γ} of a distance γ is the matrix which has a 1 on position (i,j) if $d(i,j)=\alpha$ and 0 elsewhere.

Then $d = \sum \alpha d_{\gamma}$.

$$L_d((\iota \otimes \omega)\alpha(f)) \leq L_d(f) \Rightarrow a \cdot d = d \cdot a$$

Sufficient to prove: $a_{ij}a_{kl} = 0$ if $d(i, k) \neq d(j, l)$

$$L_d((\iota \otimes \omega)\alpha(f)) \leq L_d(f) \Rightarrow a \cdot d = d \cdot a$$

Sufficient to prove: a commutes with the 'colorcomponents' d_{γ} . Sufficient to prove: $a_{ij}a_{kl}=0$ if $d(i,k)\neq d(j,l)$

$$(a \cdot d_{\gamma})_{ij} = \sum_{\substack{k \ d(k,j) = \alpha}} a_{ik} = \sum_{\substack{k \ d(k,j) = \alpha}} a_{ik} \sum_{l} a_{lj} = \sum_{\substack{k \ d(l,i) = \alpha}} \sum_{\substack{k \ d(l,i) = \alpha}} a_{ik} a_{lj}$$
$$= \sum_{\substack{l \ d(l,i) = \alpha}} \sum_{k} a_{ik} a_{lj} = \sum_{\substack{l \ d(l,i) = \alpha}} a_{lj} = (d_{\gamma} \cdot a)_{ij}$$

$$L_d((\iota \otimes \omega)\alpha(f)) \leq L_d(f) \Rightarrow a \cdot d = d \cdot a$$

Sufficient to prove: $a_{ij}a_{kl} = 0$ if $d(i, k) \neq d(j, l)$

Suppose $d(i, k) \neq d(j, l)$ and $a_{ij}a_{kl} \neq 0$.

$$L_d((\iota \otimes \omega)\alpha(f)) \leq L_d(f) \Rightarrow \mathsf{a} \cdot \mathsf{d} = \mathsf{d} \cdot \mathsf{a}$$

Sufficient to prove: $a_{ij}a_{kl}=0$ if $d(i,k)\neq d(j,l)$

Suppose $d(i,k) \neq d(j,l)$ and $a_{ij}a_{kl} \neq 0$.

We can take a state ω on A such that $\omega(a_{ij}a_{kl}a_{ij}) \neq 0$.

Then also $\omega(a_{ij}) \neq 0$.

Define a new state on A:

$$\omega_{ij}:A o\mathbb{C}:x\mapsto rac{\omega(a_{ij}xa_{ij})}{\omega(a_{ij})}$$

Then we have a state ω_{ij} such that $\omega_{ij}(a_{ij})=1$ and $\omega_{ij}(a_{kl})\neq 0$

$$L_d((\iota \otimes \omega)\alpha(f)) \leq L_d(f) \Rightarrow a \cdot d = d \cdot a$$

Sufficient to prove: a commutes with the 'colorcomponents' d_{γ} .

Sufficient to prove: $a_{ij}a_{kl} = 0$ if $d(i, k) \neq d(j, l)$

Suppose $d(i, k) \neq d(j, l)$ and $a_{ij}a_{kl} \neq 0$.

Then we have a state ω_{ij} such that $\omega_{ij}(a_{ij})=1$ and $\omega_{ij}(a_{kl})\neq 0$

To get a contradiction, it is sufficient to prove the following lemma:

Lemma

For every distance α , for every $i, j \in \{1 \cdots n\}$ and for every state ω on A, which is 1 in a_{ij} , we have:

- If $d(i,k) = \alpha$ and $d(j,l) \neq \alpha$, then $\omega(a_{kl}) = 0$.
- If $d(i,k) \neq \alpha$ and $d(j,l) = \alpha$, then $\omega(a_{kl}) = 0$.

$$L_d((\iota \otimes \omega)\alpha(f)) \leq L_d(f) \Rightarrow a \cdot d = d \cdot a$$

Sufficient to prove: a commutes with the 'colorcomponents' d_{γ} .

Sufficient to prove: $a_{ij}a_{kl} = 0$ if $d(i, k) \neq d(j, l)$

Suppose $d(i, k) \neq d(j, l)$ and $a_{ij}a_{kl} \neq 0$.

Then we have a state ω_{ij} such that $\omega_{ij}(\mathsf{a}_{ij})=1$ and $\omega_{ij}(\mathsf{a}_{kl})\neq 0$

Lemma

For every distance α , for every $i, j \in \{1 \cdots n\}$ and for every state ω on A, which is 1 in a_{ij} , we have:

- If $d(i,k) = \alpha$ and $d(j,l) \neq \alpha$, then $\omega(a_{kl}) = 0$.
- If $d(i,k) \neq \alpha$ and $d(j,l) = \alpha$, then $\omega(a_{kl}) = 0$.

We can prove this lemma by induction on the distances γ , starting with the smallest distance $\gamma=0$ and using the given inequality from the Lipschitznorm.

$$a \cdot d = d \cdot a \Rightarrow L_d((\iota \otimes \omega)\alpha(b)) \leq L_d(b)$$

Fix a state ω on A and points $x, y \in X$.

