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Algebraic conformal QFT

Lectures by Karl-Henning Rehren

(Vietri sul Mare, September 2009)

1. Conformal fields in two dimensions

2. Algebraic quantum field theory

3. Chiral constructions

4. Superselection sectors

5. Chiral extensions

6. From chiral CFT to two dimensions
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1. Conformal fields in two dimensions
Lect. 1

• Local fields

• Chiral fields

• Local description

• Fourier description

• Algebraic description
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Local fields

• Hilbert space: Φ(x), Φ∗(x) operator valued distributions on common invariant dense domain

D ⊂ H.

• Locality: Commutation at spacelike separation.

• Covariance: Unitary covering representation of the conformal group x 7→ g(x):

U(g)Φ(f)U(g)∗ = Φ(D(g)f ◦ g−1)

• Vacuum: There is a unique U -invariant state Ω ∈ D. Ground state for the generator of the

time translations, and cyclic in H for all fields.

From these axioms, the correlation functions

(Ω,Φ1(x1) · · ·ΦN(xn)Ω)

are defined as distributions, and from the knowlegde of all correlation functions, one can recover

the fields.

• The main question is: Which realizations of the axioms are there, and how can they be

constructed?

These lectures: two spacetime dimensions.
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Local fields (ct’d)

Infinitesimal transformation laws (for scalar fields of scaling dimension d)

i[Pµ,Φ(x)] = ∂µΦ(x), i[Kµ,Φ(x)] = [2xµ(x · ∂) − (x2)∂µ + 2d xµ]Φ(x)

i[D,Φ(x)] = [(x · ∂) + d]Φ(x), i[Mµν,Φ(x)] = [xµ∂ν − xν∂µ]Φ(x).

To define finite conformal transformations g ∈ SO(2, 2) in two-dimensional Minkowski space-

time (signature +−), one has to extend the latter to the Dirac manifold = projective null cone

in four dimensions with signature + + −−

R1,1 := {ζ ∈ R
2,2 : ζ · ζ = 0}/(ζ ∼ λζ) ≡ (S1

t × S1
s )/Z2.

Minkowski spacetime R
1,1 is embedded as follows: Choose coordinates (sin τ, cos τ ) for the

timelike S1
t and (sin ξ, cos ξ) for the spacelike S1

s . Then

(x0, x1) =
(sin τ, sin ξ)

cos τ + cos ξ
⇒ x0 ± x1 = tan

τ ± ξ

2
.

Chiral coordinates z± = 1+ix±
1−ix±

= ei(τ±ξ):

R1,1 = S1
+ × S1

−.
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Local fields (ct’d)

The conformal group factorizes: SO(2, 2)0 = Möb × Möb.

The Möbius groups Möb = SU(1, 1)/Z2 act by fractional linear transformations:

gz =
αz + β

β̄z + ᾱ
.

Local fields of scaling dimension d = h+ + h−, helicity s = h+ − h−:

Φ̂(z+, z−) =
(
dz+/dx+

)−h+
(
dz−/dx−

)−h− · Φ(x+, x−)

live on a covering space.

Infinitesimal generators L0 = 1
2(P +K), L±1 = 1

2(P −K) ± iD:

[Lm, Ln] = (m− n)Lm+n.

Positivity of energy P 0 is by Lorentz invariance equivalent to positivity of both P±, and by

conformal invariance to positivity of both L±,0.

Conformal transformation laws:

[L+
m, Φ̂(z+, z−)] = zm+

(
z+∂z+ + (m + 1)h+

)
Φ̂(z+, z−).
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Chiral fields

Symmetric traceless rank r > 0 tensor field Aµ···ν of scaling dimension dA = r:

− are conserved (⇒ generators of local symmetries: gauge, diffeo, . . . ).

− have only two independent components A± = A0···00 ± A0···01.

− A± = A±(x±) depend only on one chiral coordinate.

− A± commute with B∓.

− A±(x±) commute with B±(y±) when x± 6= y±.

− vacuum correlation functions factorize: 〈
∏
A+

∏
A−〉 = 〈

∏
A+〉〈

∏
A−〉.

⇒ pair of decoupled subtheories of local chiral fields, transforming covariantly under one chiral

copy of the Möbius group in a positive-energy representation on a cyclic subspace of the Hilbert

space.
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Local description

Rank r = 1 gives rise to chiral currents of dimension h = 1. Most general form of local

commutators:

[ja(x), jb(y)] = i
∑

c

fabc jc(x) δ(x− y) + i
gab

2π
δ′(x− y).

− Jacobi identity: fabc are the structure constants of a Lie algebra g, and gab, regarded as a

metric on g, is invariant under the adjoint action.

− Hilbert space positivity: gab positive definite. ⇒

− g compact, gab multiple (“level”) of Cartan-Killing, or

− g abelian, WLOG gab = 2πδab.
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Local description (ct’d)

The stress-energy tensor (SET) is an example of rank r = 2, with the additional property that

its chiral moments are the generators of the conformal group:

P =

∫
T (x)dx, D =

∫
xT (x)dx, K =

∫
x2T (x)dx.

These requirements fix the commutation relations among T :

[T (x), T (y)] = i(T (x) + T (y))δ′(x− y) −
ic

24π
δ′′′(x− y),

where only the central charge c > 0 is a priori undetermined (model specific).

