Net cohomology and local charges

Giuseppe Ruzzi

Università Roma “Tor Vergata”

September 22, 2009
Outline

1. Introduction

2. Cohomology of a poset
 - The simplicial set
 - 1-Cohomology

3. Net cohomology and superselection sectors
 - The observable net
 - The program
 - The charge structure
 - A new quantum number
 - Splitting charge and topological content
 - Physical interpretation

4. Comments

5. Conclusion
Net cohomology was introduced by Roberts ’76 as a cohomological (non-Abelian) approach to the theory of superselection sectors. Many deep applications (developed by Roberts):

- Equivalence between net cohomology and DHR-analysis.
- The α-induction.
- Completeness theorem (equivalently non-existence) of DHR-sectors.

In this talk I describe a recent application of net cohomology: the discovered of charged (superselection) sectors in a curved spacetimes which are affected by the topology of the spacetime [Brunetti & R. ’09].
Net cohomology was introduced by Roberts ’76 as a cohomological (non-Abelian) approach to the theory of superselection sectors. Many deep applications (developed by Roberts):

- Equivalence between net cohomology and DHR-analysis.
- The α-induction.
- Completeness theorem (equivalently non-existence) of DHR-sectors.

In this talk I describe a recent application of net cohomology: the discovered of charged (superselection) sectors in a curved spacetimes which are affected by the topology of the spacetime [Brunetti & R. ’09].
Net cohomology was introduced by Roberts ’76 as a cohomological (non-Abelian) approach to the theory of superselection sectors. Many deep applications (developped by Roberts):

- Equivalence between net cohomology and DHR-analysis.
- The α-induction.
- Completeness theorem (equivalently non-existence) of DHR-sectors.

In this talk I describe a recent application of net cohomology: the discovered of charged (superselection) sectors in a curved spacetimes which are affected by the topology of the spacetime [Brunetti & R. ’09].
Outline

1 Introduction

2 Cohomology of a poset
 • The simplicial set
 • 1-Cohomology

3 Net cohomology and superselection sectors
 • The observable net
 • The program
 • The charge structure
 • A new quantum number
 • Splitting charge and topological content
 • Physical interpretation

4 Comments

5 Conclusion
Singular n–simplices are order preserving maps

$$x : \tilde{\Delta}_n \rightarrow K$$

$\tilde{\Delta}_n$ is the standard n–simplex considered as a poset with respect of inclusion of its subsimplices. Σ_n denotes the set of n–simplices and

$$\partial_i : \Sigma_n \rightarrow \Sigma_{n-1} \quad \text{face}, \quad \sigma_i : \Sigma_n \rightarrow \Sigma_{n+1} \quad \text{degeneracy}.$$
The simplicial set

Singular n–simplices are order preserving maps

$$\chi : \tilde{\Delta}_n \to K$$

$\tilde{\Delta}_n$ is the standard n–simplex considered as a poset with respect of inclusion of its subsimplices.

Σ_n denotes the set of n–simplices and

$$\partial_i : \Sigma_n \to \Sigma_{n-1} \quad \text{face}, \quad \sigma_i : \Sigma_n \to \Sigma_{n+1} \quad \text{degeneracy}.$$
The simplicial set

Composing 1–simplices we get paths. A path \(p : o \to \tilde{o} \) is a finite ordered set \(b_n \ast \cdots \ast b_1 \) s.t.

\[
\partial_0 b_n = \tilde{o}, \quad \partial_1 b_{i+1} = \partial_0 b_i, \quad \partial_1 b_1 = o,
\]

\(K \) is **pathwise connected**: for any pair \(o, \tilde{o} \) there is a path \(p : o \to \tilde{o} \).

Homotopy equivalence relation \(\sim \) on paths with the same endpoints.

This leads to first homotopy group \(\pi_1(K, o) \) of \(K \), with base \(o \), and to fundamental group \(\pi_1(K) \) since \(K \) is pathwise connected. \(K \) is simply connected if \(\pi_1(K) \) is trivial.
Composing 1–simplices we get paths. A path \(p : o \rightarrow \tilde{o} \) is a finite ordered set \(b_n \ast \cdots \ast b_1 \) s.t.

\[
\partial_0 b_n = \tilde{o}, \quad \partial_1 b_{i+1} = \partial_0 b_i, \quad \partial_1 b_1 = o,
\]

\(K \) is pathwise connected: for any pair \(o, \tilde{o} \) there is a path \(p : o \rightarrow \tilde{o} \). Homotopy equivalence relation \(\sim \) on paths with the same endpoints.

This leads to first homotopy group \(\pi_1(K, o) \) of \(K \), with base \(o \), and to fundamental group \(\pi_1(K) \) since \(K \) is pathwise connected. \(K \) is simply connected if \(\pi_1(K) \) is trivial.
The simplicial set

The simplicial set K is simply connected if

- either K is upward directed: for any pair o', o'' there is o such that $o', o'' \leq o$,
- or K is dawnward directed, since

$$\pi_1(K) \cong \pi_1(K^\circ)$$

K° is the dual poset of K.

Let K be a base of neighbourhoods of arcwise and simply connected open subsets of a connected topological space M ordered under inclusion.

The fundamental groups of $\pi_1(K)$ and $\pi_1(M)$ are isomorphic.
The simplicial set

K is simply connected if

- either K is upward directed: for any pair o', o'' there is o such that $o', o'' \leq o$,
- or K is dawnward directed, since

$$\pi_1(K) \cong \pi_1(K^\circ)$$

K° is the dual poset of K.

Let K be a base of neighbourhoods of arcwise and simply connected open subsets of a connected topological space M ordered under inclusion.

The fundamental groups of $\pi_1(K)$ and $\pi_1(M)$ are isomorphic.
The simplicial set

K is simply connected if

- either K is upward directed: for any pair o', o'' there is o such that $o', o'' \leq o$,
- or K is dawnward directed, since

$$\pi_1(K) \cong \pi_1(K^\circ)$$

K° is the dual poset of K.

Let K be a base of neighbourhoods of arcwise and simply connected open subsets of a connected topological space M ordered under inclusion.

The fundamental groups of $\pi_1(K)$ and $\pi_1(M)$ are isomorphic.
A 1–cocycle z with values in $\mathcal{B}(\mathcal{H})$ is a field

$$\Sigma_1 \ni b \mapsto z(b) \in \mathcal{B}(\mathcal{H})$$

of unitaries operators satisfying the 1-cocycle equation:

$$z(\partial_0 c) z(\partial_2 c) = z(\partial_1 c) , \quad c \in \Sigma_2$$

$Z^1(K, \mathcal{B}(\mathcal{H}))$ set of 1-cocycles of K taking values in $\mathcal{B}(\mathcal{H})$.

Any 1–cocycle z defines a unitary representation R_z of $\pi_1(K)$:

$$R_z([p]) := z(p) , \quad [p] \in \pi_1(K, o)$$

for some $p : o \to o$ with $p \in [p]$.

Introduction

Cohomology of a poset

Net cohomology and superselection sectors

Comments

Conclusion
A 1–cocycle z with values in $\mathcal{B}(\mathcal{H})$ is a field

$$\Sigma_1 \ni b \mapsto z(b) \in \mathcal{B}(\mathcal{H})$$

of unitaries operators satisfying the 1-cocycle equation:

$$z(\partial_0 c) z(\partial_2 c) = z(\partial_1 c), \quad c \in \Sigma_2$$

$Z^1(K, \mathcal{B}(\mathcal{H}))$ set of 1-cocycles of K taking values in $\mathcal{B}(\mathcal{H})$.

