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Net cohomology was introduced by Roberts ’76 as a cohomological
(non-Abelian) approach to the theory of superslection sectors.
Many deep applications (developped by Roberts):

Equivalence between net cohomology and DHR-analysis.
The α-induction.
Completness theorem (equivalently non-existence) of DHR-sectors.
Attempt of a cohomological description of electromagnetic charges.
Byproduct: n-categorical fomulation of non-Abelian cohomology.

In this talk I describe a recent application of net cohomology: the
discovered of charged (superselection) sectors in a curved spacetimes
which are affected by the topology of the spacetime [Brunetti & R.
’09].
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The simplicial set
Singular n–simplices are order preserving maps

x : ∆̃n → K

∆̃n is the standard n–simplex considered as a poset with respect of
inclusion of its subsimplices.
Σn denotes the set of n–simplices and

∂i : Σn → Σn−1 face, σi : Σn → Σn+1 degeneracy .
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The simplicial set
Composing 1–simplices we get paths. A path p : o → õ is a finite ordered
set bn ∗ · · · ∗ b1 s.t.

∂0bn = õ, ∂1bi+1 = ∂0bi , ∂1b1 = o,

b1b2bn
o

o

K is pathwise connected: for any pair o, õ there is a path p : o → õ.
Homotopy equivalence relation ∼ on paths with the same endpoints.

This leads to first homotopy group π1(K , o) of K , with base o, and to
fundamental group π1(K ) since K is pathwise connected. K is simply
connected if π1(K ) is trivial.
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The simplicial set

K is simply connected if

either K is upward directed: for any pair o′, o′′ there is o such that
o′, o′′ ≤ o,

or K is dawnward directed, since

π1(K ) ∼= π1(K
◦)

K◦ is the dual poset of K .

Let K be a base of neighbourhoods of arcwise and simply connected
open subsets of a connected topological space M ordered under inclusion.

The fundamental groups of π1(K ) and π1(M) are isomorphic.
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1-Cohomology

A 1–cocycle z with values in B(H) is a field

Σ1 3 b −→ z(b) ∈ B(H)

of unitaries operators satisfying the 1-cocycle equation:

z(∂0c) z(∂2c) = z(∂1c) , c ∈ Σ2

Z1(K ,B(H)) set of 1-cocycles of K taking values in B(H).

Any 1–cocycle z defines a unitary representation Rz of π1(K ):

Rz([p]) := z(p) , [p] ∈ π1(K , o)

for some p : o → o with p ∈ [p].
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The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M
ordered under inclusion. In particular, it is base of neighbourhoods of
arcwise and simply connected open subsets of M.
The observable net in a reference representation is the correspondence

A : K 3 o → A(o) ⊆ B(H)

A(o) is the vN-algebra generated by all the observables measurable
within o

isotony : o1 ⊆ o2 ⇒ A(o1) ⊆ A(o2)

causality: o1 ⊥ o2 ⇒ [A(o1),A(o2)] = 0

Borchers property: if E is a projection of A(o), then E ∼ 1 in A(õ)
for any õ with o ⊂⊂ õ.

punctured Haag duality: the restriction of A to Kx satisfies Haag
duality for any x ∈ M, where Kx := {o ∈ K | cl(o) ∈ x⊥} (causal
puncture),

Haag duality: A(o) = A(o⊥)′ for any o ∈ K .

Examples: free scalar fields in Hadamard representation: [Verch 97, R.
05]
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The observable net

Difference with respect to Minkowski spacetime

In general A is not a net: K is not upward directed when either M is
multiply connected or M has compact Cauchy surfaces.

Examples of multiply connected spacetimes arises in cosmology:
Friedmann-Lamâitre models.

A 1–cocycle z of Z 1(K ,B(H)) takes values in the observable net A if

z(b) ∈ A(|b|) , b ∈ Σ1 .

1-cocycles taking values in A define a C∗-category Z1(K ,A ).

Z1
DHR(K ,A ) is the full subcategory of Z1(K ,A ) whose objects define

trivial representations of the fundamental group of M.
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The program

The existence of a charge structure in Z1(K ,A ).

[Guido, Longo, Roberts & Verch ’01]
[Roberts ’03]
[R. ’05].

Z1(K ,A ) defines new superselection sectors of A .

Show the topological content of Z1(K ,A ).

Physical interpretation.

[Brunetti & R. 09]
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The charge structure

Theorem

Z1(K ,A ) is a symmetric tensor C∗-category with conjugation.