Commutation relations of T with primary fields:

[T (x), A(y)] = i
[
hAδ

′(x− y) − δ(x− y)∂y

]
A(y)

and similar for 2D fields Φ(y+, y−).

For general covariant fields, there are additional contributions of fields of dimensions ≤ hA− 2.
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Summary of the local description:

• Chiral local fields appear in 2D conformal QFT by natural assumptions.

• Their commutator algebra is quite constrained by conformal symmetry.

• Correlation functions can be computed and analysed in terms of partial differential equations.

• Perfect setup to study concrete models.
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Fourier description

Chiral fields as distributions on the circle, via Cayley transformation z = 1+ix
1−ix:

Â(z) :=
(dx
dz

)hA

A(x) =:
1

2πihA

∑

n

z−hA−nAn,

(An = 21−hA
∫

(1 − ix)hA−1−n(1 + ix)hA−1+nA(x)dx)

Commutation relations, eg,

[jam, j
b
n] = ifabc j

c
m+n + gabmδm+n,0

for currents (Kac-Moody algebra),

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0

for the SET (Virasoro algebra).
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Fourier description (ct’d)

For primary fields:

[Lm, Â(z)] = zm(z∂z + (m + 1)hA)Â(z).

This is the variation of Â(z) → (γ′(z))hA · Â(γ(z)) under an infinitesimal diffeomorphism

γ(z) = z + εzm+1, i.e., the Virasoro algebra acts like infinitesimal diffeomorphisms on the

primary fields.

Central charge c > 0: there can be no diffeomorphism invariant state. The vacuum state is

only Möbius invariant.

In terms of Fourier modes:

[Lm, An] = ((hA − 1)m− n)Am+n.

⇒ An are ladder operators for the conformal Hamiltonian L0.
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Summary of the Fourier description:

• Symmetries are emphasized.

• Lie algebra methods are available.

• Spectrum of L0.

• Highest weight representations.

• Classifications, eg,

c ≥ 1 or c = 1 −
6

m(m + 1)
(m = 3, 4, · · · ),

and of primary dimensions if c < 1:

h =
[(m + 1)p−mq]2 − 1

4m(m + 1)
(p = 1, · · · ,m− 1; q = 1, · · · ,m).

• Drawback: local commutativity is quite obscured in this picture.
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Algebraic description

Example: The algebra of a single U(1) current

[j(x), j(y)] = i δ′(x− y)

is just a CCR algebra. Written in Weyl form:

W (f)W (g) = e−iσ(f,g)/2 ·W (f + g)

where W (f) = eij(f) ≡ ei
∫
j(x)f(x), and the symplectic form is

σ(f, g) =
1

2

∫
(f ′g − fg′) dx =

∫
f ′g dx.

• This form of writing allows to use methods from operator algebras.

• Example: superselection sectors as inequivalent representations: →→
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Algebraic description (ct’d)

The conserved chargeQ =
∫
j(x) dx commutes with j(y), and hence with the algebra generated

by the field. Therefore π(Q) = q · 1 in every irreducible representation. In the vacuum

representation, q = 0 because (Ω, j(x)Ω) = 0.

Consider the map (for a Schwartz function λ)

ρλ(j(x)) = j(x) + λ(x)1.

Automorphism of the CCR algebra, hence πλ = π0 ◦ ρλ is a representation.

• Question: is this representation equivalent to the vacuum representation?

Charge Q as an indicator: we have πλ(Q) = qλ · 1 with qλ =
∫
λ(x)dx. If this integral is

nonzero, the representation cannot be unitarily equivalent.

To see the equivalence when qλ = 0, the Weyl formulation is convenient: Write λ = −h′

(possible because qλ = 0). Then

ρλ(W (f)) = ei
∫
λ(x)f(x)dx ·W (f) = e−iσ(h,f) ·W (f) = W (h)W (f)W (h)∗.
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Algebraic description (ct’d)

• It follows that πλ = Adπ0(W (h)) is unitarily equivalent to π0.

Similarly, πλ1
∼ πλ2

iff qλ1
= qλ2

.

• Question: Are the representations πλ diffeomorphism covariant?

Diffeomorphisms act via symplectic maps (Tγf)(x) = f(γ−1(x)):

αγ(W (f)) = W (Tγf).

Theory of CCR: A symplectic automorphism is implemented in the GNS representation of a

state

ω(W (f)) = e−||f ||2/2

iff |Tγ| − 1 is Hilbert-Schmidt in the Hilbert space completion of the symplectic space, defined

by the norm ||f ||2.

This condition is sufficiently explicit to be verified for the vacuum state, where ||f ||2 =
∫ ∞

0 k dk |f̂(k)|2.

• ⇒ The vacuum representation of the chiral U(1) current is diffeomorphism covariant on the

real line (also on the circle). (Möbius covariance was already known because the vacuum

state is Möbius invariant.)
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Algebraic description (ct’d)

Next, consider πλ. A computation gives

πλ ◦ αγ(W (f)) = ei
∫

(λγ(x)−λ(x))f(x)dx · U0(γ)πλ(W (f))U0(γ)∗

where λγ(x) = γ′(x)λ(γ(x)) such that
∫
λ(x)Tγf(x) =

∫
λγ(x)f(x), and U0(γ) is an imple-

menter of γ in the vacuum representation.

