Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion

Net cohomology and local charges

Giuseppe Ruzzi

Università Roma "Tor Vergata"

September 22, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion

Outline

- 2 Cohomology of a poset
 - The simplicial set
 - 1-Cohomology
- 3 Net cohomology and superselection sectors
 - The observable net
 - The program
 - The charge structure
 - A new quantum number
 - Splitting charge and topological content
 - Physical interpretation

4 Comments

5 Conclusion

Introduction	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
	0000			

Outline

- Cohomology of a poset
 The simplicial set
 - 1-Cohomology
- 3 Net cohomology and superselection sectors
 - The observable net
 - The program
 - The charge structure
 - A new quantum number
 - Splitting charge and topological content
 - Physical interpretation

4 Comments

5 Conclusion

Introduction	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion

- Net cohomology was introduced by Roberts '76 as a cohomological (non-Abelian) approach to the theory of superslection sectors. Many deep applications (developped by Roberts):
 - Equivalence between net cohomology and DHR-analysis.
 - The α -induction.
 - Completness theorem (equivalently non-existence) of DHR-sectors.
 - Attempt of a cohomological description of electromagnetic charges. Byproduct: n-categorical fomulation of non-Abelian cohomology.
- In this talk I describe a recent application of net cohomology: the discovered of charged (superselection) sectors in a curved spacetimes which are affected by the topology of the spacetime [Brunetti & R. '09].

Introduction	Cohomology of a poset 0000	Net cohomology and superselection sectors	Comments	Conclusion

- Net cohomology was introduced by Roberts '76 as a cohomological (non-Abelian) approach to the theory of superslection sectors. Many deep applications (developped by Roberts):
 - Equivalence between net cohomology and DHR-analysis.
 - The α -induction.
 - Completness theorem (equivalently non-existence) of DHR-sectors.
 - Attempt of a cohomological description of electromagnetic charges. Byproduct: n-categorical fomulation of non-Abelian cohomology.
- In this talk I describe a recent application of net cohomology: the discovered of charged (superselection) sectors in a curved spacetimes which are affected by the topology of the spacetime [Brunetti & R. '09].

Introduction	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion

- Net cohomology was introduced by Roberts '76 as a cohomological (non-Abelian) approach to the theory of superslection sectors. Many deep applications (developped by Roberts):
 - Equivalence between net cohomology and DHR-analysis.
 - The α-induction.
 - Completness theorem (equivalently non-existence) of DHR-sectors.
 - Attempt of a cohomological description of electromagnetic charges. Byproduct: n-categorical fomulation of non-Abelian cohomology.
- In this talk I describe a recent application of net cohomology: the discovered of charged (superselection) sectors in a curved spacetimes which are affected by the topology of the spacetime [Brunetti & R. '09].

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
Outline				

Introduction

2 Cohomology of a poset

- The simplicial set
- 1-Cohomology

3 Net cohomology and superselection sectors

- The observable net
- The program
- The charge structure
- A new quantum number
- Splitting charge and topological content
- Physical interpretation

4 Comments

5 Conclusion

$$x:\widetilde{\Delta}_n\to K$$

 Δ_n is the standard n-simplex considered as a poset with respect of inclusion of its subsimplices.

 Σ_n denotes the set of *n*-simplices and

 $\partial_i: \Sigma_n \to \Sigma_{n-1} \quad \textit{face}, \qquad \sigma_i: \Sigma_n \to \Sigma_{n+1} \quad \textit{degeneracy}.$

$$x:\widetilde{\Delta}_n\to K$$

 Δ_n is the standard n-simplex considered as a poset with respect of inclusion of its subsimplices.

 Σ_n denotes the set of *n*-simplices and

 $\partial_i: \Sigma_n \to \Sigma_{n-1} \quad \textit{face}, \qquad \sigma_i: \Sigma_n \to \Sigma_{n+1} \quad \textit{degeneracy}.$

Composing 1-simplices we get paths. A path $p: o \to \tilde{o}$ is a finite ordered set $b_n * \cdots * b_1$ s.t.

$$\partial_0 b_n = \tilde{o}, \ \partial_1 b_{i+1} = \partial_0 b_i, \ \partial_1 b_1 = o,$$

K is pathwise connected: for any pair o, \tilde{o} there is a path $p : o \rightarrow \tilde{o}$. Homotopy equivalence relation \sim on paths with the same endpoints.

This leads to first homotopy group $\pi_1(K, o)$ of K, with base o, and to fundamental group $\pi_1(K)$ since K is pathwise connected. K is simply connected if $\pi_1(K)$ is trivial.

Conclusion

The simplicial°set

Composing 1-simplices we get paths. A path $p: o \to \tilde{o}$ is a finite ordered set $b_n * \cdots * b_1$ s.t.

K is pathwise connected: for any pair o, \tilde{o} there is a path $p : o \to \tilde{o}$. Homotopy equivalence relation \sim on paths with the same endpoints.

This leads to first homotopy group $\pi_1(K, o)$ of K, with base o, and to fundamental group $\pi_1(K)$ since K is pathwise connected. K is simply connected if $\pi_1(K)$ is trivial.

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
The simp	licialeset	00000000		

K is simply connected if

- either K is upward directed: for any pair o', o'' there is o such that $o', o'' \leq o$,
- or K is dawnward directed, since

 $\pi_1(K) \cong \pi_1(K^\circ)$

・ロット (雪) (日) (日) (日)

 K° is the dual poset of K.

Let K be a base of neighbourhoods of arcwise and simply connected open subsets of a connected topological space M ordered under inclusion.

The fundamental groups of $\pi_1(K)$ and $\pi_1(M)$ are isomorphic.

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
The simplic		00000000		
The simplic	Jai Sel			

K is simply connected if

- either K is upward directed: for any pair o', o'' there is o such that $o', o'' \leq o$,
- or K is dawnward directed, since

$$\pi_1(K) \cong \pi_1(K^\circ)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

K° is the dual poset of K.

Let K be a base of neighbourhoods of arcwise and simply connected open subsets of a connected topological space M ordered under inclusion.

The fundamental groups of $\pi_1(K)$ and $\pi_1(M)$ are isomorphic.

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
The simplic		00000000		
The simplic	lai set			

K is simply connected if

- either K is upward directed: for any pair o', o'' there is o such that $o', o'' \leq o$,
- or K is dawnward directed, since

$$\pi_1(K) \cong \pi_1(K^\circ)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 K° is the dual poset of K.

Let K be a base of neighbourhoods of arcwise and simply connected open subsets of a connected topological space M ordered under inclusion.

The fundamental groups of $\pi_1(K)$ and $\pi_1(M)$ are isomorphic.

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
1-Cohomolo	ogy	00000000		

A 1-cocycle z with values in $\mathfrak{B}(\mathcal{H})$ is a field

 $\Sigma_1
i b \longrightarrow z(b) \in \mathfrak{B}(\mathcal{H})$

of unitaries operators satisfying the 1-cocycle equation:

$$z(\partial_0 c) \, z(\partial_2 c) = z(\partial_1 c) \;, \qquad c \in \Sigma_2$$

 $Z^{1}(\mathcal{K},\mathfrak{B}(\mathcal{H}))$ set of 1-cocycles of \mathcal{K} taking values in $\mathfrak{B}(\mathcal{H})$.

