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Introduction

@ Net cohomology was introduced by Roberts '76 as a cohomological
(non-Abelian) approach to the theory of superslection sectors.
Many deep applications (developped by Roberts):

o Equivalence between net cohomology and DHR-analysis.

o The a-induction.

o Completness theorem (equivalently non-existence) of DHR-sectors.

o Attempt of a cohomological description of electromagnetic charges.
Byproduct: n-categorical fomulation of non-Abelian cohomology.

@ In this talk | describe a recent application of net cohomology: the
discovered of charged (superselection) sectors in a curved spacetimes
which are affected by the topology of the spacetime [Brunetti & R.
'09].
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The simplicial’set

Composing 1-simplices we get paths. A path p: o — & is a finite ordered
set b, *--- % by s.t.

80b,, = 6, 81b,-+1 = 80b,-, 81b1 = 0,

K is pathwise connected: for any pair o, 0 there is a path p: 0 — 0.
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The simplicial’set

Homotopy equivalence relation ~ on paths with the same endpoints.

This leads to first homotopy group 71 (K, 0) of K, with base o, and to
fundamental group 71 (K) since K is pathwise connected. K is simply
connected if 71 (K) is trivial.
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Cohomology of a poset
. - 0Ge
The simplicial’set

K is simply connected if

@ either K is upward directed: for any pair o/, 0” there is o such that
/ 1
o,0" <o,

@ or K is dawnward directed, since
7T1(K) = 7T1(KO)

K® is the dual poset of K.

Let K be a base of neighbourhoods of arcwise and simply connected
open subsets of a connected topological space M ordered under inclusion.

The fundamental groups of w1(K) and w1 (M) are isomorphic. J
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A 1-cocycle z with values in B(H) is a field
Y13 b— z(b) € B(H)
of unitaries operators satisfying the 1-cocycle equation:
z(0oc) z(02¢) = z(01€) ceXx,

ZY(K,B(H)) set of 1-cocycles of K taking values in B(H).



Cohomology of a poset
o
1-Cohomolog

A 1-cocycle z with values in B(H) is a field
Y13 b— z(b) € B(H)
of unitaries operators satisfying the 1-cocycle equation:
z(0oc) z(02¢) = z(01€) ceXx,
ZY(K,B(H)) set of 1-cocycles of K taking values in B(H).
Any I-cocycle z defines a unitary representation R, of w1(K):

R:([p]) == z(p) . [p] € m1(K, 0)

for some p : 0 — o with p € [p].
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Net cohomology and superselection sectors
[ Je]

The observable net

M 4-d globally hyperbolic spacetime. K is the set of diamonds of M
ordered under inclusion. In particular, it is base of neighbourhoods of
arcwise and simply connected open subsets of M.
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The observable net

The observable net in a reference representation is the correspondence
o K3o0— Alo) CB(H)

A(0) is the vN-algebra generated by all the observables measurable
within o
@ isotony: 01 C 0p = A1) C A(02)
e causality: o1 L 0p = [A(01), A(02)] =0
@ Borchers property: if E is a projection of A(0), then E ~ 1 in A(d)
for any 6 with o CC o.
@ punctured Haag duality: the restriction of &7 to K, satisfies Haag
duality for any x € M, where K, := {0 € K|cl(0) € x*} (causal
puncture),

Examples: free scalar fields in Hadamard representation: [Verch 97, R.
05]
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The observable net

Difference with respect to Minkowski spacetime

In general <f is not a net: K is not upward directed when either M is
multiply connected or M has compact Cauchy surfaces. ’

Examples of multiply connected spacetimes arises in cosmology:
Friedmann-Lamaitre models.
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The observable net

A 1—cocycle z of Z(K,B(H)) takes values in the observable net .o/ if
z(b) € A(|b]), be Xy .

1-cocycles taking values in o7 define a C*-category Z!(K, o).

Zhur(K, o) is the full subcategory of Z!(K, .o7) whose objects define
trivial representations of the fundamental group of M.
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The program

e The existence of a charge structure in Z}(K, <7).

[Guido, Longo, Roberts & Verch '01]
[Roberts "03]
[R. "05].

@ Show the topological content of Z!(K,.<7).
@ Physical interpretation.
[Brunetti & R. 09]
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The charge structure

e ZY(K, <) is a symmetric tensor C*-category with conjugation.
o 71, r(K, ) is closed under all operations.

o The inclusion Z},p(K, o) — Z(K, o) is a full faithful symmetric
tensor functor.

Charge structure

® tensor product charge composition
€ permutation symmetry statistics
Z <> Z conjugation charge-anticharge symmetry

Two invariants (charge quantum numbers) classify statistics
statistical phase k € {1,—1} (Bose/Fermi)
statistical dimension d € N (order of statistics)
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The charge structure

Idea of the proof. Main problem: K is not upward directed.