Because qλγ = qλ, the phase can be produced by the adjoint action of a unitary Weyl operator

W (hλ,γ) on W (f), as before. ⇒

The diffeomorphisms of R are implemented by Uλ(γ) = U0(γ)πλ(W (hλ,γ)) in the charged

representations πλ, and so are the diffeomorphisms of S1:

πλ ◦ αγ( · ) = Uλ(γ)πλ( · )Uλ(γ)∗.

By additivity of spectrum under composition (with the inverse of ρλ): the translations have

positive generator for all q.

• ⇒ A one-parameter family of inequivalent diffeomorphism (⇒ Möbius) covariant positive-

energy representations. Described by automorphisms ρλ, and distinguished up to unitary

equivalence by a charge qλ.
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Summary of the algebraic description:

• Admits powerful methods from operator algebras.

• Superselection sectors = inequivalent representations of the same algebraic structure (gen-

eralized charges).

• Locality remains transparent (through support of test functions).

In particular, to accomodate a charge q in the CCR model, one may choose the function λ to

have compact support in some interval I. This implies that ρλ acts trivially on W (f) is supp f

lies outside I.

In this sense, ρλ (or the representation πλ = π0 ◦ ρλ) is “localized in I”.
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2. Algebraic quantum field theory

• Haag-Kastler axioms

• Chiral AQFT

• Modular Theory

• Diffeomorphisms

• Extension problems

• Back to two dimensions
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Haag-Kastler axioms

A QFT is specified by a net of local algebras. This is an assignment

O 7→ A(O)

of a C∗ algebra A(O) to every region O ⊂ R
1,D−1, subject to:

• Isotony: A(O1) ⊂ A(O2) if O1 ⊂ O2.

• Locality: A(O1) commutes with A(O2) if O1 is spacelike from O2.

(The statement is meaningful because A(O1) and A(O2) are subalgebras of A(R1,D−1).)

• Covariance: There is an action of the Poincaré group by automorphisms on A(R1,D−1) such

that

αg(A(O)) = A(gO).

• Vacuum: There is a unique Poincaré invariant state on A(R1,D−1), such that the time

translations have positive generator in the associated GNS representation.
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Haag-Kastler axioms (ct’d)

Comments:

• Think of A(O) as the algebra generated by unitary operators eiΦ(f) for hermitean fields and

real test functions, with support in O. (With caveats!)

• Sufficient to specify A(O) for the open doublecones in R
1,D−1, and define A(R1,D−1) is as

an inductive limit. Then A(X) for general regions is the smallest subalgebra of A(R1,D−1)

that contains all A(O), O ⊂ X .

• Easily adapted to chiral conformal QFT in terms of algebras A(I) for the open intervals

I ⊂ R.

• Complication: to formulate Möbius covariance, one needs the proper intervals on the circle,

which do not form a directed set ⇒ different definition of A(S1), the net is rather a “pre-

cosheaf”.

Consequence: the vacuum representation is not faithful.

• Example: The Weyl formulation of the chiral free U(1) current. A(I) = CCR subalgebra

generated by Weyl operators with test functions supp f ⊂ I.
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Chiral AQFT

General results (Brunetti-Guido-Longo, and many others):

• Reeh-Schlieder property: The vacuum is cyclic and separating for every algebra A(I)

(I a proper interval).

• Local normality: Every positive-energy representation is locally normal, ie, the restriction to

a local algebra A(I) is unitarily equivalent to the vacuum representation. One may therefore

take the vacuum representation as a “reference”, and take the weak closure of the local

algebras, so as to arrive WLOG at a net of von Neumann algebras on the vacuum Hilbert

space.

• Additivity: If I1 and I2 are open intervals such that I = I1 ∪ I2 is another open interval,

then A(I) = A(I1) ∨A(I2).

• Strong additivity (i.e., the same holds also if I1 and I2 arise by removing an interior point

from I) is not a consequence of the axioms, but can be established in many models.
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Chiral AQFT (ct’d)

• Bisognano-Wichmann property: the vacuum state restricted to the interval algebra A(R+)

is a KMS state of inverse temperature β = 2π w.r.t. the dilation subgroup of Möb. The

same is true, by conformal covariance, for every other interval algebra and the corresponding

unique conjugate one-parameter subgroup of the Möbius group which preserves I.

• Haag duality: A(I ′) = A(I)′. This is stronger than locality (“⊂”).

• Split property: If Tr e−βL0 < ∞ for all β > 0, then for any two intervals I1 and I2 that

do not overlap or touch in a point, there is a normal state on A(I1) ∨ A(I2) such that

ϕ(a1a2) = ϕ(a1)ϕ(a2). In other words: The algebra A(I1) ∨ A(I2) is isomorphic to the

tensor product A(I1) ⊗ A(I2). The trace class condition here is not automatic; it can be

violated in theories “with too many fields”.

• Type: Every interval algebra is a type III1 factor (hyperfinite if split property holds).

These results allow to use powerful methods from Modular Theory: →→
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Modular Theory

Given a von Neumann algebra M and a cyclic and separating vector Ω, there is a unique one-

parameter group of automorphisms σt (the modular group) such that the state ω = (Ω, ·Ω) on

M is a KMS state of temperature 1 wrt σ−t. The modular group is unitarily implemented with

generator log ∆, where

S = J · ∆
1
2

is the polar decomposition of the closable antilinear map

S : mΩ 7→ m∗Ω.