Any 1-cocycle z defines a unitary representation R_z of $\pi_1(K)$:

$$R_z([p]) := z(p) , \qquad [p] \in \pi_1(K, o)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for some $p : o \rightarrow o$ with $p \in [p]$.

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
1-Cohomol	000 00V	00000000		
r conomon	55			

A 1-cocycle z with values in $\mathfrak{B}(\mathcal{H})$ is a field

 $\Sigma_1
i b \longrightarrow z(b) \in \mathfrak{B}(\mathcal{H})$

of unitaries operators satisfying the 1-cocycle equation:

$$z(\partial_0 c) \, z(\partial_2 c) = z(\partial_1 c) \;, \qquad c \in \Sigma_2$$

 $Z^{1}(\mathcal{K},\mathfrak{B}(\mathcal{H}))$ set of 1-cocycles of \mathcal{K} taking values in $\mathfrak{B}(\mathcal{H})$.

Any 1-cocycle z defines a unitary representation R_z of $\pi_1(K)$:

$$R_z([p]) := z(p) , \qquad [p] \in \pi_1(K, o)$$

for some $p: o \rightarrow o$ with $p \in [p]$.

Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion

Outline

Introduction

- Cohomology of a poset
 The simplicial set
 - 1-Cohomology

3 Net cohomology and superselection sectors

- The observable net
- The program
- The charge structure
- A new quantum number
- Splitting charge and topological content
- Physical interpretation

4 Comments

5 Conclusion

oduction

ohomology of a poset

Net cohomology and superselection sectors

Comments

Conclusion

The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The observable net in a reference representation is the correspondence

 $\mathscr{A}: K \ni o \to \mathcal{A}(o) \subseteq \mathfrak{B}(\mathcal{H})$

 $\mathcal{A}(o)$ is the vN-algebra generated by all the observables measurable within o

- isotony : $o_1 \subseteq o_2 \Rightarrow \mathcal{A}(o_1) \subseteq \mathcal{A}(o_2)$
- causality: $o_1 \perp o_2 \Rightarrow [\mathcal{A}(o_1), \mathcal{A}(o_2)] = 0$
- Borchers property: if E is a projection of A(o), then E ~ 1 in A(õ) for any õ with o ⊂⊂ õ.
- punctured Haag duality: the restriction of *A* to K_x satisfies Haag duality for any x ∈ M, where K_x := {o ∈ K | cl(o) ∈ x[⊥]} (causal puncture),
- Haag duality: $\mathcal{A}(o) = \mathcal{A}(o^{\perp})'$ for any $o \in K$.

Cohomology of a pose

Net cohomology and superselection sectors

Commen

Conclusion

The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The observable net in a reference representation is the correspondence

 $\mathscr{A}: K \ni o \to \mathcal{A}(o) \subseteq \mathfrak{B}(\mathcal{H})$

 $\mathcal{A}(o)$ is the vN-algebra generated by all the observables measurable within o

- isotony : $o_1 \subseteq o_2 \Rightarrow \mathcal{A}(o_1) \subseteq \mathcal{A}(o_2)$
- causality: $o_1 \perp o_2 \Rightarrow [\mathcal{A}(o_1), \mathcal{A}(o_2)] = 0$
- Borchers property: if E is a projection of A(o), then E ~ 1 in A(õ) for any õ with o ⊂⊂ õ.
- punctured Haag duality: the restriction of *A* to K_x satisfies Haag duality for any x ∈ M, where K_x := {o ∈ K | cl(o) ∈ x[⊥]} (causal puncture),
- Haag duality: $\mathcal{A}(o) = \mathcal{A}(o^{\perp})'$ for any $o \in K$.

Cohomology of a pose

Comme

Conclusion

The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The observable net in a reference representation is the correspondence

 $\mathscr{A}: K \ni o \to \mathcal{A}(o) \subseteq \mathfrak{B}(\mathcal{H})$

 $\mathcal{A}(o)$ is the vN-algebra generated by all the observables measurable within o

- isotony : $o_1 \subseteq o_2 \Rightarrow \mathcal{A}(o_1) \subseteq \mathcal{A}(o_2)$
- causality: $o_1 \perp o_2 \Rightarrow [\mathcal{A}(o_1), \mathcal{A}(o_2)] = 0$
- Borchers property: if E is a projection of A(o), then E ~ 1 in A(õ) for any õ with o ⊂⊂ õ.
- punctured Haag duality: the restriction of *A* to K_x satisfies Haag duality for any x ∈ M, where K_x := {o ∈ K | cl(o) ∈ x[⊥]} (causal puncture),
- Haag duality: $\mathcal{A}(o) = \mathcal{A}(o^{\perp})'$ for any $o \in K$.

Cohomology of a pose

Comme

Conclusion

The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The observable net in a reference representation is the correspondence

 $\mathscr{A}: K \ni o \to \mathcal{A}(o) \subseteq \mathfrak{B}(\mathcal{H})$

 $\mathcal{A}(o)$ is the vN-algebra generated by all the observables measurable within o

- isotony : $o_1 \subseteq o_2 \Rightarrow \mathcal{A}(o_1) \subseteq \mathcal{A}(o_2)$
- causality: $o_1 \perp o_2 \Rightarrow [\mathcal{A}(o_1), \mathcal{A}(o_2)] = 0$
- Borchers property: if E is a projection of A(o), then E ~ 1 in A(õ) for any õ with o ⊂⊂ õ.
- punctured Haag duality: the restriction of *A* to K_x satisfies Haag duality for any x ∈ M, where K_x := {o ∈ K | cl(o) ∈ x[⊥]} (causal puncture),
- Haag duality: $\mathcal{A}(o) = \mathcal{A}(o^{\perp})'$ for any $o \in K$.

Cohomology of a pose

Comments

Conclusion

The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The observable net in a reference representation is the correspondence

 $\mathscr{A}: K \ni o \to \mathcal{A}(o) \subseteq \mathfrak{B}(\mathcal{H})$

 $\mathcal{A}(o)$ is the vN-algebra generated by all the observables measurable within o

- isotony : $o_1 \subseteq o_2 \Rightarrow \mathcal{A}(o_1) \subseteq \mathcal{A}(o_2)$
- causality: $o_1 \perp o_2 \Rightarrow [\mathcal{A}(o_1), \mathcal{A}(o_2)] = 0$
- Borchers property: if E is a projection of A(o), then E ~ 1 in A(õ) for any õ with o ⊂⊂ õ.
- punctured Haag duality: the restriction of *A* to K_x satisfies Haag duality for any x ∈ M, where K_x := {o ∈ K | cl(o) ∈ x[⊥]} (causal puncture),
- Haag duality: $\mathcal{A}(o) = \mathcal{A}(o^{\perp})'$ for any $o \in K$.