Any 1–cocycle z defines a unitary representation R_z of $\pi_1(K)$:

$$R_z([p]) := z(p), \quad [p] \in \pi_1(K, o)$$

for some $p : o \to o$ with $p \in [p]$.
Outline

1. Introduction
2. Cohomology of a poset
 - The simplicial set
 - 1-Cohomology
3. Net cohomology and superselection sectors
 - The observable net
 - The program
 - The charge structure
 - A new quantum number
 - Splitting charge and topological content
 - Physical interpretation
4. Comments
5. Conclusion
The observable net

\(M \) 4-d globally hyperbolic spacetime. \(K \) is the set of diamonds of \(M \) ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of \(M \).

The observable net in a reference representation is the correspondence

\[\mathcal{A} : K \ni o \rightarrow A(o) \subseteq \mathcal{B}(\mathcal{H}) \]

\(A(o) \) is the vN-algebra generated by all the observables measurable within \(o \)

- **isotony**: \(o_1 \subseteq o_2 \Rightarrow A(o_1) \subseteq A(o_2) \)
- **causality**: \(o_1 \perp o_2 \Rightarrow [A(o_1), A(o_2)] = 0 \)
- **Borchers property**: if \(E \) is a projection of \(A(o) \), then \(E \sim 1 \) in \(A(\tilde{o}) \) for any \(\tilde{o} \) with \(o \subset\subset \tilde{o} \).
- **punctured Haag duality**: the restriction of \(\mathcal{A} \) to \(K_x \) satisfies Haag duality for any \(x \in M \), where \(K_x := \{ o \in K \mid cl(o) \in x^\perp \} \) (causal puncture),
- **Haag duality**: \(A(o) = A(o^\perp)' \) for any \(o \in K \).

Examples: free scalar fields in Hadamard representation: [Verch 97, R. 05]
\textbf{The observable net}

M, 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The \textbf{observable net} in a reference representation is the correspondence

$$\mathcal{A} : K \ni o \rightarrow \mathcal{A}(o) \subseteq \mathfrak{B}(\mathcal{H})$$

$\mathcal{A}(o)$ is the vN-algebra generated by \textit{all} the observables measurable within o

- \textit{isotony}: $o_1 \subseteq o_2 \Rightarrow \mathcal{A}(o_1) \subseteq \mathcal{A}(o_2)$
- \textit{causality}: $o_1 \perp o_2 \Rightarrow [\mathcal{A}(o_1), \mathcal{A}(o_2)] = 0$
- \textit{Borchers property}: if E is a projection of $\mathcal{A}(o)$, then $E \sim 1$ in $\mathcal{A}(\tilde{o})$ for any \tilde{o} with $o \subset \subset \tilde{o}$.
- \textit{punctured Haag duality}: the restriction of \mathcal{A} to K_x satisfies Haag duality for any $x \in M$, where $K_x := \{o \in K \mid \text{cl}(o) \in x^\perp\}$ (causal puncture),
- \textit{Haag duality}: $\mathcal{A}(o) = \mathcal{A}(o^\perp)'$ for any $o \in K$.

Examples: free scalar fields in Hadamard representation: [Verch 97, R. 05]
The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The **observable net** in a reference representation is the correspondence

$$\mathcal{A} : K \ni o \rightarrow A(o) \subseteq \mathcal{B}(\mathcal{H})$$

$A(o)$ is the vN-algebra generated by *all* the observables measurable within o

- **isotony**: $o_1 \subseteq o_2 \Rightarrow A(o_1) \subseteq A(o_2)$
- **causality**: $o_1 \perp o_2 \Rightarrow [A(o_1), A(o_2)] = 0$
- **Borchers property**: if E is a projection of $A(o)$, then $E \sim 1$ in $A(\tilde{o})$ for any \tilde{o} with $o \subset \subset \tilde{o}$.
- **punctured Haag duality**: the restriction of \mathcal{A} to K_x satisfies Haag duality for any $x \in M$, where $K_x := \{o \in K | cl(o) \in x^\perp\}$ (causal puncture),
- **Haag duality**: $A(o) = A(o^\perp)'$ for any $o \in K$.

Examples: free scalar fields in Hadamard representation: [Verch 97, R. 05]
The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The **observable net** in a reference representation is the correspondence

$$
\mathcal{A} : K \ni o \mapsto \mathcal{A}(o) \subseteq \mathcal{B}(\mathcal{H})
$$

$\mathcal{A}(o)$ is the vN-algebra generated by *all* the observables measurable within o

- **isotony**: $o_1 \subseteq o_2 \Rightarrow \mathcal{A}(o_1) \subseteq \mathcal{A}(o_2)$
- **causality**: $o_1 \perp o_2 \Rightarrow [\mathcal{A}(o_1), \mathcal{A}(o_2)] = 0$
- **Borchers property**: if E is a projection of $\mathcal{A}(o)$, then $E \sim 1$ in $\mathcal{A}(\tilde{o})$ for any \tilde{o} with $o \subset \subset \tilde{o}$.
- **punctured Haag duality**: the restriction of \mathcal{A} to K_x satisfies Haag duality for any $x \in M$, where $K_x := \{o \in K \mid \text{cl}(o) \in x^\perp\}$ *(causal puncture)*,
- **Haag duality**: $\mathcal{A}(o) = A(o^\perp)'$ for any $o \in K$.

Examples: free scalar fields in Hadamard representation: [Verch 97, R. 05]
The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The observable net in a reference representation is the correspondence

$$\mathcal{A} : K \ni o \rightarrow \mathcal{A}(o) \subseteq \mathcal{B}(\mathcal{H})$$

$\mathcal{A}(o)$ is the vN-algebra generated by all the observables measurable within o

- isotony: $o_1 \subseteq o_2 \Rightarrow \mathcal{A}(o_1) \subseteq \mathcal{A}(o_2)$
- causality: $o_1 \perp o_2 \Rightarrow [\mathcal{A}(o_1), \mathcal{A}(o_2)] = 0$
- Borchers property: if E is a projection of $\mathcal{A}(o)$, then $E \sim 1$ in $\mathcal{A}(\tilde{o})$ for any \tilde{o} with $o \subset \subset \tilde{o}$.
- punctured Haag duality: the restriction of \mathcal{A} to K_x satisfies Haag duality for any $x \in M$, where $K_x := \{ o \in K \mid \text{cl}(o) \in x^\perp \}$ (causal puncture),
- Haag duality: $\mathcal{A}(o) = \mathcal{A}(o^\perp)'$ for any $o \in K$.

Examples: free scalar fields in Hadamard representation: [Verch 97, R. 05]
The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The observable net in a reference representation is the correspondence

$$\mathcal{A} : K \ni o \rightarrow \mathcal{A}(o) \subseteq \mathcal{B}(\mathcal{H})$$

$\mathcal{A}(o)$ is the vN-algebra generated by all the observables measurable within o

- **isotony**: $o_1 \subseteq o_2 \Rightarrow \mathcal{A}(o_1) \subseteq \mathcal{A}(o_2)$
- **causality**: $o_1 \perp o_2 \Rightarrow [\mathcal{A}(o_1), \mathcal{A}(o_2)] = 0$
- **Borchers property**: if E is a projection of $\mathcal{A}(o)$, then $E \sim 1$ in $\mathcal{A}(\tilde{o})$ for any \tilde{o} with $o \subset \subset \tilde{o}$.
- **punctured Haag duality**: the restriction of \mathcal{A} to K_x satisfies Haag duality for any $x \in M$, where $K_x := \{o \in K \mid cl(o) \in x^\perp\}$ (causal puncture),
- **Haag duality**: $\mathcal{A}(o) = \mathcal{A}(o^\perp)'$ for any $o \in K$.