Moreover, the anti-unitary involution J implements the conjugation j(M) = M ′.

These data are intrinsic (and functorial) to the pair (M,Ω). In particular, in ACFT, one can

recover the dilation subgroups U(ΛI(−2πt)) = ∆it
(A(I),Ω) and the CPT operators ΘI = J(A(I),Ω)

from the local algebras and the vacuum vector.

Further applications of MT later.
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Diffeomorphisms

The stress-energy tensor is the generator of diffeomorphisms. Hence, existence of a SET is

formulated as diffeomorphism covariance in ACFT:

There is a projective unitary representation of the orientation preserving diffeomorphism group

of the circle in the vacuum Hilbert space such that

U(γ)A(I)U(γ−1) = A(γI),

and U(γ) acts trivially on A(I ′) if γ is localized in I, i.e., γ(x) = x for all x /∈ I.

Haag duality then implies that U(γ) ∈ A(I) if γ is localized in I.

The implementers of the localized diffeomorphisms therefore generate a covariant net of subal-

gebras

A0(I) ⊂ A(I).

Think of this as the subtheory generated by the stress-energy tensor. For the U(1) current

(CCR), the SET has c = 1.
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Extension problems

This scenario gives rise to a classification problem: Fixing A0 (ie, the central charge of the

chiral SET), which extensions

A0(I) ⊂ A(I)

exist (conformal field theories which have the same SET)? More generally, one may wish to

classify pairs of covariant nets

A(I) ⊂ B(I)

with trivial relative commutant (“chiral extension”, the same SET), where either A is given

(extensions) or B is given (subtheories).

More on this later.
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Back to two dimensions

A pair of chiral conformal QFTs arises in a 2D conformal QFT as subtheories of the generators

of local symmetries, eg, diffeomorphisms in the case of the SET, gauge symmetries in the case

of currents.

• Question: What is the field content of the 2D QFT beyond the chiral fields, or: which 2D

conformal fields do these local symmetries act on?

This is another extension problem, similar to the previous one:

Doublecones in R1,1 ⊃ R
1,1 are Cartesian products O = I ⊗ J of two chiral intervals. Then

A+(I) ⊗A−(J) ⊂ B(O)

where the pair of subtheories are embedded as a tensor product into the 2D algebra, because

the vacuum correlations of fields from both subtheories factorize due to the cluster property.
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3. Chiral constructions
Lect. 2

There is a large variety of standard constructions of new models from old ones.

• Nonabelian current algebras.

• Groups and subgroups.

• Tensor products.

• Relative commutants (“cosets”).

• Fixpoints (“orbifolds”).

• Algebraic constructions.
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Nonabelian current algebras

We wish to construct the local net for currents satisfying

[ja(x), jb(y)] = i
∑

c

fabc jc(x) δ(x− y) + i
gab

2π
δ′(x− y).

Start from an auxiliary CAR algebra (free fermions), which possesses a local gauge symmetry,

and construct the local observables as unitary operators implementing this symmetry.

Let H be a complex Hilbert space with an antiunitary involution Γ. Cliff(H,Γ) is the unique

C∗ algebra generated by f 7→ B(f) linear (f ∈ H), subject to

B(f)∗ = B(Γf), B(f)B(g) +B(g)B(f) = (Γf, g) · 1.

Example: H = L2(R,Cn ⊕ C
n) with Γ(f ⊕ g) = g ⊕ f . The Clifford algebra describes n

complex free Fermi fields on the real line, by writing

B(f ⊕ g) =

∫
dx

( ∑

i

ψi(x)fi(x) + ψ∗
i (x)gi(x)

)

(in the sense of operator-valued distrib’s), ie, {ψi(x), ψ∗
j (y)} = δijδ(x− y) and {ψ, ψ} = 0.
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Nonabelian current algebras (ct’d)

For a projection P on H such that

ΓPΓ = 1− P,

a quasifree state on the Clifford algebra is given by

ωP (B(f)B(g)) := (Γf, Pg).

In its GNS representation πP , one has πP (B(f)) = 0 = πP (B(Γf)) if Pf = 0. One puts

a(f) := πP (B(Γf)) and a(f)∗ := πP (B(f)) for f ∈ PH, and obtains the CAR

{a(f), a(g)} = 0, {a(f), a∗(g)} = (f, g) · 1 for f ∈ PH.

They define the CAR algebra CAR(PH) := πP (Cliff(H,Γ)).

The vacuum state for the Fermi field is obtained by choosing P = projection to positive energy.

It has the integral kernel ∆(x− y) = −i
2π(x−y−iε).
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Nonabelian current algebras (ct’d)

A unitary operator u on H that commutes with Γ induces an automorphism αu of the Clifford

algebra, and

ωP ◦ αu = ωu∗Pu.

Representations πP and πP ′ are unitarily equivalent iff the difference P −P ′ is Hilbert-Schmidt.

Hence αu is implemented in the representation πP if [u, P ] is Hilbert-Schmidt.

Gauge transformations are given by the unitary operators (u(f ⊕ g))(x) = U(x)f(x) ⊕

U(x)∗g(x). The implementability condition is
∫
dx dy Tr |U(x) − U(y)|2|∆(x− y)|2 <∞.