Cohomology of a pose

Comme

Conclusion

The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The observable net in a reference representation is the correspondence

 $\mathscr{A}: K \ni o \to \mathcal{A}(o) \subseteq \mathfrak{B}(\mathcal{H})$

 $\mathcal{A}(o)$ is the vN-algebra generated by all the observables measurable within o

- isotony : $o_1 \subseteq o_2 \Rightarrow \mathcal{A}(o_1) \subseteq \mathcal{A}(o_2)$
- causality: $o_1 \perp o_2 \Rightarrow [\mathcal{A}(o_1), \mathcal{A}(o_2)] = 0$
- Borchers property: if E is a projection of A(o), then E ~ 1 in A(õ) for any õ with o ⊂⊂ õ.
- punctured Haag duality: the restriction of *A* to K_x satisfies Haag duality for any x ∈ M, where K_x := {o ∈ K | cl(o) ∈ x[⊥]} (causal puncture),
- Haag duality: $\mathcal{A}(o) = \mathcal{A}(o^{\perp})'$ for any $o \in K$.

Cohomology of a pose

Comme

Conclusion

The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The observable net in a reference representation is the correspondence

 $\mathscr{A}: K \ni o \to \mathcal{A}(o) \subseteq \mathfrak{B}(\mathcal{H})$

 $\mathcal{A}(o)$ is the vN-algebra generated by all the observables measurable within o

- isotony : $o_1 \subseteq o_2 \Rightarrow \mathcal{A}(o_1) \subseteq \mathcal{A}(o_2)$
- causality: $o_1 \perp o_2 \Rightarrow [\mathcal{A}(o_1), \mathcal{A}(o_2)] = 0$
- Borchers property: if E is a projection of A(o), then E ~ 1 in A(õ) for any õ with o ⊂⊂ õ.
- punctured Haag duality: the restriction of A to K_x satisfies Haag duality for any x ∈ M, where K_x := {o ∈ K | cl(o) ∈ x[⊥]} (causal puncture),
- Haag duality: $\mathcal{A}(o) = \mathcal{A}(o^{\perp})'$ for any $o \in K$.

Cohomology of a pose

Comme

Conclusion

The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The observable net in a reference representation is the correspondence

 $\mathscr{A}: K \ni o \to \mathcal{A}(o) \subseteq \mathfrak{B}(\mathcal{H})$

 $\mathcal{A}(o)$ is the vN-algebra generated by all the observables measurable within o

- isotony : $o_1 \subseteq o_2 \Rightarrow \mathcal{A}(o_1) \subseteq \mathcal{A}(o_2)$
- causality: $o_1 \perp o_2 \Rightarrow [\mathcal{A}(o_1), \mathcal{A}(o_2)] = 0$
- Borchers property: if E is a projection of A(o), then E ~ 1 in A(õ) for any õ with o ⊂⊂ õ.
- punctured Haag duality: the restriction of *A* to K_x satisfies Haag duality for any x ∈ M, where K_x := {o ∈ K | cl(o) ∈ x[⊥]} (causal puncture),
- Haag duality: $\mathcal{A}(o) = \mathcal{A}(o^{\perp})'$ for any $o \in K$.

oduction	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
	9000	0000000		
ne observa	idie net			

Difference with respect to Minkowski spacetime

In general \mathscr{A} is not a net: K is not upward directed when either M is multiply connected or M has compact Cauchy surfaces.

Examples of multiply connected spacetimes arises in cosmology: Friedmann-Lamâitre models.

A 1-cocycle z of $Z^1(K,\mathfrak{B}(\mathcal{H}))$ takes values in the observable net \mathscr{A} if $z(b)\in\mathcal{A}(|b|)\ ,\ b\in\Sigma_1$.

1-cocycles taking values in \mathscr{A} define a C^* -category $Z^1(K, \mathscr{A})$.

 $Z_{DHR}^1(K, \mathscr{A})$ is the full subcategory of $Z^1(K, \mathscr{A})$ whose objects define trivial representations of the fundamental group of M.

The observable net

Cohomology of a poset

Net cohomology and superselection sectors OOOOOOOO

rs Commen

Conclusion

Difference with respect to Minkowski spacetime

In general \mathscr{A} is not a net: K is not upward directed when either M is multiply connected or M has compact Cauchy surfaces.

Examples of multiply connected spacetimes arises in cosmology: Friedmann-Lamâitre models.

A 1-cocycle z of $Z^1(K,\mathfrak{B}(\mathcal{H}))$ takes values in the observable net \mathscr{A} if $z(b)\in\mathcal{A}(|b|)\;,\;b\in\Sigma_1$.

1-cocycles taking values in \mathscr{A} define a C^* -category $Z^1(\mathcal{K}, \mathscr{A})$.

 $Z_{DHR}^1(K, \mathscr{A})$ is the full subcategory of $Z^1(K, \mathscr{A})$ whose objects define trivial representations of the fundamental group of M.

The observable net

Difference with respect to Minkowski spacetime

In general \mathscr{A} is not a net: K is not upward directed when either M is multiply connected or M has compact Cauchy surfaces.

Examples of multiply connected spacetimes arises in cosmology: Friedmann-Lamâitre models.

A 1-cocycle z of $Z^1(K,\mathfrak{B}(\mathcal{H}))$ takes values in the observable net \mathscr{A} if $z(b)\in\mathcal{A}(|b|)\;,\;b\in\Sigma_1$.

1-cocycles taking values in \mathscr{A} define a C^* -category $Z^1(\mathcal{K}, \mathscr{A})$.

 $Z_{DHR}^{1}(K, \mathscr{A})$ is the full subcategory of $Z^{1}(K, \mathscr{A})$ whose objects define trivial representations of the fundamental group of M.

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
	0000	0000000		
I ne progra	am			

• The existence of a charge structure in $Z^1(K, \mathscr{A})$.

[Guido, Longo, Roberts & Verch '01] [Roberts '03] [R. '05].

- $Z^1(K, \mathscr{A})$ defines new superselection sectors of \mathscr{A} .
- Show the topological content of $Z^1(K, \mathscr{A})$.
- Physical interpretation.

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
The progra	am	0000000		

• The existence of a charge structure in $Z^1(K, \mathscr{A})$.

[Guido, Longo, Roberts & Verch '01] [Roberts '03] [R. '05].

- $Z^1(K, \mathscr{A})$ defines new superselection sectors of \mathscr{A} .
- Show the topological content of $Z^1(K, \mathscr{A})$.
- Physical interpretation.

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
The prog	ram	0000000		

• The existence of a charge structure in $Z^1(K, \mathscr{A})$.

[Guido, Longo, Roberts & Verch '01] [Roberts '03] [R. '05].

- $Z^1(\mathcal{K}, \mathscr{A})$ defines new superselection sectors of \mathscr{A} .
- Show the topological content of $Z^1(K, \mathscr{A})$.
- Physical interpretation.

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
The program	m	0000000		

• The existence of a charge structure in $Z^1(K, \mathscr{A})$.

[Guido, Longo, Roberts & Verch '01] [Roberts '03] [R. '05].

- $Z^1(K, \mathscr{A})$ defines new superselection sectors of \mathscr{A} .
- Show the topological content of $Z^1(K, \mathscr{A})$.
- Physical interpretation.

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
	0000	0000000		
i ne progr	am			

- The existence of a charge structure in Z¹(K, A).
 [Guido, Longo, Roberts & Verch '01]
 [Roberts '03]
 [R. '05].
- $Z^1(K, \mathscr{A})$ defines new superselection sectors of \mathscr{A} .
- Show the topological content of $Z^1(K, \mathscr{A})$.
- Physical interpretation.