Examples: free scalar fields in Hadamard representation: [Verch 97, R. 05]
The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The observable net in a reference representation is the correspondence

$$\mathcal{A} : K \ni o \rightarrow A(o) \subseteq \mathfrak{B}(\mathcal{H})$$

$A(o)$ is the vN-algebra generated by all the observables measurable within o

- **isotony**: $o_1 \subseteq o_2 \Rightarrow A(o_1) \subseteq A(o_2)$
- **causality**: $o_1 \perp o_2 \Rightarrow [A(o_1), A(o_2)] = 0$
- **Borchers property**: if E is a projection of $A(o)$, then $E \sim 1$ in $A(\tilde{o})$ for any \tilde{o} with $o \subset \subset \tilde{o}$.
- **punctured Haag duality**: the restriction of \mathcal{A} to K_x satisfies Haag duality for any $x \in M$, where $K_x := \{o \in K \mid cl(o) \in x^\perp\}$ (causal puncture),

- **Haag duality**: $A(o) = A(o^\perp)'$ for any $o \in K$.

Examples: free scalar fields in Hadamard representation: [Verch 97, R. 05]
The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M ordered under inclusion. In particular, it is base of neighbourhoods of arcwise and simply connected open subsets of M.

The observable net in a reference representation is the correspondence

$$\mathcal{A} : K \ni o \to A(o) \subseteq \mathcal{B}(\mathcal{H})$$

$A(o)$ is the vN-algebra generated by all the observables measurable within o

- **isotony**: $o_1 \subseteq o_2 \Rightarrow A(o_1) \subseteq A(o_2)$
- **causality**: $o_1 \perp o_2 \Rightarrow [A(o_1), A(o_2)] = 0$
- **Borchers property**: if E is a projection of $A(o)$, then $E \sim 1$ in $A(\bar{o})$ for any \bar{o} with $o \subset\subset \bar{o}$.

- **punctured Haag duality**: the restriction of \mathcal{A} to K_x satisfies Haag duality for any $x \in M$, where $K_x := \{ o \in K \mid cl(o) \in x^\perp \}$ (causal puncture),

- **Haag duality**: $A(o) = A(o^\perp)'$ for any $o \in K$.

Examples: free scalar fields in Hadamard representation: [Verch 97, R. 05]
The observable net

Difference with respect to Minkowski spacetime

In general \(\mathcal{A} \) is not a net: \(K \) is not upward directed when either \(M \) is multiply connected or \(M \) has compact Cauchy surfaces.

Examples of multiply connected spacetimes arise in cosmology: Friedmann-Lamâitre models.

A 1–cocycle \(z \) of \(Z^1(K, \mathcal{B}(\mathcal{H})) \) takes values in the observable net \(\mathcal{A} \) if

\[
z(b) \in \mathcal{A}(|b|) \ , \ b \in \Sigma_1 .
\]

1-cocycles taking values in \(\mathcal{A} \) define a \(C^\ast \)-category \(Z^1(K, \mathcal{A}) \).

\(Z^1_{DHR}(K, \mathcal{A}) \) is the full subcategory of \(Z^1(K, \mathcal{A}) \) whose objects define trivial representations of the fundamental group of \(M \).
The observable net

Difference with respect to Minkowski spacetime

In general \(\mathcal{A} \) is not a net: \(K \) is not upward directed when either \(M \) is multiply connected or \(M \) has compact Cauchy surfaces.

Examples of multiply connected spacetimes arises in cosmology: Friedmann-Lamâître models.

A 1–cocycle \(z \) of \(Z^1(K, \mathcal{B}(\mathcal{H})) \) takes values in the observable net \(\mathcal{A} \) if

\[
z(b) \in \mathcal{A}(\|b\|), \quad b \in \Sigma_1.
\]

1-cocycles taking values in \(\mathcal{A} \) define a C*-category \(Z^1(K, \mathcal{A}) \).

\(Z^1_{DHR}(K, \mathcal{A}) \) is the full subcategory of \(Z^1(K, \mathcal{A}) \) whose objects define trivial representations of the fundamental group of \(M \).
Difference with respect to Minkowski spacetime

In general \mathcal{A} is not a net: K is not upward directed when either M is multiply connected or M has compact Cauchy surfaces.

Examples of multiply connected spacetimes arises in cosmology: Friedmann-Lamaître models.

A 1–cocycle z of $Z^1(K, \mathcal{B}(\mathcal{H}))$ takes values in the observable net \mathcal{A} if

$$z(b) \in \mathcal{A}(\{|b|\}) \ , \ b \in \Sigma_1 .$$

1-cocycles taking values in \mathcal{A} define a C^*-category $Z^1(K, \mathcal{A})$.

$Z^1_{DHR}(K, \mathcal{A})$ is the full subcategory of $Z^1(K, \mathcal{A})$ whose objects define trivial representations of the fundamental group of M.
The existence of a charge structure in $Z^1(K, \mathcal{A})$.

- [Guido, Longo, Roberts & Verch '01]
- [Roberts '03]
- [R. '05].

- $Z^1(K, \mathcal{A})$ defines new superselection sectors of \mathcal{A}.
- Show the topological content of $Z^1(K, \mathcal{A})$.
- Physical interpretation.

- [Brunetti & R. 09]
The program

- The existence of a charge structure in $\mathbb{Z}^1(K, \mathcal{A})$.

 [Guido, Longo, Roberts & Verch '01]
 [Roberts '03]
 [R. '05].

- $\mathbb{Z}^1(K, \mathcal{A})$ defines new superselection sectors of \mathcal{A}.

- Show the topological content of $\mathbb{Z}^1(K, \mathcal{A})$.

- Physical interpretation.

 [Brunetti & R. 09]
The existence of a charge structure in $Z^1(K, \mathcal{A})$.

[Guido, Longo, Roberts & Verch '01]
[Roberts '03]
[R. '05].

$Z^1(K, \mathcal{A})$ defines new superselection sectors of \mathcal{A}.

Show the topological content of $Z^1(K, \mathcal{A})$.

Physical interpretation.

[Brunetti & R. 09]
The program

- The existence of a charge structure in $Z^1(K, \mathcal{A})$.

 [Guido, Longo, Roberts & Verch '01]
 [Roberts '03]
 [R. '05].

- $Z^1(K, \mathcal{A})$ defines new superselection sectors of \mathcal{A}.

- Show the topological content of $Z^1(K, \mathcal{A})$.

- Physical interpretation.

 [Brunetti & R. 09]
The existence of a charge structure in $Z^1(K, \mathcal{A})$.

[Guido, Longo, Roberts & Verch '01]
[Roberts '03]
[R. '05].

$Z^1(K, \mathcal{A})$ defines new superselection sectors of \mathcal{A}.

Show the topological content of $Z^1(K, \mathcal{A})$.

Physical interpretation.

[Brunetti & R. 09]
The program

- The existence of a charge structure in $Z^1(K, \mathcal{A})$.

 [Guido, Longo, Roberts & Verch '01]
 [Roberts '03]
 [R. '05].

- $Z^1(K, \mathcal{A})$ defines new superselection sectors of \mathcal{A}.

- Show the topological content of $Z^1(K, \mathcal{A})$.

- Physical interpretation.

 [Brunetti & R. 09]
The charge structure

Theorem

- $Z^1(K, \mathcal{A})$ is a symmetric tensor \mathbb{C}^*-category with conjugation.
- $Z^1_{DHR}(K, \mathcal{A})$ is closed under all operations.
- The inclusion $Z^1_{DHR}(K, \mathcal{A}) \rightarrow Z^1(K, \mathcal{A})$ is a full faithful symmetric tensor functor.