@ Proceed like in differential geometry.

o The set of causal punctures Uxep Kx is a covering of K. The problem
has a local solution: the category Z!(Kx, <) has a charge structure.

o Restrict Z(K, /) > z — z | K« € Z*(Kx, &) for any x € M.

o Local constructions (tensor product, symmetry, conjugation) made in
different points x glue together.
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The charge structure

Idea of the proof. Main problem: K is not upward directed.

@ Proceed like in differential geometry.

@ Charge structure on K, exists because DHR-like endomorphisms for
the net &7 | K, corresponds to 1-cocycles of Z(K,, < ):
endomorphisms of the algebra A(Ky) := C*{A(0) |0 € K}
localized and transportable in K.

In general K, is not directed, so how is it possible ?

e The point x is for K “spacelike infinite": let
O(x) :=={0 € K|x € o}, for any o € K, there is a € O(x) s.t.
alo.

o Consider the presheaf O(x) 3 0 — A(0)". O(x)is downward
directed. Then A(Ky) = C* — limocox) A(0)".

o Using this, the spacelike infinite x and punctured Haag duality
DHR-endomrphisms are defined using the presheaf.
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A new quantum number

For any irreducible 1-cocycle z the group von Neumann algebra
Ru(m1(M), 0) := {z(p) | p: 0 — 0}"

is a factor of type /, with n < d(z).

Definition
The topological dimension 7(z) of an irr. 1-cocycle z is the dimension of
R, (m1(M), o).

o 7(z) is an invariant of the equivalence class [z]

o 7(z) is smaller than d(z)

e stability under conjugation: 7(z) = 7(z).

The representation R, of m1(M) satisfies
R,Z21®0

where o is an irreducible 7(z)-dimensional representation of 71 (M).
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gical cOntent

Fix o € X, the pole, and choose a path frame
Po := {p(a0) : © — ala € Lo}. Associate two paths to any 1-simplex b:
@ a loop L : 0 — o defined as £y := Pgyb,0) * b * P(a,b,0) ;
® a path pp : O1b — Ogb defined as py := p(g,b,0) * P(,b,0)
The topological component of z: x,(b) := z(&), b€ X;.
e x. € ZY(K, A(0)) (no charge content)
@ z and Y, define equivalent repr.s of w1 (M)
The charge component of z: (z)(b) :=z(py) , b € X;.
o (z) €7l (K,4) (no topological content).

@ (z) have the same statistical phase and the same statistical
dimension as z:

MK, )3z — (2) el (K, o)

DHR

is a faithful symmetric tensor *-functor.
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gical content

Any 1-cocycle z is a composition z = x, X (z), join, of its topological
component and its charge component.

In particular we note

o If z is irreducible and has topological dimension greater than 1, then
(z) is reducible: (z) = @7_;z;, where z is an irreducible object of
7ZY,r(K, @) with k(z;) = k(z). So, any such a charge is a finite
collection of DHR-charges glued together by a glue of topological
nature.

o If z is irreducible and has topological dimension equals the statistical
dimension 7(z) = n = d(z), then (z) 2 @;_, u where d(u) =1 and
k(u) = K(2). In this case the charge is formed by n DHR-charges of
the same type.

Theorem (Existence)

For any irreducible finite dimensional and irreducible representation o of
71(M), there is a 1-cocycle of Z1(K, .o/ ) which defines a repr. of wi(M)
equivalent, up to infinite multiplicity, to o.
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p?(0) such that
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Physical interpretation

@ Sharp localization of charge

o z€ ZY(K, o), for any o € K there is a “generalized endomorphism”
p?(0) such that

p“(o) | A(8) = id, 6lo
Cocycles plays the rdle of charge transporters:
z(p)p*(0) = p*(8)z(p), P:0—3

@ Analogy with the Aharonov-Bohm effect

o If g: 0 — & is not homotopic to p, then

z(p) p*(0) # z(q)p”(o0)

i.e. the final state depends on the homotopy class of the path.
Any 1l—cocycle z is a flat connection of a principal bundle over K
(Roberts & R. 07):

z(p) (o)
is the parallel transport of p?(0) along p ; z(p * q) is the holonomy.
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Comments

@ Example: Massive scalar field in 2-dimension, preprint '08, by
Brunetti, Franceschini & Moretti.
@ There should be an underlying gauge theory giving rise to the
charges Z}(K, <)
e purely topological
e with a “local” action of the gauge group
@ There arises the question whether more general superselection
sectors can be discovered by enhancing the analysis of net
cohomology: the physical meaning of 2-cohomology, for instance.
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In conclusion ......
e Happy
@ birthday
e John E. Roberts
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