Z1
DHR(K ,A ) is closed under all operations.

The inclusion Z1
DHR(K ,A ) → Z1(K ,A ) is a full faithful symmetric

tensor functor.

Charge structure

⊗ tensor product
ε permutation symmetry
z ↔ z̄ conjugation

charge composition
statistics
charge-anticharge symmetry

Two invariants (charge quantum numbers) classify statistics
statistical phase κ ∈ {1,−1} (Bose/Fermi)
statistical dimension d ∈ N (order of statistics)
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The charge structure

Idea of the proof. Main problem: K is not upward directed.

Proceed like in differential geometry.

The set of causal punctures ∪x∈MKx is a covering of K . The problem
has a local solution: the category Z1(Kx , A ) has a charge structure.
Restrict Z1(K , A ) 3 z → z � Kx ∈ Z1(Kx , A ) for any x ∈ M.
Local constructions (tensor product, symmetry, conjugation) made in
different points x glue together.

Charge structure on Kx exists because DHR-like endomorphisms for
the net A � Kx corresponds to 1-cocycles of Z1(Kx ,A ):
endomorphisms of the algebra A(Kx) := C∗{A(o) | o ∈ Kx}
localized and transportable in Kx .
In general Kx is not directed, so how is it possible ?

The point x is for Kx “spacelike infinite”: let
O(x) := {o ∈ K | x ∈ o}, for any o ∈ Kx there is a ∈ O(x) s.t.
a ⊥ o.
Consider the presheaf O(x) 3 o → A(o)′. O(x)is downward
directed. Then A(Kx) = C∗ − limo∈O(x)A(o)′.
Using this, the spacelike infinite x and punctured Haag duality
DHR-endomrphisms are defined using the presheaf.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

The charge structure

Idea of the proof. Main problem: K is not upward directed.

Proceed like in differential geometry.

The set of causal punctures ∪x∈MKx is a covering of K . The problem
has a local solution: the category Z1(Kx , A ) has a charge structure.
Restrict Z1(K , A ) 3 z → z � Kx ∈ Z1(Kx , A ) for any x ∈ M.
Local constructions (tensor product, symmetry, conjugation) made in
different points x glue together.

Charge structure on Kx exists because DHR-like endomorphisms for
the net A � Kx corresponds to 1-cocycles of Z1(Kx ,A ):
endomorphisms of the algebra A(Kx) := C∗{A(o) | o ∈ Kx}
localized and transportable in Kx .
In general Kx is not directed, so how is it possible ?

The point x is for Kx “spacelike infinite”: let
O(x) := {o ∈ K | x ∈ o}, for any o ∈ Kx there is a ∈ O(x) s.t.
a ⊥ o.
Consider the presheaf O(x) 3 o → A(o)′. O(x)is downward
directed. Then A(Kx) = C∗ − limo∈O(x)A(o)′.
Using this, the spacelike infinite x and punctured Haag duality
DHR-endomrphisms are defined using the presheaf.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

The charge structure

Idea of the proof. Main problem: K is not upward directed.

Proceed like in differential geometry.

The set of causal punctures ∪x∈MKx is a covering of K . The problem
has a local solution: the category Z1(Kx , A ) has a charge structure.
Restrict Z1(K , A ) 3 z → z � Kx ∈ Z1(Kx , A ) for any x ∈ M.
Local constructions (tensor product, symmetry, conjugation) made in
different points x glue together.

Charge structure on Kx exists because DHR-like endomorphisms for
the net A � Kx corresponds to 1-cocycles of Z1(Kx ,A ):
endomorphisms of the algebra A(Kx) := C∗{A(o) | o ∈ Kx}
localized and transportable in Kx .
In general Kx is not directed, so how is it possible ?

The point x is for Kx “spacelike infinite”: let
O(x) := {o ∈ K | x ∈ o}, for any o ∈ Kx there is a ∈ O(x) s.t.
a ⊥ o.
Consider the presheaf O(x) 3 o → A(o)′. O(x)is downward
directed. Then A(Kx) = C∗ − limo∈O(x)A(o)′.
Using this, the spacelike infinite x and punctured Haag duality
DHR-endomrphisms are defined using the presheaf.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

The charge structure

Idea of the proof. Main problem: K is not upward directed.

Proceed like in differential geometry.

The set of causal punctures ∪x∈MKx is a covering of K . The problem
has a local solution: the category Z1(Kx , A ) has a charge structure.
Restrict Z1(K , A ) 3 z → z � Kx ∈ Z1(Kx , A ) for any x ∈ M.
Local constructions (tensor product, symmetry, conjugation) made in
different points x glue together.