Sufficient to prove: there are positive numbers λ_{ij} such that

$$\begin{cases} \sum_{j} \lambda_{ij} = \omega(a_{xi}) \\ \sum_{i} \lambda_{ij} = \omega(a_{yj}) \\ \lambda_{ij} = 0 \text{ if } d(i,j) \neq d(x,y). \end{cases}$$

$a \cdot d = d \cdot a \Rightarrow L_d((\iota \otimes \omega)\alpha(b)) \leq L_d(b)$

Fix a state ω on A and points $x,y\in X$. Sufficient to prove: there are positive numbers λ_{ij} such that $\sum_j \lambda_{ij} = \omega(a_{xi}), \; \sum_i \lambda_{ij} = \omega(a_{yj}), \; \lambda_{ij} = 0 \; \text{if} \; d(i,j) \neq d(x,y).$

$$\frac{\left|(\iota \otimes \omega)\alpha(f)(x) - (\iota \otimes \omega)\alpha(f)(y)\right|}{d(x,y)} = \frac{\left|\sum_{i} f(i)\omega(a_{xi} - a_{yi})\right|}{d(x,y)}$$

$$= \frac{\left|\sum_{i} f(i)\left(\sum_{j} \lambda_{ij} - \sum_{i} \lambda_{ij}\right)\right|}{d(x,y)} = \frac{\left|\sum_{ij} \lambda_{ij}(f(i) - f(j))\right|}{d(x,y)}$$

$$= \frac{\left|\sum_{ij} \lambda_{ij}(f(i) - f(j))\right|}{d(i,j)} \le L_{d}(f)$$

$a \cdot d = d \cdot a \Rightarrow L_d((\iota \otimes \omega)\alpha(b)) \leq L_d(b)$

Fix a state ω on A and points $x,y\in X$. Sufficient to prove: there are positive numbers λ_{ij} such that $\sum_j \lambda_{ij} = \omega(a_{xi}), \; \sum_i \lambda_{ij} = \omega(a_{yj}), \; \lambda_{ij} = 0 \; \text{if} \; d(i,j) \neq d(x,y).$

For every subset $Z \subseteq X$, and every $x, y \in X$, we have

$$\sum_{i\in Z} a_{xi} \cdot \sum_{\substack{j\\\exists i\in Z: d(i,j)=d(x,y)}} a_{yj} = \sum_{i\in Z} a_{xi},$$

so
$$\sum_{i \in Z} a_{xi} \le \sum_{\substack{j \ \exists i \in Z: d(i,j) = d(x,y)}} a_{yj}$$

Edge form l_i to r_j if d(i,j) = d(x,y)

The minimal capacity of a cut is equal to the maximal flow

Edge form l_i to r_j if d(i,j) = d(x,y)

Edge form l_i to r_j if d(i,j) = d(x,y)

Edge form l_i to r_j if d(i,j) = d(x,y)

Table of contents

Introductory definitions

2 Isometric coactions of CQGs on CQMSs

3 Quantum subgroup works isometrically

Theorem

Let (A, Δ) be a CQG, working on a CQMS (B, L) by a coaction

 $\alpha: B \to B \otimes A$. Then there exists a coideal $\mathcal I$ in A such that

 $\bar{\alpha}: B \to B \otimes A/\mathcal{I}$ is isometric.

Theorem

Let (A, Δ) be a CQG, working on a CQMS (B, L) by a coaction

 $\alpha: B \to B \otimes A$. Then there exists a coideal $\mathcal I$ in A such that

 $\bar{\alpha}:B o B\otimes \mathsf{A}/\mathcal{I}$ is isometric.

We call a *-representation $\pi: A \to \mathcal{B}(\mathcal{H})$ on a Hilbertspace \mathcal{H} admissible if

$$L((\iota \otimes \omega \pi)\alpha(b)) \leq L(b)$$

$$\forall b \in B, \forall \omega \in \mathcal{S}(\mathcal{B}(\mathcal{H}))$$

 $\Pi = \{\pi: A \to \mathcal{B}(\mathcal{H}) | \mathcal{H} \text{ Hilbertspace}, \pi \text{ admissible *-representation on } \mathcal{H}\}$

Theorem

Let (A, Δ) be a CQG, working on a CQMS (B, L) by a coaction

 $\alpha: B \to B \otimes A$. Then there exists a coideal \mathcal{I} in A such that

 $\bar{\alpha}: B \to B \otimes A/\mathcal{I}$ is isometric.

We call a *-representation $\pi: A \to \mathcal{B}(\mathcal{H})$ on a Hilbertspace \mathcal{H} admissible if

$$L((\iota \otimes \omega \pi)\alpha(b)) \leq L(b)$$
 $\forall b \in B, \forall \omega \in \mathcal{S}(\mathcal{B}(\mathcal{H}))$

$$\forall b \in B, \forall \omega \in \mathcal{S}(\mathcal{B}(\mathcal{H}))$$

 $\Pi = \{\pi : A \to \mathcal{B}(\mathcal{H}) | \mathcal{H} \text{ Hilbertspace}, \pi \text{ admissible *-representation on } \mathcal{H}\}$

The coideal \mathcal{I} of the theorem is given by

$$\mathcal{I} = \{ a \in A \mid \pi(a) = 0, \ \forall \pi \in \Pi \}$$