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
	0000	0000000		
i ne progr	am			

- The existence of a charge structure in Z¹(K, A).
 [Guido, Longo, Roberts & Verch '01]
 [Roberts '03]
 [R. '05].
- $Z^1(K, \mathscr{A})$ defines new superselection sectors of \mathscr{A} .
- Show the topological content of $Z^1(K, \mathscr{A})$.
- Physical interpretation.

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
The charge	ocoo ctructuro	000000		
The charge	Structure			

Theorem

- $Z^1(K, \mathscr{A})$ is a symmetric tensor C^* -category with conjugation.
- $Z^1_{DHR}(K, \mathscr{A})$ is closed under all operations.
- The inclusion Z¹_{DHR}(K, 𝒜) → Z¹(K, 𝒜) is a full faithful symmetric tensor functor.

Charge structure

 \otimes tensor product ε permutation symmetry $z \leftrightarrow \overline{z}$ conjugation charge composition statistics charge-anticharge symmetry

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Two invariants (charge quantum numbers) classify statistics statistical phase $\kappa \in \{1, -1\}$ (Bose/Fermi) statistical dimension $d \in \mathbb{N}$ (order of statistics)

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
The charge	0000	000000		
The charge	structure			

Theorem

- $Z^1(K, \mathscr{A})$ is a symmetric tensor C^* -category with conjugation.
- $Z^1_{DHR}(K, \mathscr{A})$ is closed under all operations.
- The inclusion Z¹_{DHR}(K, 𝒜) → Z¹(K, 𝒜) is a full faithful symmetric tensor functor.

Charge structure

- \otimes tensor product ε permutation symmetry
- $z \leftrightarrow \overline{z}$ conjugation

charge composition statistics charge-anticharge symmetry

Two invariants (charge quantum numbers) classify statisticsstatistical phase $\kappa \in \{1, -1\}$ (Bose/Fermi)statistical dimension $d \in \mathbb{N}$ (order of statistics)
	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
The charge	0000	000000		
The charge	structure			

Theorem

- $Z^1(K, \mathscr{A})$ is a symmetric tensor C^* -category with conjugation.
- $Z^1_{DHR}(K, \mathscr{A})$ is closed under all operations.
- The inclusion Z¹_{DHR}(K, 𝒜) → Z¹(K, 𝒜) is a full faithful symmetric tensor functor.

Charge structure

- \otimes tensor product ε permutation symmetry
- $z \leftrightarrow \overline{z}$ conjugation

charge composition statistics charge-anticharge symmetry

 $\begin{array}{ll} \mbox{Two invariants (charge quantum numbers) classify statistics}\\ \mbox{statistical phase } \kappa \in \{1,-1\} & (Bose/Fermi) \\ \mbox{statistical dimension } d \in \mathbb{N} & (order of statistics) \end{array}$

Cohomology of a poset

Net cohomology and superselection sectors

s Comme

Conclusion

The charge structure

- Proceed like in differential geometry.
 - The set of causal punctures ∪_{x∈M}K_x is a covering of K. The problem has a local solution: the category Z¹(K_x, A) has a charge structure.
 - Restrict $\mathrm{Z}^1(K,\mathscr{A}) \ni z \to z \upharpoonright K_x \in \mathrm{Z}^1(K_x,\mathscr{A})$ for any $x \in M$.
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.
- Charge structure on K_x exists because DHR-like endomorphisms for the net A ↾ K_x corresponds to 1-cocycles of Z¹(K_x, A): endomorphisms of the algebra A(K_x) := C*{A(o) | o ∈ K_x} localized and transportable in K_x.
 In general K_x is not directed, so how is it possible ?
 - The point x is for K_x "spacelike infinite": let $\mathcal{O}(x) := \{ o \in K \mid x \in o \}$, for any $o \in K_x$ there is $a \in \mathcal{O}(x)$ s.t. $a \perp o$.
 - Consider the presheaf O(x) ∋ o → A(o)'. O(x)is downward directed. Then A(K_x) = C* − lim_{o∈O(x)} A(o)'.
 - Using this, the spacelike infinite x and punctured Haag duality DHR-endomrphisms are defined using the presheaf.

The charge structure

- Proceed like in differential geometry.
 - The set of causal punctures ∪_{x∈M}K_x is a covering of K. The problem has a local solution: the category Z¹(K_x, A) has a charge structure.
 - Restrict $\mathrm{Z}^1(K,\mathscr{A})
 i z \to z \upharpoonright K_x \in \mathrm{Z}^1(K_x,\mathscr{A})$ for any $x \in M$
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.
- Charge structure on K_x exists because DHR-like endomorphisms for the net A ↾ K_x corresponds to 1-cocycles of Z¹(K_x, A): endomorphisms of the algebra A(K_x) := C*{A(o) | o ∈ K_x} localized and transportable in K_x.
 In general K_x is not directed, so how is it possible ?
 - The point x is for K_x "spacelike infinite": let $\mathcal{O}(x) := \{o \in K \mid x \in o\}$, for any $o \in K_x$ there is $a \in \mathcal{O}(x)$ s.t. $a \perp o$.
 - Consider the presheaf O(x) ∋ o → A(o)'. O(x)is downward directed. Then A(K_x) = C^{*} − lim_{e∈O(x)} A(o)'.
 - Using this, the spacelike infinite x and punctured Haag duality DHR-endomrphisms are defined using the presheaf.

The charge structure

- Proceed like in differential geometry.
 - The set of causal punctures ∪_{x∈M}K_x is a covering of K. The problem has a local solution: the category Z¹(K_x, A) has a charge structure.
 - Restrict $Z^1(K, \mathscr{A}) \ni z \to z \upharpoonright K_x \in Z^1(K_x, \mathscr{A})$ for any $x \in M$.
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.
- Charge structure on K_x exists because DHR-like endomorphisms for the net A ↾ K_x corresponds to 1-cocycles of Z¹(K_x, A): endomorphisms of the algebra A(K_x) := C*{A(o) | o ∈ K_x} localized and transportable in K_x.
 In general K_x is not directed, so how is it possible ?
 - The point x is for K_x "spacelike infinite": let $\mathcal{O}(x) := \{o \in K \mid x \in o\}$, for any $o \in K_x$ there is $a \in \mathcal{O}(x)$ s.t. $a \perp o$.
 - Consider the presheaf O(x) ∋ o → A(o)'. O(x)is downward directed. Then A(K_x) = C* − lim_{o∈O(x)} A(o)'.
 - Using this, the spacelike infinite x and punctured Haag duality DHR-endomrphisms are defined using the presheaf.

Cohomology of a pose

Net cohomology and superselection sectors

on sectors Co

ts

Conclusion

The charge structure

- Proceed like in differential geometry.
 - The set of causal punctures ∪_{x∈M}K_x is a covering of K. The problem has a local solution: the category Z¹(K_x, A) has a charge structure.
 - Restrict $Z^1(K, \mathscr{A}) \ni z \to z \upharpoonright K_x \in Z^1(K_x, \mathscr{A})$ for any $x \in M$.
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.
- Charge structure on K_x exists because DHR-like endomorphisms for the net A ↾ K_x corresponds to 1-cocycles of Z¹(K_x, A): endomorphisms of the algebra A(K_x) := C*{A(o) | o ∈ K_x} localized and transportable in K_x.
 In general K_x is not directed, so how is it possible ?
 - The point x is for K_x "spacelike infinite": let $\mathcal{O}(x) := \{ o \in K \mid x \in o \}$, for any $o \in K_x$ there is $a \in \mathcal{O}(x)$ s.t. $a \perp o$.
 - Consider the presheaf O(x) ∋ o → A(o)'. O(x) is downward directed. Then A(K_x) = C* − lim_{o∈O(x)} A(o)'.
 - Using this, the spacelike infinite x and punctured Haag duality DHR-endomrphisms are defined using the presheaf.