Obviously, global gauge transformations (U = const) are implemented. Convergence requires

that U(x) → U± as x→ ±∞ with U+ = U−. One may therefore regard implementable gauge

transformations U as elements of the loop group LSU(n).
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Nonabelian current algebras (ct’d)

In particular, gauge transformations U ∈ LISU(n) which are trivial outside an interval I, are

implementable. The implementing operators WU are only determined up to a phase, which can

be chosen such that

WUWV = eiω(f,g)/2 ·WUV

is equivalent (Carey-Ruijsenaars) to the level k = 1 Kac-Moody algebra

[j(f), j(g)] = ij([f, g]) −
i

4πn

∮
dz gCK(f ′(z), g(z)),

where WU = eij(f) = ei
∮
dzĵa(z)fa(z) for U(z) = eifa(z)τa

.

The corresponding local net is given by A(I) = von Neumann algebra generated by WU for

U ∈ LISU(n) (ie suppU ⊂ I). Its vacuum representation is the cyclic subrepresentation of

the Fock vacuum for the auxiliary Fermi fields.
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Nonabelian current algebras (ct’d)

This net possesses automorphisms acting on WU for U(z) = eifa(z)τa
as

ρh(WU) = e−iϕh,U ·WhUh−1, ϕh,U =
1

4πn

∮
dz gCK(∂zhh

−1, hfh−1)

where h : S1 → SU(n)/Zn (Zn = centre of SU(n)), hence representations πh := π0 ◦ ρh.

If h lifts to a loop V : S1 → SU(n) of compact support, ρh is implemented by WV . ⇒

πh1
∼ πh2

whenever h1h
−1
2 lifts to a loop with compact support.

In particular, πh is diffeomorphism covariant if (h ◦ γ)h−1 lifts to a loop with compact support

(for “small” diffeo’s γ); this is the case whenever h is constant outside an interval I.

⇒ The unitary equivalence classes of diffeomorphism covariant representations are labelled by

the elements of the centre Zn of SU(n).

These representations have positive energy (same argument as before).
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Groups and subgroups

H ⊂ G ⇒ LH ⊂ LG.

Example:

Level k > 1 representations (gab = (k/2n) · gabCK for SU(n)) are obtained by embedding G into

G× · · · ×G “diagonally”, ie, via g 7→ (g, . . . , g), in particular

SU(n) ⊂ SU(n) × · · · × SU(n) ⊂ SU(kn).

The level k net is generated by WU for diagonally embedded loops U . In terms of fields:

Ja(x) = ((ja(x) ⊗ 1 ⊗ . . . ) + · · · + (· · · ⊗ 1⊗ ja(x)).
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Tensor products

The tensor product of two chiral nets is defined as

A(I) = A1(I) ⊗A2(I).

Clearly, the implementors of diffeomorphisms also arise by tensoring. This means that the

stress-energy tensor is additive:

T (x) = T1(x) ⊗ 1 + 1⊗ T2(x),

and so is the central charge:

c = c1 + c2.

Representations of the tensor product theory are tensor products of representations of Ai.
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Fixpoints (“orbifold construction”)

If the net A has some compact symmetry group that preserves all local algebras, one can pass

to the fixpoint net

AG(I) = A(I)G.

If the vacuum state is invariant under G, then the vacuum representation is reducible for the

fixpoint net. More precisely, the irreducible subrepresentations are in 1:1 correspondence with

the unitary irreps of G, and arise with finite multiplicities equal to the dimension of the irreps.

Examples:

• U(1) current (CCR), even subtheory.

• Kac-Moody models, fixpoints under global G.

• Tensor products of identical theories, fixpoints under permutations.
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Relative commutants (“coset construction”)

If a net A is contained in a net B, one may consider the net of relative commutants:

Ac(I) = B(I) ∩ A(I)′.

• If Ac(I) = C · 1 (then A and B have the same SET), we call A ⊂ B a “chiral extension”

(≡ “conformal inclusion” if A and B arise from Lie groups)

Examples: SU(2)10 ⊂ SO(5)1, SU(2)28 ⊂ (G2)1.

• Otherwise: Ac(I) defines the coset net. Then A ⊗ Ac ⊂ B is a chiral extension. For the

SET this means TB = TA ⊕ TAc, cB = cA + cAc.

Examples:

– Level k Kac-Moody ⊂ k-fold tensor product of level 1 (has a huge coset)

– SU(2)k+1 ⊂ SU(2)k ⊗ SU(2)1 ⇒ coset = Virasoro with c = 1 − 6
(k+2)(k+3)

.

– Level-rank duality: SU(n)k ⊗ SU(k)n ⊂ SU(kn) (are each other’s cosets)

In general, a chiral extension A⊗C ⊂ B defines chiral extensions A ⊂ Cc, C ⊂ Ac such that

Cc ⊗Ac ⊂ B are each other’s cosets.
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Algebraic constructions (no direct analogue in terms of fields)

• “Mirror extensions”. See below.