Charge structure on Kx exists because DHR-like endomorphisms for
the net A � Kx corresponds to 1-cocycles of Z1(Kx ,A ):
endomorphisms of the algebra A(Kx) := C∗{A(o) | o ∈ Kx}
localized and transportable in Kx .
In general Kx is not directed, so how is it possible ?

The point x is for Kx “spacelike infinite”: let
O(x) := {o ∈ K | x ∈ o}, for any o ∈ Kx there is a ∈ O(x) s.t.
a ⊥ o.
Consider the presheaf O(x) 3 o → A(o)′. O(x)is downward
directed. Then A(Kx) = C∗ − limo∈O(x)A(o)′.
Using this, the spacelike infinite x and punctured Haag duality
DHR-endomrphisms are defined using the presheaf.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

The charge structure

Idea of the proof. Main problem: K is not upward directed.

Proceed like in differential geometry.

The set of causal punctures ∪x∈MKx is a covering of K . The problem
has a local solution: the category Z1(Kx , A ) has a charge structure.
Restrict Z1(K , A ) 3 z → z � Kx ∈ Z1(Kx , A ) for any x ∈ M.
Local constructions (tensor product, symmetry, conjugation) made in
different points x glue together.

Charge structure on Kx exists because DHR-like endomorphisms for
the net A � Kx corresponds to 1-cocycles of Z1(Kx ,A ):
endomorphisms of the algebra A(Kx) := C∗{A(o) | o ∈ Kx}
localized and transportable in Kx .
In general Kx is not directed, so how is it possible ?

The point x is for Kx “spacelike infinite”: let
O(x) := {o ∈ K | x ∈ o}, for any o ∈ Kx there is a ∈ O(x) s.t.
a ⊥ o.
Consider the presheaf O(x) 3 o → A(o)′. O(x)is downward
directed. Then A(Kx) = C∗ − limo∈O(x)A(o)′.
Using this, the spacelike infinite x and punctured Haag duality
DHR-endomrphisms are defined using the presheaf.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

The charge structure

Idea of the proof. Main problem: K is not upward directed.

Proceed like in differential geometry.

The set of causal punctures ∪x∈MKx is a covering of K . The problem
has a local solution: the category Z1(Kx , A ) has a charge structure.
Restrict Z1(K , A ) 3 z → z � Kx ∈ Z1(Kx , A ) for any x ∈ M.
Local constructions (tensor product, symmetry, conjugation) made in
different points x glue together.

Charge structure on Kx exists because DHR-like endomorphisms for
the net A � Kx corresponds to 1-cocycles of Z1(Kx ,A ):
endomorphisms of the algebra A(Kx) := C∗{A(o) | o ∈ Kx}
localized and transportable in Kx .
In general Kx is not directed, so how is it possible ?

The point x is for Kx “spacelike infinite”: let
O(x) := {o ∈ K | x ∈ o}, for any o ∈ Kx there is a ∈ O(x) s.t.
a ⊥ o.
Consider the presheaf O(x) 3 o → A(o)′. O(x)is downward
directed. Then A(Kx) = C∗ − limo∈O(x)A(o)′.
Using this, the spacelike infinite x and punctured Haag duality
DHR-endomrphisms are defined using the presheaf.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

The charge structure

Idea of the proof. Main problem: K is not upward directed.

Proceed like in differential geometry.

The set of causal punctures ∪x∈MKx is a covering of K . The problem
has a local solution: the category Z1(Kx , A ) has a charge structure.
Restrict Z1(K , A ) 3 z → z � Kx ∈ Z1(Kx , A ) for any x ∈ M.
Local constructions (tensor product, symmetry, conjugation) made in
different points x glue together.

Charge structure on Kx exists because DHR-like endomorphisms for
the net A � Kx corresponds to 1-cocycles of Z1(Kx ,A ):
endomorphisms of the algebra A(Kx) := C∗{A(o) | o ∈ Kx}
localized and transportable in Kx .
In general Kx is not directed, so how is it possible ?

The point x is for Kx “spacelike infinite”: let
O(x) := {o ∈ K | x ∈ o}, for any o ∈ Kx there is a ∈ O(x) s.t.
a ⊥ o.
Consider the presheaf O(x) 3 o → A(o)′. O(x)is downward
directed. Then A(Kx) = C∗ − limo∈O(x)A(o)′.
Using this, the spacelike infinite x and punctured Haag duality
DHR-endomrphisms are defined using the presheaf.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

The charge structure

Idea of the proof. Main problem: K is not upward directed.