Cohomology of a poset

Net cohomology and superselection sectors

ectors Cor

ents

Conclusion

The charge structure

- Proceed like in differential geometry.
 - The set of causal punctures ∪_{x∈M}K_x is a covering of K. The problem has a local solution: the category Z¹(K_x, A) has a charge structure.
 - Restrict $\mathrm{Z}^1(K,\mathscr{A})
 i z
 ightarrow z \upharpoonright K_x \in \mathrm{Z}^1(K_x,\mathscr{A})$ for any $x \in M$.
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.
- Charge structure on K_x exists because DHR-like endomorphisms for the net A ↾ K_x corresponds to 1-cocycles of Z¹(K_x, A): endomorphisms of the algebra A(K_x) := C*{A(o) | o ∈ K_x} localized and transportable in K_x.
 In general K_x is not directed, so how is it possible ?
 - The point x is for K_x "spacelike infinite": let $\mathcal{O}(x) := \{ o \in K \mid x \in o \}$, for any $o \in K_x$ there is $a \in \mathcal{O}(x)$ s.t. $a \perp o$.
 - Consider the presheaf O(x) ∋ o → A(o)'. O(x)is downward directed. Then A(K_x) = C^{*} − lim_{o∈O(x)} A(o)'.
 - Using this, the spacelike infinite x and punctured Haag duality DHR-endomrphisms are defined using the presheaf.

Cohomology of a poset

Net cohomology and superselection sectors

etors Corr

ts

Conclusion

The charge structure

- Proceed like in differential geometry.
 - The set of causal punctures ∪_{x∈M}K_x is a covering of K. The problem has a local solution: the category Z¹(K_x, A) has a charge structure.
 - Restrict $\mathrm{Z}^1(K,\mathscr{A})
 i z o z\restriction K_x\in\mathrm{Z}^1(K_x,\mathscr{A})$ for any $x\in M$.
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.
- Charge structure on K_x exists because DHR-like endomorphisms for the net A ↾ K_x corresponds to 1-cocycles of Z¹(K_x, A): endomorphisms of the algebra A(K_x) := C*{A(o) | o ∈ K_x} localized and transportable in K_x.
 In general K_x is not directed, so how is it possible ?
 - The point x is for K_x "spacelike infinite": let $\mathcal{O}(x) := \{ o \in K \mid x \in o \}$, for any $o \in K_x$ there is $a \in \mathcal{O}(x)$ s.t. $a \perp o$.
 - Consider the presheaf O(x) ∋ o → A(o)'. O(x)is downward directed. Then A(K_x) = C^{*} − lim_{o∈O(x)} A(o)'.
 - Using this, the spacelike infinite x and punctured Haag duality DHR-endomrphisms are defined using the presheaf.

Cohomology of a poset

Net cohomology and superselection sectors

etors Corr

Conclusion

The charge structure

- Proceed like in differential geometry.
 - The set of causal punctures ∪_{x∈M}K_x is a covering of K. The problem has a local solution: the category Z¹(K_x, A) has a charge structure.
 - Restrict $\mathrm{Z}^1(K,\mathscr{A})
 i z
 ightarrow z \upharpoonright K_x \in \mathrm{Z}^1(K_x,\mathscr{A})$ for any $x \in M$.
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.
- Charge structure on K_x exists because DHR-like endomorphisms for the net A ↾ K_x corresponds to 1-cocycles of Z¹(K_x, A): endomorphisms of the algebra A(K_x) := C*{A(o) | o ∈ K_x} localized and transportable in K_x.
 In general K_x is not directed, so how is it possible ?
 - The point x is for K_x "spacelike infinite": let $\mathcal{O}(x) := \{ o \in K \mid x \in o \}$, for any $o \in K_x$ there is $a \in \mathcal{O}(x)$ s.t. $a \perp o$.
 - Consider the presheaf O(x) ∋ o → A(o)'. O(x)is downward directed. Then A(K_x) = C^{*} − lim_{o∈O(x)} A(o)'.
 - Using this, the spacelike infinite x and punctured Haag duality DHR-endomrphisms are defined using the presheaf.

Cohomology of a poset

Net cohomology and superselection sectors

ectors Cor

ents

Conclusion

The charge structure

- Proceed like in differential geometry.
 - The set of causal punctures ∪_{x∈M}K_x is a covering of K. The problem has a local solution: the category Z¹(K_x, A) has a charge structure.
 - Restrict $\mathrm{Z}^1(K,\mathscr{A})
 i z o z\restriction K_x\in\mathrm{Z}^1(K_x,\mathscr{A})$ for any $x\in M$.
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.
- Charge structure on K_x exists because DHR-like endomorphisms for the net A ↾ K_x corresponds to 1-cocycles of Z¹(K_x, A): endomorphisms of the algebra A(K_x) := C*{A(o) | o ∈ K_x} localized and transportable in K_x.
 In general K_x is not directed, so how is it possible ?
 - The point x is for K_x "spacelike infinite": let $\mathcal{O}(x) := \{ o \in K \mid x \in o \}$, for any $o \in K_x$ there is $a \in \mathcal{O}(x)$ s.t. $a \perp o$.
 - Consider the presheaf O(x) ∋ o → A(o)'. O(x)is downward directed. Then A(K_x) = C^{*} − lim_{o∈O(x)} A(o)'.
 - Using this, the spacelike infinite x and punctured Haag duality DHR-endomrphisms are defined using the presheaf.

Conclusion

A new quantum number

For any irreducible 1-cocycle z the group von Neumann algebra

$$R_z(\pi_1(M), o) := \{z(p) | p : o \to o\}''$$

is a factor of type I_n with $n \leq d(z)$.

Definition

The topological dimension $\tau(z)$ of an irr. 1-cocycle z is the dimension of $R_z(\pi_1(M), o)$.

- $\tau(z)$ is an *invariant* of the equivalence class [z]
- $\tau(z)$ is smaller than d(z)
- stability under conjugation: $\tau(z) = \tau(\overline{z})$.

The representation R_z of $\pi_1(M)$ satisfies

 $R_z \cong 1 \otimes \sigma$

where σ is an irreducible $\tau(z)$ -dimensional representation of $\pi_1(M)$.

ors Com

Conclusion

A new quantum number

For any irreducible 1-cocycle z the group von Neumann algebra

$$R_z(\pi_1(M), o) := \{z(p) \,|\, p : o \to o\}''$$

is a factor of type I_n with $n \leq d(z)$.

Definition

The topological dimension $\tau(z)$ of an irr. 1-cocycle z is the dimension of $R_z(\pi_1(M), o)$.

- $\tau(z)$ is an *invariant* of the equivalence class [z]
- $\tau(z)$ is smaller than d(z)
- stability under conjugation: $\tau(z) = \tau(\overline{z})$.