• “Half-sided modular factorizations”. (Guido-Longo-Wiesbrock): By the Bisognano-Wich-

mann property, the modular group associated with the pair (A(I),Ω) coincides with the

dilation subgroup ⊂ Möb preserving I. Splitting the circle into three intervals in clockwise

order, the inclusions A(Ii) ⊂ A(Ii+1 mod 3)
′ = A(I ′i+1 mod 3) are half-sided modular (hsm),

ie, the modular groups σ
(i)
t of each A(I ′i+1 mod 3) are contractions of A(Ii) for positive

values of the parameter.

Conversely, each quadruple of three commuting algebras Mi and a joint cyclic and separating

vector, such that Mi ⊂M ′
i+1 mod 3 are hsm, defines a local net as follows:

The three modular groups satisfy relations (Borchers) which generate the Möbius group.

Applying the Möbius group to one of the three algebras, one obtains a Möbius covariant local

net I 7→ A(I) in the vacuum representation, in which Mi are the local algebras for three

intervals as before. Positivity of the energy follows from the half-sided modular property.
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4. Superselection sectors

• Representations and endomorphisms

• Intertwiners

• Conjugates

• Statistics

• Modular tensor category
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Representations and endomorphisms

Superselection (DHR) sectors are inequivalent positive-energy representations of the algebra of

observables, ie of the net I → A(I).

They may arise by the branching of the vacuum representation of a larger net (“field algebra”)

into inequivalent rep’ns of the smaller net (“observables”): The “charged” fields create charged

states, while the “neutral” observables cannot change the charge. This mechanism is the generic

origin of superselections sectors in four spacetime dimensions, with charge = representation of

a compact gauge group (Doplicher-Roberts).

• In low dimensional QFT, not all sectors are generated in this way.

• A general mechanism for the origin of sectors is not known.

• All DHR sectors of a CFT on the circle can be “detected” by inspection of the inclusion

A(I1 ∪ I3) ⊂ A(I2 ∪ I4)
′

for any splitting of the circle into four intervals (see below). Namely, the larger algebra

contains neutral elements which carry some charge in I1 and an opposite charge in I3.

• More general theory: Net cohomology (Roberts, Ruzzi).
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Representations and endomorphisms (ct’d)

A covariant representation of the net is a covariant and compatible collections of representations

πI of A(I) on Hπ.

A(I) factor ⇒ πI is normal. Type III ⇒ locally equivalent to π0 = id: πI = AdVI
.

Choose I0, and define for all I:

ρI(a) := AdV
I′
0

◦ πI(a).

• By construction, ρI is trivial for I ⊂ I ′0:

ρI(a) = a for a ∈ A(I),

• and by Haag duality, ρI is an endomorphism for I ⊃ I0:

ρI(A(I)) ⊂ A(I).

In particular, ρ is a localized endomorphism of the net on R ⊂ S1.

Examples: automorphisms ρλ of CCR, ρh of current algebras.
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Intertwiners

(Doplicher-Haag-Roberts):

Intertwiners: t : ρ1 → ρ2 ⇔ tρ1(a) = ρ2(a)t ⇔ t ∈ Hom(ρ1, ρ2).

By Haag duality, intertwiners are local operators. Unitary intertwiners are “charge transporters”,

changing the interval of localization.

By locality, one obtains the structure of a C∗ tensor category. The objects are representations

(endomorphisms), the arrows are the intertwiners.

• Subrepresentations correspond to subobjects: σ ≺ ρ iff there is t : σ → ρ, t∗t = 1, hence

tt∗ a projection in Hom(ρ, ρ).

• The product of objects is the composition of endomorphisms. This defines a

product of representations (“fusion”, much simpler than in the field-theoretic setup)!
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Conjugates

If ρ is an automorphism, such as the automorphisms of CCR and current algebras above), then

its inverse is also a covariant representation.

Otherwise (ρ irreducible): ρ̄ irreducible is conjugate to ρ if id ≺ ρρ̄. In other words:

the vacuum representation is a subrepresentation of the composition of π with π̄.

If it exists, it is unique up to unitary equivalence.

• generalizes the inverse of automorphisms.

• gives rise to “left inverse” maps φρ ◦ρ = id of ρ, and conditional expectations µρ : A(I) →

ρ(A(I)).

Useful formula (Longo):

ρ̄ = j ◦ ρ ◦ j

where ρ is localized in I ⊂ R+, j is the CPT transformation (→ modular theory) with

j(A(R±)) = A(R∓), so that ρ̄ is localized in −I ⊂ R−.
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Statistics

(DHR, Fredenhagen-KHR-Schroer): If ρi are localized in disjoint intervals ⊂ R, then ρ1ρ2 =

ρ2ρ1. Since every representation is unitarily equivalent to an endomorphism localized in any

interval of choice, in general there are distinguished unitary intertwiners (“statistics operators”)

ερ1,ρ2 : ρ1ρ2 → ρ2ρ1 whenever I1, I2 ⊂ R.

Statistics operators satisfy “coherence relations” with intertwiners. They give rise to represen-

tations of the braid group B∞, and thus turn the sector category into a braided category.

A sector invariant:

• ρ irreducible: “statistics parameter” λρ := µ(ερ,ρ) ∈ C.

• (λρ 6= 0, κρ := λρ/|λρ|) Spin-Statistics Theorem (Guido-Longo): Uρ(2π) = κρ · 1.

• (dρ := 1/|λρ|) Index Theorem (Longo): d2
ρ = [A(I) : ρI(A(I))] (finite iff conjugate exists).