Proceed like in differential geometry.

The set of causal punctures ∪x∈MKx is a covering of K . The problem
has a local solution: the category Z1(Kx , A ) has a charge structure.
Restrict Z1(K , A ) 3 z → z � Kx ∈ Z1(Kx , A ) for any x ∈ M.
Local constructions (tensor product, symmetry, conjugation) made in
different points x glue together.

Charge structure on Kx exists because DHR-like endomorphisms for
the net A � Kx corresponds to 1-cocycles of Z1(Kx ,A ):
endomorphisms of the algebra A(Kx) := C∗{A(o) | o ∈ Kx}
localized and transportable in Kx .
In general Kx is not directed, so how is it possible ?

The point x is for Kx “spacelike infinite”: let
O(x) := {o ∈ K | x ∈ o}, for any o ∈ Kx there is a ∈ O(x) s.t.
a ⊥ o.
Consider the presheaf O(x) 3 o → A(o)′. O(x)is downward
directed. Then A(Kx) = C∗ − limo∈O(x)A(o)′.
Using this, the spacelike infinite x and punctured Haag duality
DHR-endomrphisms are defined using the presheaf.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

A new quantum number

For any irreducible 1-cocycle z the group von Neumann algebra

Rz(π1(M), o) := {z(p) | p : o → o}′′

is a factor of type In with n ≤ d(z).

Definition

The topological dimension τ(z) of an irr. 1–cocycle z is the dimension of
Rz(π1(M), o).

τ(z) is an invariant of the equivalence class [z ]

τ(z) is smaller than d(z)

stability under conjugation: τ(z) = τ(z̄).

The representation Rz of π1(M) satisfies

Rz
∼= 1⊗ σ

where σ is an irreducible τ(z)-dimensional representation of π1(M).
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Splitting charge and topological content

Fix o ∈ Σ0, the pole, and choose a path frame
Po := {p(a,o) : o → a | a ∈ Σ0}. Associate two paths to any 1-simplex b:

a loop `b : o → o defined as `b := p̄(∂0b,o) ∗ b ∗ p(∂1b,o) ;

a path pb : ∂1b → ∂0b defined as pb := p(∂0b,o) ∗ p̄(∂1b,o) .

The topological component of z : χz(b) := z(`b) , b ∈ Σ1.

χz ∈ Z1(K ,A(o)) (no charge content)

z and χz define equivalent repr.s of π1(M)

The charge component of z : 〈z〉(b) := z(pb) , b ∈ Σ1.

〈z〉 ∈ Z1
DHR

(K ,A ) (no topological content).

〈z〉 have the same statistical phase and the same statistical
dimension as z :

Z1(K ,A ) 3 z → 〈z〉 ∈ Z1
DHR

(K ,A )

is a faithful symmetric tensor ∗-functor.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

Splitting charge and topological content

Fix o ∈ Σ0, the pole, and choose a path frame
Po := {p(a,o) : o → a | a ∈ Σ0}. Associate two paths to any 1-simplex b:

a loop `b : o → o defined as `b := p̄(∂0b,o) ∗ b ∗ p(∂1b,o) ;

a path pb : ∂1b → ∂0b defined as pb := p(∂0b,o) ∗ p̄(∂1b,o) .

The topological component of z : χz(b) := z(`b) , b ∈ Σ1.

χz ∈ Z1(K ,A(o)) (no charge content)

z and χz define equivalent repr.s of π1(M)

The charge component of z : 〈z〉(b) := z(pb) , b ∈ Σ1.

〈z〉 ∈ Z1
DHR

(K ,A ) (no topological content).

〈z〉 have the same statistical phase and the same statistical
dimension as z :

Z1(K ,A ) 3 z → 〈z〉 ∈ Z1
DHR

(K ,A )

is a faithful symmetric tensor ∗-functor.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

Splitting charge and topological content

Fix o ∈ Σ0, the pole, and choose a path frame
Po := {p(a,o) : o → a | a ∈ Σ0}. Associate two paths to any 1-simplex b:

a loop `b : o → o defined as `b := p̄(∂0b,o) ∗ b ∗ p(∂1b,o) ;

a path pb : ∂1b → ∂0b defined as pb := p(∂0b,o) ∗ p̄(∂1b,o) .