Charge structure

- \otimes tensor product
- ε permutation symmetry
- $z \leftrightarrow \bar{z}$ conjugation

Two invariants (charge quantum numbers) classify statistics

- Statistical phase $\kappa \in \{1, -1\}$ (Bose/Fermi)
- Statistical dimension $d \in \mathbb{N}$ (order of statistics)
The charge structure

Theorem

- $Z^1(K, \mathcal{A})$ is a symmetric tensor C^*-category with conjugation.
- $Z^1_{DHR}(K, \mathcal{A})$ is closed under all operations.
- The inclusion $Z^1_{DHR}(K, \mathcal{A}) \to Z^1(K, \mathcal{A})$ is a full faithful symmetric tensor functor.

Charge structure

- \otimes tensor product
- ε permutation symmetry
- $z \leftrightarrow \bar{z}$ conjugation
- charge composition
- statistics
- charge-anticharge symmetry

Two invariants (charge quantum numbers) classify statistics
- statistical phase $\kappa \in \{1, -1\}$ (Bose/Fermi)
- statistical dimension $d \in \mathbb{N}$ (order of statistics)
The charge structure

Theorem

- $Z^1(K, \mathcal{A})$ is a symmetric tensor \mathbb{C}^*-category with conjugation.
- $Z^1_{DHR}(K, \mathcal{A})$ is closed under all operations.
- The inclusion $Z^1_{DHR}(K, \mathcal{A}) \to Z^1(K, \mathcal{A})$ is a full faithful symmetric tensor functor.

Charge structure

- Tensor product \otimes charge composition
- Permutation symmetry ε statistics
- Conjugation $z \leftrightarrow \bar{z}$ charge-anticharge symmetry

Two invariants (charge quantum numbers) classify statistics:
- Statistical phase $\kappa \in \{1, -1\}$ (Bose/Fermi)
- Statistical dimension $d \in \mathbb{N}$ (order of statistics)
The charge structure

Idea of the proof. Main problem: K is not upward directed.

- Proceed like in differential geometry.
 - The set of causal punctures $\bigcup_{x \in M} K_x$ is a covering of K. The problem has a local solution: the category $Z^1(K_x, \mathcal{A})$ has a charge structure.
 - Restrict $Z^1(K, \mathcal{A}) \ni z \mapsto z \upharpoonright K_x \in Z^1(K_x, \mathcal{A})$ for any $x \in M$.
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.

- Charge structure on K_x exists because DHR-like endomorphisms for the net $\mathcal{A} \upharpoonright K_x$ corresponds to 1-cocycles of $Z^1(K_x, \mathcal{A})$: endomorphisms of the algebra $\mathcal{A}(K_x) := C^* \{ \mathcal{A}(o) \mid o \in K_x \}$ localized and transportable in K_x.

In general K_x is not directed, so how is it possible?

- The point x is for K_x "spacelike infinite": let $O(x) := \{ o \in K \mid x \in o \}$, for any $o \in K_x$ there is $a \in O(x)$ s.t. $a \perp o$.
- Consider the presheaf $O(x) \ni o \mapsto \mathcal{A}(o)'$. $O(x)$ is downward directed. Then $\mathcal{A}(K_x) = C^* - \lim_{o \in O(x)} \mathcal{A}(o)'$.
- Using this, the spacelike infinite x and punctured Haag duality DHR-endomorphisms are defined using the presheaf.
Idea of the proof. Main problem: K is not upward directed.

- Proceed like in differential geometry.
 - The set of causal punctures $\bigcup_{x \in M} K_x$ is a covering of K. The problem has a local solution: the category $Z^1(K_x, \mathcal{A})$ has a charge structure.
 - Restrict $Z^1(K, \mathcal{A}) \ni z \mapsto z|_{K_x} \in Z^1(K_x, \mathcal{A})$ for any $x \in M$.
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.

- Charge structure on K_x exists because DHR-like endomorphisms for the net $\mathcal{A}|_{K_x}$ corresponds to 1-cocycles of $Z^1(K_x, \mathcal{A})$: endomorphisms of the algebra $A(K_x) := C^* \{A(o) \mid o \in K_x\}$ localized and transportable in K_x.

In general K_x is not directed, so how is it possible?

- The point x is for K_x "spacelike infinite": let $O(x) := \{ o \in K \mid x \in o \}$, for any $o \in K_x$ there is $a \in O(x)$ s.t. $a \perp o$.

- Consider the presheaf $O(x) \ni o \mapsto A(o)'$. $O(x)$ is downward directed. Then $A(K_x) = C^* - \lim_{o \in O(x)} A(o)'$.

- Using this, the spacelike infinite x and punctured Haag duality DHR-endomorphisms are defined using the presheaf.
Idea of the proof. Main problem: K is not upward directed.

- Proceed like in differential geometry.
 - The set of causal punctures $\cup_{x \in M} K_x$ is a covering of K. The problem has a local solution: the category $Z^1(K_x, \mathcal{A})$ has a charge structure.
 - Restrict $Z^1(K, \mathcal{A}) \ni z \mapsto z \upharpoonright K_x \in Z^1(K_x, \mathcal{A})$ for any $x \in M$.
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.

- Charge structure on K_x exists because DHR-like endomorphisms for the net $\mathcal{A} \upharpoonright K_x$ correspond to 1-cocycles of $Z^1(K_x, \mathcal{A})$: endomorphisms of the algebra $\mathcal{A}(K_x) := C^* \{ \mathcal{A}(o) \mid o \in K_x \}$ localized and transportable in K_x.

In general K_x is not directed, so how is it possible?

- The point x is for K_x “spacelike infinite”: let $O(x) := \{ o \in K \mid x \in o \}$, for any $o \in K_x$ there is $a \in O(x)$ s.t. $a \perp o$.
- Consider the presheaf $O(x) \ni o \mapsto \mathcal{A}(o)'$. $O(x)$ is downward directed. Then $\mathcal{A}(K_x) = C^* \lim_{o \in O(x)} \mathcal{A}(o)'$.
- Using this, the spacelike infinite x and punctured Haag duality DHR-endomorphisms are defined using the presheaf.
Idea of the proof. Main problem: K is not upward directed.

- Proceed like in differential geometry.
 - The set of causal punctures $\bigcup_{x \in M} K_x$ is a covering of K. The problem has a local solution: the category $Z^1(K_x, \mathcal{A})$ has a charge structure.
 - Restrict $Z^1(K, \mathcal{A}) \ni z \mapsto z \upharpoonright K_x \in Z^1(K_x, \mathcal{A})$ for any $x \in M$.
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.

- Charge structure on K_x exists because DHR-like endomorphisms for the net $\mathcal{A} \upharpoonright K_x$ corresponds to 1-cocycles of $Z^1(K_x, \mathcal{A})$: endomorphisms of the algebra $\mathcal{A}(K_x) := C^* \{ \mathcal{A}(o) | o \in K_x \}$ localized and transportable in K_x.

In general K_x is not directed, so how is it possible?

- The point x is for K_x “spacelike infinite”: let $O(x) := \{ o \in K | x \in o \}$, for any $o \in K_x$ there is $a \in O(x)$ s.t. $a \perp o$.
- Consider the presheaf $O(x) \ni o \mapsto \mathcal{A}(o)'$. $O(x)$ is downward directed. Then $\mathcal{A}(K_x) = C^* \lim_{o \in O(x)} \mathcal{A}(o)'$.
- Using this, the spacelike infinite x and punctured Haag duality DHR-endomorphisms are defined using the presheaf.
The charge structure

Idea of the proof. Main problem: K is not upward directed.

- Proceed like in differential geometry.
 - The set of causal punctures $\bigcup_{x \in M} K_x$ is a covering of K. The problem has a local solution: the category $Z^1(K_x, \mathcal{A})$ has a charge structure.
 - Restrict $Z^1(K, \mathcal{A}) \ni z \to z \upharpoonright K_x \in Z^1(K_x, \mathcal{A})$ for any $x \in M$.
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.