The representation R_z of $\pi_1(M)$ satisfies

 $R_z \cong 1 \otimes \sigma$

where σ is an irreducible $\tau(z)$ -dimensional representation of $\pi_1(M)$.

tors Com

Conclusion

A new quantum number

For any irreducible 1-cocycle z the group von Neumann algebra

$$R_z(\pi_1(M), o) := \{z(p) \,|\, p : o \to o\}''$$

is a factor of type I_n with $n \leq d(z)$.

Definition

The topological dimension $\tau(z)$ of an irr. 1-cocycle z is the dimension of $R_z(\pi_1(M), o)$.

- $\tau(z)$ is an *invariant* of the equivalence class [z]
- $\tau(z)$ is smaller than d(z)
- stability under conjugation: $\tau(z) = \tau(\overline{z})$.

The representation R_z of $\pi_1(M)$ satisfies

$$R_z \cong 1 \otimes \sigma$$

where σ is an irreducible $\tau(z)$ -dimensional representation of $\pi_1(M)$.

• a loop $\ell_b: o \to o$ defined as $\ell_b := \bar{p}_{(\partial_0 b, o)} * b * p_{(\partial_1 b, o)}$;

• a path $p_b : \partial_1 b \to \partial_0 b$ defined as $p_b := p_{(\partial_0 b, o)} * \bar{p}_{(\partial_1 b, o)}$.

The topological component of $z: \chi_z(\mathbf{b}) := \mathsf{z}(\ell_{\mathbf{b}}), \quad \mathbf{b} \in \mathbf{\Sigma}_1.$

- $\chi_z \in \mathrm{Z}^1(K,\mathcal{A}(o))$ (no charge content)
- z and χ_z define equivalent repr.s of $\pi_1(M)$

The charge component of z: $\langle z \rangle(b) := z(p_b)$, $b \in \Sigma_1$.

- $\langle z
 angle \in {
 m Z}^1_{_{DHR}}(K,\mathscr{A})$ (no topological content).
- (z) have the same statistical phase and the same statistical dimension as z:

$$\mathrm{Z}^{1}(K,\mathscr{A}) \ni z \ \rightarrow \ \langle z \rangle \in \mathrm{Z}^{1}_{_{DHR}}(K,\mathscr{A})$$

• a loop $\ell_b: o \to o$ defined as $\ell_b := \bar{p}_{(\partial_0 b, o)} * b * p_{(\partial_1 b, o)}$;

• a path $p_b : \partial_1 b \to \partial_0 b$ defined as $p_b := p_{(\partial_0 b, o)} * \bar{p}_{(\partial_1 b, o)}$.

The topological component of z: $\chi_z(\mathbf{b}) := z(\ell_b)$, $\mathbf{b} \in \mathbf{\Sigma}_1$.

- $\chi_z \in \mathrm{Z}^1(K,\mathcal{A}(o))$ (no charge content)
- z and χ_z define equivalent repr.s of $\pi_1(M)$

The charge component of z: $\langle z \rangle(b) := z(p_b)$, $b \in \Sigma_1$.

- $\langle z
 angle \in {
 m Z}^1_{_{DHR}}(K,\mathscr{A})$ (no topological content).
- (z) have the same statistical phase and the same statistical dimension as z:

$$\mathrm{Z}^{1}(K,\mathscr{A}) \ni z \ \rightarrow \ \langle z \rangle \in \mathrm{Z}^{1}_{_{DHR}}(K,\mathscr{A})$$

Fix $o \in \Sigma_0$, the pole, and choose a path frame

 $P_o := \{p_{(a,o)} : o \to a \, | \, a \in \Sigma_0\}.$ Associate two paths to any 1-simplex *b*:

- a loop $\ell_b: o \to o$ defined as $\ell_b := \bar{p}_{(\partial_0 b, o)} * b * p_{(\partial_1 b, o)}$;
- a path $p_b: \partial_1 b \to \partial_0 b$ defined as $p_b:=p_{(\partial_0 b,o)}*\bar{p}_{(\partial_1 b,o)}$.

The topological component of $z: \chi_z(\mathbf{b}) := \mathsf{z}(\ell_{\mathbf{b}}) \;, \;\; \mathbf{b} \in \mathbf{\Sigma}_1.$

- $\chi_z \in \mathrm{Z}^1(K,\mathcal{A}(o))$ (no charge content)
- z and χ_z define equivalent repr.s of $\pi_1(M)$

The charge component of z: $\langle z \rangle(b) := z(p_b)$, $b \in \Sigma_1$.

- $\langle z
 angle \in {
 m Z}^1_{_{DHR}}(K,\mathscr{A})$ (no topological content).
- (z) have the same statistical phase and the same statistical dimension as z:

$$\mathrm{Z}^{1}(K,\mathscr{A}) \ni z \ \rightarrow \ \langle z \rangle \in \mathrm{Z}^{1}_{_{DHR}}(K,\mathscr{A})$$

- a loop $\ell_b: o \to o$ defined as $\ell_b := \overline{p}_{(\partial_0 b, o)} * b * p_{(\partial_1 b, o)}$;
- a path $p_b : \partial_1 b \to \partial_0 b$ defined as $p_b := p_{(\partial_0 b, o)} * \bar{p}_{(\partial_1 b, o)}$.

The topological component of $z: \chi_z(\mathbf{b}) := z(\ell_{\mathbf{b}}), \quad \mathbf{b} \in \Sigma_1.$

- $\chi_z \in \mathbb{Z}^1(K, \mathcal{A}(o))$ (no charge content)
- z and χ_z define equivalent repr.s of $\pi_1(M)$

The charge component of z: $\langle z \rangle(b) := z(p_b)$, $b \in \Sigma_1$.

- $\langle z
 angle \in {
 m Z}^1_{_{DHR}}(K,\mathscr{A})$ (no topological content).
- (z) have the same statistical phase and the same statistical dimension as z:

$$\mathbb{Z}^{1}(K,\mathscr{A}) \ni z \to \langle z \rangle \in \mathbb{Z}^{1}_{_{DHR}}(K,\mathscr{A})$$

- a loop $\ell_b: o \to o$ defined as $\ell_b := \overline{p}_{(\partial_0 b, o)} * b * p_{(\partial_1 b, o)}$;
- a path $p_b : \partial_1 b \to \partial_0 b$ defined as $p_b := p_{(\partial_0 b, o)} * \bar{p}_{(\partial_1 b, o)}$.

The topological component of $z: \chi_z(\mathbf{b}) := z(\ell_{\mathbf{b}}), \quad \mathbf{b} \in \Sigma_1.$

- $\chi_z \in \mathrm{Z}^1(\mathcal{K},\mathcal{A}(o))$ (no charge content)
- z and χ_z define equivalent repr.s of $\pi_1(M)$

The charge component of z: $\langle z \rangle(b) := z(p_b)$, $b \in \Sigma_1$.