The topological component of z : χz(b) := z(`b) , b ∈ Σ1.

χz ∈ Z1(K ,A(o)) (no charge content)

z and χz define equivalent repr.s of π1(M)

The charge component of z : 〈z〉(b) := z(pb) , b ∈ Σ1.

〈z〉 ∈ Z1
DHR

(K ,A ) (no topological content).

〈z〉 have the same statistical phase and the same statistical
dimension as z :

Z1(K ,A ) 3 z → 〈z〉 ∈ Z1
DHR

(K ,A )

is a faithful symmetric tensor ∗-functor.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

Splitting charge and topological content

Fix o ∈ Σ0, the pole, and choose a path frame
Po := {p(a,o) : o → a | a ∈ Σ0}. Associate two paths to any 1-simplex b:

a loop `b : o → o defined as `b := p̄(∂0b,o) ∗ b ∗ p(∂1b,o) ;

a path pb : ∂1b → ∂0b defined as pb := p(∂0b,o) ∗ p̄(∂1b,o) .

The topological component of z : χz(b) := z(`b) , b ∈ Σ1.

χz ∈ Z1(K ,A(o)) (no charge content)

z and χz define equivalent repr.s of π1(M)

The charge component of z : 〈z〉(b) := z(pb) , b ∈ Σ1.

〈z〉 ∈ Z1
DHR

(K ,A ) (no topological content).

〈z〉 have the same statistical phase and the same statistical
dimension as z :

Z1(K ,A ) 3 z → 〈z〉 ∈ Z1
DHR

(K ,A )

is a faithful symmetric tensor ∗-functor.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

Splitting charge and topological content

Fix o ∈ Σ0, the pole, and choose a path frame
Po := {p(a,o) : o → a | a ∈ Σ0}. Associate two paths to any 1-simplex b:

a loop `b : o → o defined as `b := p̄(∂0b,o) ∗ b ∗ p(∂1b,o) ;

a path pb : ∂1b → ∂0b defined as pb := p(∂0b,o) ∗ p̄(∂1b,o) .

The topological component of z : χz(b) := z(`b) , b ∈ Σ1.

χz ∈ Z1(K ,A(o)) (no charge content)

z and χz define equivalent repr.s of π1(M)

The charge component of z : 〈z〉(b) := z(pb) , b ∈ Σ1.

〈z〉 ∈ Z1
DHR

(K ,A ) (no topological content).

〈z〉 have the same statistical phase and the same statistical
dimension as z :

Z1(K ,A ) 3 z → 〈z〉 ∈ Z1
DHR

(K ,A )

is a faithful symmetric tensor ∗-functor.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

Splitting charge and topological content

Fix o ∈ Σ0, the pole, and choose a path frame
Po := {p(a,o) : o → a | a ∈ Σ0}. Associate two paths to any 1-simplex b:

a loop `b : o → o defined as `b := p̄(∂0b,o) ∗ b ∗ p(∂1b,o) ;

a path pb : ∂1b → ∂0b defined as pb := p(∂0b,o) ∗ p̄(∂1b,o) .

The topological component of z : χz(b) := z(`b) , b ∈ Σ1.

χz ∈ Z1(K ,A(o)) (no charge content)

z and χz define equivalent repr.s of π1(M)

The charge component of z : 〈z〉(b) := z(pb) , b ∈ Σ1.

〈z〉 ∈ Z1
DHR

(K ,A ) (no topological content).

〈z〉 have the same statistical phase and the same statistical
dimension as z :

Z1(K ,A ) 3 z → 〈z〉 ∈ Z1
DHR

(K ,A )

is a faithful symmetric tensor ∗-functor.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

Splitting charge and topological content

Fix o ∈ Σ0, the pole, and choose a path frame
Po := {p(a,o) : o → a | a ∈ Σ0}. Associate two paths to any 1-simplex b:

a loop `b : o → o defined as `b := p̄(∂0b,o) ∗ b ∗ p(∂1b,o) ;

a path pb : ∂1b → ∂0b defined as pb := p(∂0b,o) ∗ p̄(∂1b,o) .

The topological component of z : χz(b) := z(`b) , b ∈ Σ1.

χz ∈ Z1(K ,A(o)) (no charge content)

z and χz define equivalent repr.s of π1(M)

The charge component of z : 〈z〉(b) := z(pb) , b ∈ Σ1.

〈z〉 ∈ Z1
DHR

(K ,A ) (no topological content).