- Charge structure on K_x exists because DHR-like endomorphisms for the net $\mathcal{A} \upharpoonright K_x$ corresponds to 1-cocycles of $Z^1(K_x, \mathcal{A})$: endomorphisms of the algebra $\mathcal{A}(K_x) := C^* \{ \mathcal{A}(o) \mid o \in K_x \}$ localized and transportable in K_x.

In general K_x is not directed, so how is it possible?

- The point x is for K_x “spacelike infinite”: let $O(x) := \{ o \in K \mid x \in o \}$, for any $o \in K_x$ there is $a \in O(x)$ s.t. $a \perp o$.
- Consider the presheaf $O(x) \ni o \to \mathcal{A}(o)^\prime$. $O(x)$ is downward directed. Then $\mathcal{A}(K_x) = C^* - \lim_{o \in O(x)} \mathcal{A}(o)^\prime$.
- Using this, the spacelike infinite x and punctured Haag duality DHR-endomorphisms are defined using the presheaf.
The charge structure

Idea of the proof. Main problem: K is not upward directed.

- Proceed like in differential geometry.
 - The set of causal punctures $\bigcup_{x \in M} K_x$ is a covering of K. The problem has a local solution: the category $Z^1(K_x, \mathcal{A})$ has a charge structure.
 - Restrict $Z^1(K, \mathcal{A}) \ni z \to z \upharpoonright K_x \in Z^1(K_x, \mathcal{A})$ for any $x \in M$.
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.

- Charge structure on K_x exists because DHR-like endomorphisms for the net $\mathcal{A} \upharpoonright K_x$ corresponds to 1-cocycles of $Z^1(K_x, \mathcal{A})$:
 - endomorphisms of the algebra $\mathcal{A}(K_x) := C^* \{ \mathcal{A}(o) \mid o \in K_x \}$ localized and transportable in K_x.

In general K_x is not directed, so how is it possible?

- The point x is for K_x “spacelike infinite”: let $\mathcal{O}(x) := \{ o \in K \mid x \in o \}$, for any $o \in K_x$ there is $a \in \mathcal{O}(x)$ s.t. $a \perp o$.
- Consider the presheaf $\mathcal{O}(x) \ni o \to \mathcal{A}(o)'$. $\mathcal{O}(x)$ is downward directed. Then $\mathcal{A}(K_x) = C^* \lim_{o \in \mathcal{O}(x)} \mathcal{A}(o)'$.
- Using this, the spacelike infinite x and punctured Haag duality DHR-endomorphisms are defined using the presheaf.
The charge structure

Idea of the proof. Main problem: \(K \) is not upward directed.

- Proceed like in differential geometry.
 - The set of causal punctures \(\bigcup_{x \in M} K_x \) is a covering of \(K \). The problem has a local solution: the category \(Z^1(K_x, A) \) has a charge structure.
 - Restrict \(Z^1(K, A) \ni z \mapsto z \upharpoonright K_x \in Z^1(K_x, A) \) for any \(x \in M \).
 - Local constructions (tensor product, symmetry, conjugation) made in different points \(x \) glue together.

- Charge structure on \(K_x \) exists because DHR-like endomorphisms for the net \(A \upharpoonright K_x \) corresponds to 1-cocycles of \(Z^1(K_x, A) \): endomorphisms of the algebra \(A(K_x) := C^* \{ A(o) \mid o \in K_x \} \) localized and transportable in \(K_x \).

In general \(K_x \) is not directed, so how is it possible?

- The point \(x \) is for \(K_x \) "spacelike infinite": let \(\mathcal{O}(x) := \{ o \in K \mid x \in o \} \), for any \(o \in K_x \) there is \(a \in \mathcal{O}(x) \) s.t. \(a \perp o \).
- Consider the presheaf \(\mathcal{O}(x) \ni o \mapsto A(o)' \). \(\mathcal{O}(x) \) is downward directed. Then \(A(K_x) = C^* - \lim_{o \in \mathcal{O}(x)} A(o)' \).
- Using this, the spacelike infinite \(x \) and punctured Haag duality DHR-endomorphisms are defined using the presheaf.
The charge structure

Idea of the proof. Main problem: K is not upward directed.

- Proceed like in differential geometry.
 - The set of causal punctures $\bigcup_{x \in M} K_x$ is a covering of K. The problem has a local solution: the category $Z^1(K_x, \mathcal{A})$ has a charge structure.
 - Restrict $Z^1(K, \mathcal{A}) \ni z \mapsto z \upharpoonright K_x \in Z^1(K_x, \mathcal{A})$ for any $x \in M$.
 - Local constructions (tensor product, symmetry, conjugation) made in different points x glue together.

- Charge structure on K_x exists because DHR-like endomorphisms for the net $\mathcal{A} \upharpoonright K_x$ corresponds to 1-cocycles of $Z^1(K_x, \mathcal{A})$: endomorphisms of the algebra $\mathcal{A}(K_x) := C^* \{ \mathcal{A}(o) \mid o \in K_x \}$ localized and transportable in K_x.

In general K_x is not directed, so how is it possible?

- The point x is for K_x "spacelike infinite": let $\mathcal{O}(x) := \{ o \in K \mid x \in o \}$, for any $o \in K_x$ there is $a \in \mathcal{O}(x)$ s.t. $a \perp o$.
- Consider the presheaf $\mathcal{O}(x) \ni o \mapsto \mathcal{A}(o)'$. $\mathcal{O}(x)$ is downward directed. Then $\mathcal{A}(K_x) = C^* \operatorname{lim}_{o \in \mathcal{O}(x)} \mathcal{A}(o)'$.
- Using this, the spacelike infinite x and punctured Haag duality DHR-endomorphisms are defined using the presheaf.
A new quantum number

For any irreducible 1-cocycle z the group von Neumann algebra

$$R_z(\pi_1(M), o) := \{z(p) \mid p : o \rightarrow o\}''$$

is a factor of type I_n with $n \leq d(z)$.

Definition

The topological dimension $\tau(z)$ of an irr. 1–cocycle z is the dimension of $R_z(\pi_1(M), o)$.

- $\tau(z)$ is an invariant of the equivalence class $[z]$
- $\tau(z)$ is smaller than $d(z)$
- stability under conjugation: $\tau(z) = \tau(\bar{z})$.

The representation R_z of $\pi_1(M)$ satisfies

$$R_z \cong 1 \otimes \sigma$$

where σ is an irreducible $\tau(z)$-dimensional representation of $\pi_1(M)$.
A new quantum number

For any irreducible 1-cocycle z the group von Neumann algebra

$$R_z(\pi_1(M), o) := \{ z(p) \mid p : o \to o \}''$$

is a factor of type I_n with $n \leq d(z)$.

Definition

The topological dimension $\tau(z)$ of an irr. 1–cocycle z is the dimension of $R_z(\pi_1(M), o)$.

- $\tau(z)$ is an *invariant* of the equivalence class $[z]$
- $\tau(z)$ is *smaller than* $d(z)$
- *stability under conjugation*: $\tau(z) = \tau(\bar{z})$.

The representation R_z of $\pi_1(M)$ satisfies

$$R_z \cong 1 \otimes \sigma$$

where σ is an *irreducible* $\tau(z)$-dimensional representation of $\pi_1(M)$.
For any irreducible 1-cocycle z the group von Neumann algebra

$$R_z(\pi_1(M), o) := \{z(p) \mid p : o \to o\}$$

is a factor of type I_n with $n \leq d(z)$.