• The statistical dimension dρ ∈ [1,∞] is additive (under direct sums) and multiplicative

(under compositions). dρ = 1 for automorphisms. In general not an integer.
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Modular tensor category

Sectors = unitary equivalence classes of irreducible representations. Choose ρi = representatives

of sector [i].

Further invariants:

• “Fusion rules” Nk
ij := dim Hom(ρiρj, ρk).

• (KHR, FRS) “Statistics characters” Yij = Yji := didj · µiµj(ερi,ρjερj ,ρi) ∈ C, satisfying

YiℓYjℓ =
∑

k

Nk
ijYkℓ.

(Related to “charge transport once around the circle”).

• If (Yij) is a nondegenerate matrix (“non-degenerate braiding”), then one can construct a

matrix representation of SL(2,Z) out of these invariants.

• This property turns the sector category into a modular tensor category.
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Modular tensor category (ct’d)

(Kawahigashi-Longo-Müger): A net A is “completely rational” if it is strongly additive and

split, and for any splitting of the circle into four intervals

µA := [A(I2 ∪ I4)
′ : A(I1 ∪ I3)] <∞.

(Established in many models, but there are also counter examples.) Then

• A has only finitely many sectors, all of them of finite dimension di, and

µA =
∑

d2
i .

(See above: detection of all sectors via the four-interval subfactor.)

• The matrix Y is invertible, hence the category of superselection sectors is a modular tensor

category.

Deep miracle: S = representative of

(
0 1

−1 0

)
∈ SL(2,Z) relates TrUi(e

−βL0) to TrUj(e
−(4π2/β)L0)

(low ↔ high temperature). The statistical dimension dρ controls the behaviour of TrUi(e
−βL0)

as β → 0: dρi = lim TrUi(e
−βL0)/TrU0(e

−βL0).
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5. Chiral extensions
Lect. 3

• Extensions

• Subfactors

• Invariants

• Classifications

• Mirror extensions



September 7, 2009 KHR: Algebraic CQFT, Vietri sul Mare, Sept. 2009 47

Extensions

For a given local net I 7→ A(I) on the circle, we wish to characterize nets I 7→ B(I) which

contain A (“adding more fields”):

A(I) ⊂ B(I), A(I)′ ∩B(I) = C · 1,

such that B is relatively local, ie, B(I1) commutes with A(I2) if I1 and I2 are disjoint.

(B possibly nonlocal.)

We assume that A(I) ⊂ B(I) is irreducible (trivial relative commutant). If B is local, this

means that the coset net is trivial (chiral extension), and A and B have the same SET.

We also assume that A(I) ⊂ B(I) has finite index (see below, “finitely many charged fields”).

This is automatic if A is completely rational (Izumi-Longo-Popa).

For the operator algebraic theory of chiral extensions, some preparation is needed: →→
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Subfactors

Let M and N type III factors. If N ⊂ M , the index [M : N ] is the inverse of the largest

constant κ ≥ 0 for which there is a conditional expectation µ : M → N bounded from below:

µ(m∗m) ≥ κ ·m∗m.

The index is multiplicative in N ⊂M ⊂ L.

A homomorphism σ : N →M gives rise to a subfactor σ(N) ⊂M . Conversely, every subfactor

is given by a homomorphism, eg, the injection ι : N →M (= identical map n 7→ n).

For homomorphisms σ : N →M , one defines intertwiners

M ∋ t : σ1 → σ2 ⇔ t ∈ Hom(σ1, σ2) ⇔ tσ1(n) = σ2(n)t ∀ n ∈ N.

• σ : N →M is irreducible iff Hom(σ, σ) = C · 1 iff σ(N)′ ∩M = C · 1.

• σ1 ∼ σ2 iff there is a unitary intertwiner t : σ1 → σ2. With this, one can define equivalence

classes (sectors) [σ] ∈ Sect(N,M).

• σ1 ≺ σ2 iff there is an isometric intertwiner t : σ1 → σ2. With this, one can define the

direct sum of sectors, and decomposition of a sector into irreducibles.

For σ1 irreducible, dim Hom(σ1, σ2) = multiplicity of σ1 ≺ σ2.
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Invariants

• The dimension dσ := [M : σ(N)]
1
2 ∈ [1,∞] is a sector invariant. The dimension is additive

(under direct sums) and multiplicative (under composition). Quantized below 4 (Jones).

• For dσ < ∞, σ̄ : M → N is conjugate to σ : N → M if there is a pair of isometric

intertwiners N ∋ w : idN → σ̄σ, M ∋ v : idM → σσ̄, satisfying relations

σ(w)∗v = d−1
σ · 1M , σ̄(v)∗w = d−1

σ · 1N .

• For N ⊂M and ι : N →M the injection, call

− γ = ι ◦ ῑ : M →M with idM ≺ γ the canonical endomorphism

− θ = ῑ ◦ ι : N → N with idN ≺ θ the (dual canonical endo).

• Q-system (Longo): Let w : idN → θ and v : idM → γ a pair of isometries as before. Then

N ∋ w and N ∋ x = ῑ(v) : θ → θ2 satisfy

x∗w = x∗θ(w) = d
−1

2

θ · 1N , xx = θ(x)x, xx∗ = θ(x∗)x.