〈z〉 have the same statistical phase and the same statistical
dimension as z :

Z1(K ,A ) 3 z → 〈z〉 ∈ Z1
DHR

(K ,A )

is a faithful symmetric tensor ∗-functor.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

Splitting charge and topological content

Fix o ∈ Σ0, the pole, and choose a path frame
Po := {p(a,o) : o → a | a ∈ Σ0}. Associate two paths to any 1-simplex b:

a loop `b : o → o defined as `b := p̄(∂0b,o) ∗ b ∗ p(∂1b,o) ;

a path pb : ∂1b → ∂0b defined as pb := p(∂0b,o) ∗ p̄(∂1b,o) .

The topological component of z : χz(b) := z(`b) , b ∈ Σ1.

χz ∈ Z1(K ,A(o)) (no charge content)

z and χz define equivalent repr.s of π1(M)

The charge component of z : 〈z〉(b) := z(pb) , b ∈ Σ1.

〈z〉 ∈ Z1
DHR

(K ,A ) (no topological content).

〈z〉 have the same statistical phase and the same statistical
dimension as z :

Z1(K ,A ) 3 z → 〈z〉 ∈ Z1
DHR

(K ,A )

is a faithful symmetric tensor ∗-functor.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

Splitting charge and topological content

Fix o ∈ Σ0, the pole, and choose a path frame
Po := {p(a,o) : o → a | a ∈ Σ0}. Associate two paths to any 1-simplex b:

a loop `b : o → o defined as `b := p̄(∂0b,o) ∗ b ∗ p(∂1b,o) ;

a path pb : ∂1b → ∂0b defined as pb := p(∂0b,o) ∗ p̄(∂1b,o) .

The topological component of z : χz(b) := z(`b) , b ∈ Σ1.

χz ∈ Z1(K ,A(o)) (no charge content)

z and χz define equivalent repr.s of π1(M)

The charge component of z : 〈z〉(b) := z(pb) , b ∈ Σ1.

〈z〉 ∈ Z1
DHR

(K ,A ) (no topological content).

〈z〉 have the same statistical phase and the same statistical
dimension as z :

Z1(K ,A ) 3 z → 〈z〉 ∈ Z1
DHR

(K ,A )

is a faithful symmetric tensor ∗-functor.



Introduction Cohomology of a poset Net cohomology and superselection sectors Comments Conclusion

Splitting charge and topological content

Theorem

Any 1-cocycle z is a composition z = χz on 〈z〉, join, of its topological
component and its charge component.

In particular we note

If z is irreducible and has topological dimension greater than 1, then
〈z〉 is reducible: 〈z〉 = ⊕n

i=1zi , where zi is an irreducible object of
Z1

DHR(K ,A ) with κ(zi ) = κ(z). So, any such a charge is a finite
collection of DHR-charges glued together by a glue of topological
nature.

If z is irreducible and has topological dimension equals the statistical
dimension τ(z) = n = d(z), then 〈z〉 ∼=

⊕n
i=1 u where d(u) = 1 and

κ(u) = κ(z). In this case the charge is formed by n DHR-charges of
the same type.

Theorem (Existence)

For any irreducible finite dimensional and irreducible representation σ of
π1(M), there is a 1-cocycle of Z1(K ,A ) which defines a repr. of π1(M)
equivalent, up to infinite multiplicity, to σ.
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Physical interpretation

Sharp localization of charge

z ∈ Z1(K , A ), for any o ∈ K there is a “generalized endomorphism”
ρz(o) such that

ρz(o) � A(ô) = id, ô ⊥ o

Cocycles plays the rôle of charge transporters:

z(p) ρz(o) = ρz(õ) z(p) , p : o → õ

Analogy with the Aharonov-Bohm effect

If q : o → õ is not homotopic to p, then

z(p) ρz(o) 6= z(q)ρz(o)

i.e. the final state depends on the homotopy class of the path.
Any 1–cocycle z is a flat connection of a principal bundle over K
(Roberts & R. 07):

z(p) ρz(o)

is the parallel transport of ρz(o) along p ; z(p̄ ∗ q) is the holonomy.
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Analogy with the Aharonov-Bohm effect
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Example: Massive scalar field in 2-dimension, preprint ’08, by
Brunetti, Franceschini & Moretti.

There should be an underlying gauge theory giving rise to the
charges Z1(K ,A )

purely topological
with a “local” action of the gauge group

There arises the question whether more general superselection
sectors can be discovered by enhancing the analysis of net
cohomology: the physical meaning of 2-cohomology, for instance.
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