Definition

The topological dimension $\tau(z)$ of an irr. 1–cocycle z is the dimension of $R_z(\pi_1(M), o)$.

- $\tau(z)$ is an invariant of the equivalence class $[z]$
- $\tau(z)$ is smaller than $d(z)$
- stability under conjugation: $\tau(z) = \tau(\bar{z})$.

The representation R_z of $\pi_1(M)$ satisfies

$$R_z \cong 1 \otimes \sigma$$

where σ is an irreducible $\tau(z)$-dimensional representation of $\pi_1(M)$.
Fix \(o \in \Sigma_0 \), the pole, and choose a path frame \(P_o := \{ p_{(a,o)} : o \rightarrow a \mid a \in \Sigma_0 \} \). Associate two paths to any 1-simplex \(b \):

- a loop \(\ell_b : o \rightarrow o \) defined as \(\ell_b := \bar{p}(\partial_0 b,o) * b * p(\partial_1 b,o) \);
- a path \(p_b : \partial_1 b \rightarrow \partial_0 b \) defined as \(p_b := p(\partial_0 b,o) * \bar{p}(\partial_1 b,o) \).

The topological component of \(z \): \(\chi_z(b) := z(\ell_b) \), \(b \in \Sigma_1 \).

- \(\chi_z \in Z^1(K, \mathcal{A}(o)) \) (no charge content)
- \(z \) and \(\chi_z \) define equivalent repr.s of \(\pi_1(M) \)

The charge component of \(z \): \(\langle z \rangle(b) := z(p_b) \), \(b \in \Sigma_1 \).

- \(\langle z \rangle \in Z^1_{DHR}(K, \mathcal{A}) \) (no topological content).
- \(\langle z \rangle \) have the same statistical phase and the same statistical dimension as \(z \):

\[
Z^1(K, \mathcal{A}) \ni z \rightarrow \langle z \rangle \in Z^1_{DHR}(K, \mathcal{A})
\]

is a faithful symmetric tensor *-functor.
Splitting charge and topological content

Fix \(o \in \Sigma_0 \), the pole, and choose a path frame \(P_o := \{ p_{(a,o)} : o \to a \mid a \in \Sigma_0 \} \). Associate two paths to any 1-simplex \(b \):

- a loop \(\ell_b : o \to o \) defined as \(\ell_b := \bar{p}(\partial_0 b, o) \ast b \ast p(\partial_1 b, o) \);
- a path \(p_b : \partial_1 b \to \partial_0 b \) defined as \(p_b := p(\partial_0 b, o) \ast \bar{p}(\partial_1 b, o) \).

The topological component of \(z \): \(\chi_z(b) := z(\ell_b) \), \(b \in \Sigma_1 \).

- \(\chi_z \in Z^1(K, \mathcal{A}(o)) \) (no charge content)
- \(z \) and \(\chi_z \) define equivalent repr.s of \(\pi_1(M) \)

The charge component of \(z \): \(\langle z \rangle(b) := z(p_b) \), \(b \in \Sigma_1 \).

- \(\langle z \rangle \in Z^1_{\text{DHR}}(K, \mathcal{A}) \) (no topological content).
- \(\langle z \rangle \) have the same statistical phase and the same statistical dimension as \(z \):

\[
Z^1(K, \mathcal{A}) \ni z
\rightarrow
\langle z \rangle \in Z^1_{\text{DHR}}(K, \mathcal{A})
\]

is a faithful symmetric tensor \(\ast \)-functor.
Splitting charge and topological content

Fix \(o \in \Sigma_0 \), the pole, and choose a path frame \(P_o := \{ p_{(a,o)} : o \to a \mid a \in \Sigma_0 \} \). Associate two paths to any 1-simplex \(b \):

- a loop \(\ell_b : o \to o \) defined as \(\ell_b := \bar{p}_{(\partial_0 b, o)} \ast b \ast p_{(\partial_1 b, o)} \);
- a path \(p_b : \partial_1 b \to \partial_0 b \) defined as \(p_b := p_{(\partial_0 b, o)} \ast \bar{p}_{(\partial_1 b, o)} \).

The topological component of \(z \): \(\chi_z(b) := z(\ell_b) , \quad b \in \Sigma_1 \).

- \(\chi_z \in Z^1(K, \mathcal{A}(o)) \) (no charge content)
- \(z \) and \(\chi_z \) define equivalent reprs. of \(\pi_1(M) \)

The charge component of \(z \): \(\langle z \rangle(b) := z(p_b) , \quad b \in \Sigma_1 \).

- \(\langle z \rangle \in Z^1_{DHR}(K, \mathcal{A}) \) (no topological content).
- \(\langle z \rangle \) have the same statistical phase and the same statistical dimension as \(z \):

\[
Z^1(K, \mathcal{A}) \ni z \to \langle z \rangle \in Z^1_{DHR}(K, \mathcal{A})
\]

is a faithful symmetric tensor \(* \)-functor.
Fix $o \in \Sigma_0$, the pole, and choose a path frame $P_o := \{ p_{(a,o)} : o \to a \mid a \in \Sigma_0 \}$. Associate two paths to any 1-simplex b:

- a loop $\ell_b : o \to o$ defined as $\ell_b := \bar{p}_{(\partial_0 b, o)} \ast b \ast p_{(\partial_1 b, o)}$.
- a path $p_b : \partial_1 b \to \partial_0 b$ defined as $p_b := p_{(\partial_0 b, o)} \ast \bar{p}_{(\partial_1 b, o)}$.

The topological component of z: $\chi_z(b) := \chi_z(\ell_b)$, $b \in \Sigma_1$.

- $\chi_z \in Z^1(K, A(o))$ (no charge content)
- z and χ_z define equivalent repr.s of $\pi_1(M)$

The charge component of z: $\langle z \rangle(b) := \chi_z(p_b)$, $b \in \Sigma_1$.

- $\langle z \rangle \in Z^1_{DHR}(K, \mathcal{A})$ (no topological content).
- $\langle z \rangle$ have the same statistical phase and the same statistical dimension as z:

$$Z^1(K, \mathcal{A}) \ni z \to \langle z \rangle \in Z^1_{DHR}(K, \mathcal{A})$$

is a faithful symmetric tensor *-functor.
Fix $o \in \Sigma_0$, the pole, and choose a path frame $P_o := \{ p_{(a,o)} : o \to a \mid a \in \Sigma_0 \}$. Associate two paths to any 1-simplex b:

- a loop $\ell_b : o \to o$ defined as $\ell_b := \bar{p}(\partial_0 b, o) * b * p(\partial_1 b, o)$;
- a path $p_b : \partial_1 b \to \partial_0 b$ defined as $p_b := p(\partial_0 b, o) * \bar{p}(\partial_1 b, o)$.

The topological component of z: $\chi_z(b) := z(\ell_b), \quad b \in \Sigma_1$.

- $\chi_z \in Z^1(K, \mathcal{A}(o))$ (no charge content)
- z and χ_z define equivalent repr.s of $\pi_1(M)$

The charge component of z: $\langle z \rangle(b) := z(p_b), \quad b \in \Sigma_1$.

- $\langle z \rangle \in Z^1_{DHR}(K, \mathcal{A})$ (no topological content).
- $\langle z \rangle$ have the same statistical phase and the same statistical dimension as z:

$$Z^1(K, \mathcal{A}) \ni z \to \langle z \rangle \in Z^1_{DHR}(K, \mathcal{A})$$

is a faithful symmetric tensor $*$-functor.
Splitting charge and topological content

Fix \(o \in \Sigma_0 \), the pole, and choose a path frame \(P_o := \{ p_{(a,o)} : o \to a \mid a \in \Sigma_0 \} \). Associate two paths to any 1-simplex \(b \):

- a loop \(\ell_b : o \to o \) defined as \(\ell_b := \bar{p}_{\partial_0 b, o} \ast b \ast p_{\partial_1 b, o} \);
- a path \(p_b : \partial_1 b \to \partial_0 b \) defined as \(p_b := p_{\partial_0 b, o} \ast \bar{p}_{\partial_1 b, o} \).