- $\langle z
 angle \in {
 m Z}^1_{_{DHR}}(K,\mathscr{A})$ (no topological content).
- (z) have the same statistical phase and the same statistical dimension as z:

$$\mathrm{Z}^{1}(K,\mathscr{A}) \ni z \ \rightarrow \ \langle z \rangle \in \mathrm{Z}^{1}_{_{DHR}}(K,\mathscr{A})$$

- a loop $\ell_b: o \to o$ defined as $\ell_b := \overline{p}_{(\partial_0 b, o)} * b * p_{(\partial_1 b, o)}$;
- a path $p_b : \partial_1 b \to \partial_0 b$ defined as $p_b := p_{(\partial_0 b, o)} * \bar{p}_{(\partial_1 b, o)}$.

The topological component of $z: \chi_z(\mathbf{b}) := z(\ell_{\mathbf{b}}), \quad \mathbf{b} \in \Sigma_1.$

- $\chi_z \in \mathrm{Z}^1(\mathcal{K},\mathcal{A}(o))$ (no charge content)
- z and χ_z define equivalent repr.s of $\pi_1(M)$

The charge component of z: $\langle z \rangle(b) := z(p_b)$, $b \in \Sigma_1$.

- $\langle z \rangle \in \mathrm{Z}^1_{_{DHR}}(K, \mathscr{A})$ (no topological content).
- (z) have the same statistical phase and the same statistical dimension as z:

$$\mathbb{Z}^{1}(K,\mathscr{A}) \ni z \ \rightarrow \ \langle z \rangle \in \mathbb{Z}^{1}_{_{DHR}}(K,\mathscr{A})$$

Fix $o \in \Sigma_0$, the pole, and choose a path frame $P_o := \{p_{(a,o)} : o \to a \mid a \in \Sigma_0\}$. Associate two paths to any 1-simplex *b*: • a loop $\ell_b : o \to o$ defined as $\ell_b := \overline{p}_{(\partial_0 b, o)} * b * p_{(\partial_1 b, o)}$;

• a path $p_b: \partial_1 b \to \partial_0 b$ defined as $p_b:=p_{(\partial_0 b,o)}*\bar{p}_{(\partial_1 b,o)}$.

The topological component of z: $\chi_z(\mathbf{b}) := z(\ell_b)$, $\mathbf{b} \in \Sigma_1$.

- $\chi_z \in \mathrm{Z}^1(\mathcal{K}, \mathcal{A}(o))$ (no charge content)
- z and χ_z define equivalent repr.s of $\pi_1(M)$

The charge component of z: $\langle z \rangle(b) := z(p_b)$, $b \in \Sigma_1$.

- $\langle z \rangle \in \mathbb{Z}^1_{_{DHR}}(K, \mathscr{A})$ (no topological content).
- $\langle z \rangle$ have the same statistical phase and the same statistical dimension as z:

$$\mathbb{Z}^{1}(K,\mathscr{A}) \ni z \rightarrow \langle z \rangle \in \mathbb{Z}^{1}_{_{DHR}}(K,\mathscr{A})$$

Fix $o \in \Sigma_0$, the pole, and choose a path frame $P_o := \{p_{(a,o)} : o \to a \mid a \in \Sigma_0\}$. Associate two paths to any 1-simplex *b*: • a loop $\ell_b : o \to o$ defined as $\ell_b := \overline{p}_{(\partial_0 b, o)} * b * p_{(\partial_1 b, o)}$;

• a path $p_b: \partial_1 b \to \partial_0 b$ defined as $p_b:=p_{(\partial_0 b,o)}*\bar{p}_{(\partial_1 b,o)}$.

The topological component of z: $\chi_z(b) := z(\ell_b)$, $b \in \Sigma_1$.

- $\chi_z \in \mathrm{Z}^1(\mathcal{K},\mathcal{A}(o))$ (no charge content)
- z and χ_z define equivalent repr.s of $\pi_1(M)$

The charge component of z: $\langle z \rangle(b) := z(p_b)$, $b \in \Sigma_1$.

- $\langle z \rangle \in \mathrm{Z}^1_{_{DHR}}(K,\mathscr{A})$ (no topological content).
- $\langle z \rangle$ have the same statistical phase and the same statistical dimension as z:

$$\mathbf{Z}^{1}(K,\mathscr{A}) \ni z \rightarrow \langle z \rangle \in \mathbf{Z}^{1}_{_{DHR}}(K,\mathscr{A})$$

- a loop $\ell_b: o \to o$ defined as $\ell_b := \bar{p}_{(\partial_0 b, o)} * b * p_{(\partial_1 b, o)}$;
- a path $p_b: \partial_1 b \to \partial_0 b$ defined as $p_b:=p_{(\partial_0 b,o)} * \bar{p}_{(\partial_1 b,o)}$.

The topological component of z: $\chi_z(\mathbf{b}) := \mathbf{z}(\ell_{\mathbf{b}})$, $\mathbf{b} \in \Sigma_1$.

- $\chi_z \in \mathrm{Z}^1(\mathcal{K},\mathcal{A}(o))$ (no charge content)
- z and χ_z define equivalent repr.s of $\pi_1(M)$

The charge component of z: $\langle z\rangle(b):=z(p_b)\;,\quad b\in\Sigma_1.$

- $\langle z \rangle \in \mathrm{Z}^1_{_{DHR}}(K,\mathscr{A})$ (no topological content).
- $\langle z \rangle$ have the same statistical phase and the same statistical dimension as z:

$$\mathrm{Z}^{1}(K,\mathscr{A}) \ni z \ o \ \langle z \rangle \in \mathrm{Z}^{1}_{{}_{DHR}}(K,\mathscr{A})$$

Theorem

Any 1-cocycle z is a composition $z = \chi_z \bowtie \langle z \rangle$, join, of its topological component and its charge component.

In particular we note

- If z is irreducible and has topological dimension greater than 1, then $\langle z \rangle$ is reducible: $\langle z \rangle = \bigoplus_{i=1}^{n} z_i$, where z_i is an irreducible object of $Z_{DHR}^1(K, \mathscr{A})$ with $\kappa(z_i) = \kappa(z)$. So, any such a charge is a finite collection of DHR-charges glued together by a glue of topological nature.
- If z is irreducible and has topological dimension equals the statistical dimension τ(z) = n = d(z), then ⟨z⟩ ≅ ⊕ⁿ_{i=1} u where d(u) = 1 and κ(u) = κ(z). In this case the charge is formed by n DHR-charges of the same type.

Theorem (Existence)

Conclusion

Splitting charge and topological content

Theorem

Any 1-cocycle z is a composition $z = \chi_z \bowtie \langle z \rangle$, join, of its topological component and its charge component.

In particular we note

- If z is irreducible and has topological dimension greater than 1, then
 (z) is reducible: (z) = ⊕ⁿ_{i=1}z_i, where z_i is an irreducible object of
 Z¹_{DHR}(K, A) with κ(z_i) = κ(z). So, any such a charge is a finite
 collection of DHR-charges glued together by a glue of topological
 nature.
- If z is irreducible and has topological dimension equals the statistical dimension τ(z) = n = d(z), then ⟨z⟩ ≅ ⊕ⁿ_{i=1} u where d(u) = 1 and κ(u) = κ(z). In this case the charge is formed by n DHR-charges of the same type.

Theorem (Existence)

Theorem

Any 1-cocycle z is a composition $z = \chi_z \bowtie \langle z \rangle$, join, of its topological component and its charge component.