The topological component of \(z \): \(\chi_z(b) := z(\ell_b) \), \(b \in \Sigma_1 \).

- \(\chi_z \in Z^1(K, A(o)) \) (no charge content)
- \(z \) and \(\chi_z \) define equivalent repr.s of \(\pi_1(M) \)

The charge component of \(z \): \(\langle z \rangle(b) := z(p_b) \), \(b \in \Sigma_1 \).

- \(\langle z \rangle \in Z^1_{_{DHR}}(K, \mathcal{A}) \) (no topological content).
- \(\langle z \rangle \) have the same statistical phase and the same statistical dimension as \(z \):

\[Z^1(K, \mathcal{A}) \ni z \rightarrow \langle z \rangle \in Z^1_{_{DHR}}(K, \mathcal{A}) \]

is a faithful symmetric tensor \(* \)-functor.
Splitting charge and topological content

Fix \(o \in \Sigma_0 \), the pole, and choose a path frame
\(P_o := \{ p_{(a,o)} : o \to a \mid a \in \Sigma_0 \} \). Associate two paths to any 1-simplex \(b \):
- a loop \(\ell_b : o \to o \) defined as \(\ell_b := \bar{p}(\partial_0 b, o) * b * p(\partial_1 b, o) \);
- a path \(p_b : \partial_1 b \to \partial_0 b \) defined as \(p_b := p(\partial_0 b, o) * \bar{p}(\partial_1 b, o) \).

The topological component of \(z \): \(\chi_z(b) := z(\ell_b) \), \(b \in \Sigma_1 \).
- \(\chi_z \in Z^1(K, A(o)) \) (no charge content)
- \(z \) and \(\chi_z \) define equivalent repr.s of \(\pi_1(M) \)

The charge component of \(z \): \(\langle z \rangle(b) := z(p_b) \), \(b \in \Sigma_1 \).
- \(\langle z \rangle \in Z^1_{DHR}(K, \mathcal{A}) \) (no topological content).
- \(\langle z \rangle \) have the same statistical phase and the same statistical dimension as \(z \):

\[
Z^1(K, \mathcal{A}) \ni z \to \langle z \rangle \in Z^1_{DHR}(K, \mathcal{A})
\]

is a faithful symmetric tensor \(*\)-functor.
Splitting charge and topological content

Fix $o \in \Sigma_0$, the pole, and choose a path frame $P_o := \{ p_{(a,o)} : o \to a \mid a \in \Sigma_0 \}$. Associate two paths to any 1-simplex b:

- a loop $\ell_b : o \to o$ defined as $\ell_b := \bar{p}(\partial_0 b, o) * b * p(\partial_1 b, o)$;
- a path $p_b : \partial_1 b \to \partial_0 b$ defined as $p_b := p(\partial_0 b, o) * \bar{p}(\partial_1 b, o)$.

The topological component of z: $\chi_z(b) := z(\ell_b)$, $b \in \Sigma_1$.

- $\chi_z \in Z^1(K, \mathcal{A}(o))$ (no charge content)
- z and χ_z define equivalent repr.s of $\pi_1(M)$

The charge component of z: $\langle z \rangle(b) := z(p_b)$, $b \in \Sigma_1$.

- $\langle z \rangle \in Z^1_{DHR}(K, \mathcal{A})$ (no topological content).
- $\langle z \rangle$ have the same statistical phase and the same statistical dimension as z:

$$Z^1(K, \mathcal{A}) \ni z \to \langle z \rangle \in Z^1_{DHR}(K, \mathcal{A})$$

is a faithful symmetric tensor $*$-functor.
Fix $o \in \Sigma_0$, the pole, and choose a path frame $P_o := \{p_{(a,o)} : o \to a \mid a \in \Sigma_0\}$. Associate two paths to any 1-simplex b:

- a loop $\ell_b : o \to o$ defined as $\ell_b := \bar{p}(\partial_0 b,o) \ast b \ast p(\partial_1 b,o)$;
- a path $p_b : \partial_1 b \to \partial_0 b$ defined as $p_b := p(\partial_0 b,o) \ast \bar{p}(\partial_1 b,o)$.

The topological component of z: $\chi_z(b) := z(\ell_b)$, $b \in \Sigma_1$.

- $\chi_z \in Z^1(K,\mathcal{A}(o))$ (no charge content)
- z and χ_z define equivalent repr.s of $\pi_1(M)$

The charge component of z: $\langle z \rangle(b) := z(p_b)$, $b \in \Sigma_1$.

- $\langle z \rangle \in Z^1_{DHR}(K,\mathcal{A})$ (no topological content).
- $\langle z \rangle$ have the same statistical phase and the same statistical dimension as z:

$$Z^1(K,\mathcal{A}) \ni z \to \langle z \rangle \in Z^1_{DHR}(K,\mathcal{A})$$

is a faithful symmetric tensor \ast-functor.
Splitting charge and topological content

Theorem

Any 1-cocycle \(z \) is a composition \(z = \chi_z \bowtie \langle z \rangle \), join, of its topological component and its charge component.

In particular we note

- If \(z \) is irreducible and has topological dimension greater than 1, then \(\langle z \rangle \) is reducible: \(\langle z \rangle = \bigoplus_{i=1}^{n} z_i \), where \(z_i \) is an irreducible object of \(\mathbb{Z}^1_{DHR}(K, \mathcal{A}) \) with \(\kappa(z_i) = \kappa(z) \). So, any such a charge is a finite collection of DHR-charges glued together by a glue of topological nature.

- If \(z \) is irreducible and has topological dimension equals the statistical dimension \(\tau(z) = n = d(z) \), then \(\langle z \rangle \cong \bigoplus_{i=1}^{n} u \) where \(d(u) = 1 \) and \(\kappa(u) = \kappa(z) \). In this case the charge is formed by \(n \) DHR-charges of the same type.

Theorem (Existence)

For any irreducible finite dimensional and irreducible representation \(\sigma \) of \(\pi_1(M) \), there is a 1-cocycle of \(\mathbb{Z}^1(K, \mathcal{A}) \) which defines a repr. of \(\pi_1(M) \) equivalent, up to infinite multiplicity, to \(\sigma \).
Splitting charge and topological content

Theorem

Any 1-cocycle z is a composition $z = \chi_z \Join \langle z \rangle$, join, of its topological component and its charge component.

In particular we note

- If z is irreducible and has topological dimension greater than 1, then $\langle z \rangle$ is reducible: $\langle z \rangle = \bigoplus_{i=1}^{n} z_i$, where z_i is an irreducible object of $Z^1_{DHR}(K, \mathcal{A})$ with $\kappa(z_i) = \kappa(z)$. So, any such a charge is a finite collection of DHR-charges glued together by a glue of topological nature.

- If z is irreducible and has topological dimension equals the statistical dimension $\tau(z) = n = d(z)$, then $\langle z \rangle \cong \bigoplus_{i=1}^{n} u$ where $d(u) = 1$ and $\kappa(u) = \kappa(z)$. In this case the charge is formed by n DHR-charges of the same type.

Theorem (Existence)

For any irreducible finite dimensional and irreducible representation σ of $\pi_1(M)$, there is a 1-cocycle of $Z^1(K, \mathcal{A})$ which defines a repr. of $\pi_1(M)$ equivalent, up to infinite multiplicity, to σ.
Theorem

Any 1-cocycle z is a composition $z = \chi_z \bowtie \langle z \rangle$, join, of its topological component and its charge component.

In particular we note

- If z is irreducible and has topological dimension greater than 1, then $\langle z \rangle$ is reducible: $\langle z \rangle = \bigoplus_{i=1}^{n} z_i$, where z_i is an irreducible object of $Z^1_{DHR}(K, \mathcal{A})$ with $\kappa(z_i) = \kappa(z)$. So, any such a charge is a finite collection of DHR-charges glued together by a glue of topological nature.

- If z is irreducible and has topological dimension equals the statistical dimension $\tau(z) = n = d(z)$, then $\langle z \rangle \cong \bigoplus_{i=1}^{n} u$ where $d(u) = 1$ and $\kappa(u) = \kappa(z)$. In this case the charge is formed by n DHR-charges of the same type.

Theorem (Existence)

For any irreducible finite dimensional and irreducible representation σ of $\pi_1(M)$, there is a 1-cocycle of $Z^1(K, \mathcal{A})$ which defines a repr. of $\pi_1(M)$ equivalent, up to infinite multiplicity, to σ.
Splitting charge and topological content

Theorem

Any 1-cocycle z is a composition $z = \chi_z \Join \langle z \rangle$, join, of its topological component and its charge component.

In particular we note

- If z is irreducible and has topological dimension greater than 1, then $\langle z \rangle$ is reducible: $\langle z \rangle = \bigoplus_{i=1}^{n} z_i$, where z_i is an irreducible object of $Z^1_{DHR}(K, \mathcal{A})$ with $\kappa(z_i) = \kappa(z)$. So, any such a charge is a finite collection of DHR-charges glued together by a glue of topological nature.

- If z is irreducible and has topological dimension equals the statistical dimension $\tau(z) = n = d(z)$, then $\langle z \rangle \cong \bigoplus_{i=1}^{n} u$ where $d(u) = 1$ and $\kappa(u) = \kappa(z)$. In this case the charge is formed by n DHR-charges of the same type.

Theorem (Existence)

For any irreducible finite dimensional and irreducible representation σ of $\pi_1(M)$, there is a 1-cocycle of $Z^1(K, \mathcal{A})$ which defines a repr. of $\pi_1(M)$ equivalent, up to infinite multiplicity, to σ.
Splitting charge and topological content

Theorem

Any 1-cocycle \(z \) is a composition \(z = \chi_z \Join \langle z \rangle \), join, of its topological component and its charge component.

In particular we note

- If \(z \) is irreducible and has topological dimension greater than 1, then \(\langle z \rangle \) is reducible: \(\langle z \rangle = \bigoplus_{i=1}^{n} z_i \), where \(z_i \) is an irreducible object of \(Z_{DHR}^1(K, \mathcal{A}) \) with \(\kappa(z_i) = \kappa(z) \). So, any such a charge is a finite collection of DHR-charges glued together by a glue of topological nature.

- If \(z \) is irreducible and has topological dimension equals the statistical dimension \(\tau(z) = n = d(z) \), then \(\langle z \rangle \cong \bigoplus_{i=1}^{n} u \) where \(d(u) = 1 \) and \(\kappa(u) = \kappa(z) \). In this case the charge is formed by \(n \) DHR-charges of the same type.

Theorem (Existence)

For any irreducible finite dimensional and irreducible representation \(\sigma \) of \(\pi_1(M) \), there is a 1-cocycle of \(Z^1(K, \mathcal{A}) \) which defines a repr. of \(\pi_1(M) \) equivalent, up to infinite multiplicity, to \(\sigma \).
Sharp localization of charge

- $z \in Z^1(K, \mathcal{A})$, for any $o \in K$ there is a “generalized endomorphism” $\rho^z(o)$ such that

$$\rho^z(o) \upharpoonright \mathcal{A}(\hat{o}) = \text{id}, \quad \hat{o} \perp o$$

Cocycles plays the rôle of charge transporters:

$$z(p) \rho^z(o) = \rho^z(\tilde{o}) z(p), \quad p : o \to \tilde{o}$$

Analogy with the Aharonov-Bohm effect

- If $q : o \to \tilde{o}$ is not homotopic to p, then

$$z(p) \rho^z(o) \neq z(q)\rho^z(o)$$

i.e. the final state depends on the homotopy class of the path.

Any 1–cocycle z is a flat connection of a principal bundle over K (Roberts & R. 07):

$$z(p) \rho^z(o)$$

is the parallel transport of $\rho^z(o)$ along p; $z(\bar{p} \ast q)$ is the holonomy.
Physical interpretation

• **Sharp localization of charge**
 - \(z \in Z^1(K, \mathcal{A}) \), for any \(o \in K \) there is a “generalized endomorphism” \(\rho^z(o) \) such that

\[
\rho^z(o) | \mathcal{A}() = \text{id}, \quad \hat{o} \perp o
\]

Cocycles play the rôle of *charge transporters*:

\[
z(p) \rho^z(o) = \rho^z(\hat{o}) z(p), \quad p : o \rightarrow \tilde{o}
\]

• **Analogy with the Aharonov-Bohm effect**
 - If \(q : o \rightarrow \tilde{o} \) is not homotopic to \(p \), then

\[
z(p) \rho^z(o) \neq z(q)\rho^z(o)
\]

i.e. the final state depends on the homotopy class of the path. Any 1–cocycle \(z \) is a flat connection of a principal bundle over \(K \) (Roberts & R. 07):

\[
z(p) \rho^z(o)
\]

is the parallel transport of \(\rho^z(o) \) along \(p \); \(z(\bar{p} \ast q) \) is the holonomy.
Outline

1 Introduction

2 Cohomology of a poset
 • The simplicial set
 • 1-Cohomology

3 Net cohomology and superselection sectors
 • The observable net
 • The program
 • The charge structure
 • A new quantum number
 • Splitting charge and topological content
 • Physical interpretation

4 Comments

5 Conclusion
Example: Massive scalar field in 2-dimension, preprint '08, by Brunetti, Franceschini & Moretti.

There should be an underlying gauge theory giving rise to the charges $Z^1(K, A)$
- purely topological
- with a “local” action of the gauge group

There arises the question whether more general superselection sectors can be discovered by enhancing the analysis of net cohomology: the physical meaning of 2-cohomology, for instance.
Example: Massive scalar field in 2-dimension, preprint '08, by Brunetti, Franceschini & Moretti.

There should be an underlying gauge theory giving rise to the charges $Z^1(K, \mathcal{A})$
- purely topological
- with a “local” action of the gauge group

There arises the question whether more general superselection sectors can be discovered by enhancing the analysis of net cohomology: the physical meaning of 2-cohomology, for instance.
Example: Massive scalar field in 2-dimension, preprint '08, by Brunetti, Franceschini & Moretti.

There should be an underlying gauge theory giving rise to the charges $Z^1(K, A)$

- purely topological
- with a “local” action of the gauge group

There arises the question whether more general superselection sectors can be discovered by enhancing the analysis of net cohomology: the physical meaning of 2-cohomology, for instance.
Outline

1 Introduction

2 Cohomology of a poset
 • The simplicial set
 • 1-Cohomology

3 Net cohomology and superselection sectors
 • The observable net
 • The program
 • The charge structure
 • A new quantum number
 • Splitting charge and topological content
 • Physical interpretation

4 Comments

5 Conclusion
In conclusion

- Happy
- birthday
- John E. Roberts

Happy birthday John E. Roberts
In conclusion

- Happy
- Birthday
- John E. Roberts
In conclusion

- Happy
- birthday
- John E. Roberts

Happy birthday John E. Roberts
In conclusion

- Happy
- birthday
- John E. Roberts