In particular we note

- If z is irreducible and has topological dimension greater than 1, then $\langle z \rangle$ is reducible: $\langle z \rangle = \bigoplus_{i=1}^{n} z_i$, where z_i is an irreducible object of $Z_{DHR}^1(K, \mathscr{A})$ with $\kappa(z_i) = \kappa(z)$. So, any such a charge is a finite collection of DHR-charges glued together by a glue of topological nature.
- If z is irreducible and has topological dimension equals the statistical dimension τ(z) = n = d(z), then ⟨z⟩ ≅ ⊕ⁿ_{i=1} u where d(u) = 1 and κ(u) = κ(z). In this case the charge is formed by n DHR-charges of the same type.

Theorem (Existence)

Theorem

Any 1-cocycle z is a composition $z = \chi_z \bowtie \langle z \rangle$, join, of its topological component and its charge component.

In particular we note

- If z is irreducible and has topological dimension greater than 1, then $\langle z \rangle$ is reducible: $\langle z \rangle = \bigoplus_{i=1}^{n} z_i$, where z_i is an irreducible object of $Z_{DHR}^1(K, \mathscr{A})$ with $\kappa(z_i) = \kappa(z)$. So, any such a charge is a finite collection of DHR-charges glued together by a glue of topological nature.
- If z is irreducible and has topological dimension equals the statistical dimension τ(z) = n = d(z), then ⟨z⟩ ≅ ⊕ⁿ_{i=1} u where d(u) = 1 and κ(u) = κ(z). In this case the charge is formed by n DHR-charges of the same type.

Theorem (Existence)

Theorem

Any 1-cocycle z is a composition $z = \chi_z \bowtie \langle z \rangle$, join, of its topological component and its charge component.

In particular we note

- If z is irreducible and has topological dimension greater than 1, then $\langle z \rangle$ is reducible: $\langle z \rangle = \bigoplus_{i=1}^{n} z_i$, where z_i is an irreducible object of $Z^1_{DHR}(K, \mathscr{A})$ with $\kappa(z_i) = \kappa(z)$. So, any such a charge is a finite collection of DHR-charges glued together by a glue of topological nature.
- If z is irreducible and has topological dimension equals the statistical dimension $\tau(z) = n = d(z)$, then $\langle z \rangle \cong \bigoplus_{i=1}^{n} u$ where d(u) = 1 and $\kappa(u) = \kappa(z)$. In this case the charge is formed by *n* DHR-charges of the same type.

Theorem (Existence)

Physical interpretation

- Sharp localization of charge
 - $z \in Z^1(K, \mathscr{A})$, for any $o \in K$ there is a "generalized endomorphism" $\rho^z(o)$ such that

$$\rho^{z}(o) \upharpoonright \mathcal{A}(\hat{o}) = \mathrm{id}, \qquad \hat{o} \perp o$$

Cocycles plays the rôle of charge transporters:

$$z(p) \rho^{z}(o) = \rho^{z}(\tilde{o}) z(p) , \qquad p: o \to \tilde{o}$$

• Analogy with the Aharonov-Bohm effect

• If $q: o \rightarrow \tilde{o}$ is not homotopic to p, then

$$z(p)\rho^{z}(o)\neq z(q)\rho^{z}(o)$$

i.e. the final state depends on the homotopy class of the path. Any 1–cocycle z is a flat connection of a principal bundle over K (Roberts & R. 07):

$$z(p)\rho^{z}(o)$$

is the parallel transport of $\rho^{z}(o)$ along p; $z(\bar{p} * q)$ is the holonomy.

Physical interpretation

- Sharp localization of charge
 - $z \in Z^1(K, \mathscr{A})$, for any $o \in K$ there is a "generalized endomorphism" $\rho^z(o)$ such that

$$\rho^{z}(o) \upharpoonright \mathcal{A}(\hat{o}) = \mathrm{id}, \qquad \hat{o} \perp o$$

Cocycles plays the rôle of charge transporters:

$$z(p) \rho^{z}(o) = \rho^{z}(\tilde{o}) z(p) , \qquad p: o \to \tilde{o}$$

- Analogy with the Aharonov-Bohm effect
 - If $q: o \rightarrow \tilde{o}$ is not homotopic to p, then

$$z(p) \rho^{z}(o) \neq z(q) \rho^{z}(o)$$

i.e. the final state depends on the homotopy class of the path. Any 1-cocycle z is a flat connection of a principal bundle over K (Roberts & R. 07):

$$z(p) \rho^{z}(o)$$

is the parallel transport of $\rho^{z}(o)$ along p; $z(\bar{p} * q)$ is the holonomy.

	Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion
Outling				

Introduction

- Cohomology of a poset
 The simplicial set
 - 1-Cohomology

3 Net cohomology and superselection sectors

- The observable net
- The program
- The charge structure
- A new quantum number
- Splitting charge and topological content
- Physical interpretation

4 Comments

5 Conclusion

Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion

- Example: Massive scalar field in 2-dimension, preprint '08, by Brunetti, Franceschini & Moretti.
- There should be an underlying gauge theory giving rise to the charges ${\rm Z}^1({\cal K},{\mathscr A})$
 - purely topological
 - with a "local" action of the gauge group
- There arises the question whether more general superselection sectors can be discovered by enhancing the analysis of net cohomology: the physical meaning of 2-cohomology, for instance.

Cohomology of a poset 0000	Net cohomology and superselection sectors	Comments	Conclusion

- Example: Massive scalar field in 2-dimension, preprint '08, by Brunetti, Franceschini & Moretti.
- There should be an underlying gauge theory giving rise to the charges ${\rm Z}^1({\cal K},{\mathscr A})$
 - purely topological
 - with a "local" action of the gauge group
- There arises the question whether more general superselection sectors can be discovered by enhancing the analysis of net cohomology: the physical meaning of 2-cohomology, for instance.

Cohomology of a poset 0000	Net cohomology and superselection sectors	Comments	Conclusion

- Example: Massive scalar field in 2-dimension, preprint '08, by Brunetti, Franceschini & Moretti.
- There should be an underlying gauge theory giving rise to the charges ${\rm Z}^1({\cal K},{\mathscr A})$
 - purely topological
 - with a "local" action of the gauge group
- There arises the question whether more general superselection sectors can be discovered by enhancing the analysis of net cohomology: the physical meaning of 2-cohomology, for instance.

Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion

Outline

Introduction

- Cohomology of a poset
 The simplicial set
 - 1-Cohomology

3 Net cohomology and superselection sectors

- The observable net
- The program
- The charge structure
- A new quantum number
- Splitting charge and topological content
- Physical interpretation

4 Comments

5 Conclusion

Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion

(ロ)、(型)、(E)、(E)、 E) の(の)

In conclusion

- Happy
- birthday
- John E. Roberts

Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion

(ロ)、(型)、(E)、(E)、 E) の(の)

In conclusion

- Happy
- birthday
- John E. Roberts

Cohomology of a poset	Net cohomology and superselection sectors	Comments	Conclusion

(ロ)、(型)、(E)、(E)、 E) の(の)

In conclusion

- Happy
- birthday
- John E. Roberts
| Cohomology of a poset | Net cohomology and superselection sectors | Comments | Conclusion |
|-----------------------|---|----------|------------|
| | | | |
| | | | |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In conclusion

- Happy
- birthday
- John E. Roberts