The triple (θ, w, x) (data only in N) is a complete invariant for N ⊂M .
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Invariants (ct’d)

• Frobenius reciprocity: For finite index homo’s η : N → P , ζ : P →M , σ : N →M

dim Hom(ζ ◦ η, σ) = dim Hom(η, ζ̄ ◦ σ) = dim Hom(ζ, σ ◦ η̄).

• Principal graph (Bratteli diagram): Consider

− XMM ⊂ Sect(M,M) = irreducible subsectors η ≺ (σσ̄)n : M →M

− XNM ⊂ Sect(N,M) = irreducible subsectors ζ ≺ (σσ̄)nσ : N →M .

Two-partite graph with the number of edges given by dim Hom(ζ, ησ) = dim Hom(η, ζσ̄).

• Dual principal graph: the same with σ ↔ σ̄.

• Induced graph: For ι : N →M and σ : N → N , consider

− X 0 ⊂ Sect(N,M) = irreducible subsectors η ≺ ι(σσ̄)n : N →M

− X 1 ⊂ Sect(N,M) = irreducible subsectors ζ ≺ ι(σσ̄)nσ : N →M .

Two-partite graph with the number of edges given by dim Hom(ζ, ησ) = dim Hom(η, ζσ̄).

• By Frobenius Theorem: The incidence matrices of the graphs have norm ||I|| = dσ
(because ησ =

⊕
Iη,ζ · ζ ⇒ Iη,ζdζ = dησ = dσ · dη and similarly I tζ,ηdη = dζσ̄ = dσ · dζ).
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Extensions (resumed)

For a fixed I0, let ι : A(I0) → B(I0) be the inclusion homomorphism, and ῑ : B(I0) → A(I0)

its conjugate, γ : B(I0) → B(I0) and θ : A(I0) → A(I0) the canonical and dual canonical

endo’s.

• (Longo-KHR) By relative locality, θ extends to a localized endomorphism of the net A.

• The reducible superselection sector [θ] of A is a first invariant for the extension A ⊂ B.

• π0 ◦ θ is the vacuum representation of B, as a rep’n of the subtheory A: thus θ specifies

the Hilbert space of B, and the “charges” of the fields in B.

• The “DHR triple” (θ, w, x) (= Q-system, but θ regarded as localized endomorphism of A,

and w, x as global intertwiners) is a complete invariant for the extended net A ⊂ B.

• The net B(I) can be reconstructed from these data. It contains “charged fields” ψi ∈ B

for each subsector ρi of θ, such that ψia = ρi(a)ψi. The multiplication and conjugation of

charged fields is determined by the data (θ, w, x).

• B is local iff εθ,θ x = x.
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Classifications

Consider the induced graphs (ισσ̄σ . . . ) for ι : A→ B and σ a localized endomorphism of A.

Its incidence matrix has norm dσ. If dσ < 2, this must be an A or D or E graph.

• This is useful for classification of chiral extensions of Virasoro nets with c = 1− 6
(m+1)(m+2)

,

because these have two independent DHR sectors of dimension 2 cos π
m+1, 2 cos π

m+2 < 2 ⇒

classification in terms of pairs of A-D-E graphs with Coxeter numbers m,m + 1.

Recall that [θ] is also a DHR sector. Thus, if θ is known (and the fusion rules of A), these graphs

can be computed via Frobenius reciprocity: dim Hom(ιρ1, ιρ2) = dim Hom(θρ1, ρ2) gives info

about the number of subsectors of ιρ, their multiplicities, and their distinctness.

• Need to know the admissible dual canonical endo’s θ!

This requires more detailed analysis, exploiting the locality properties: →→
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Classifications (ct’d)

DHR(A) ⊂ End(A) the DHR localized endomorphisms (positive-energy representations) of the

net A.

• Induction (Roberts, Longo-KHR, Xu): two functorial prescriptions α± : DHR(A) →

End(B) such that α±
ρ ι = ιρ (ie, αρ equals ρ on elements of A):

α±
ρ = ῑ−1 ◦ Adε±(ρ,θ) ◦ ρ ◦ ῑ.

• Restriction: σβ = ῑβι ∈ DHR(A) for β ∈ DHR(B) (⇒ branching of superselection

sectors).

• α-σ-reciprocity (Xu, Böckenhauer-Evans):

dim Hom(α±
ρ γ, β) = dim Hom(ρ, σβ) = dim Hom(α±

ρ , β)

for ρ ∈ DHR(A) and β ∈ DHR(B) (if B is local). The first equality is just Frobenius

reciprocity. Thus, idB ≺ γ is the only irreducible sub-endo of γ, that can be contained in

any α±
ρ ∈ End(B) or in any β ∈ DHR(B).
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Classifications (ct’d)

• Common subendo’s of α+
ρ and α−

σ belong to DHR(B).

• (Xu, Böckenhauer-Evans-Kawahigashi) The matrix Zρ,σ := dim Hom(α+
ρ , α

−
σ ) is a modular

invariant wrt to the SL(2,Z) of the modular tensor category of A.

• If B is local, the “zero column” of Z (ρ0 = id = vacuum sector) gives the multiplicities of

σ ≺ θ, ie θ =
⊕

Z0,σ · σ.

A classification of modular invariant matrices Z with nonnegative integer entries (eg, Cappelli-

Itzykson-Zuber) gives a list of possible dual canonical endomorphisms θ.

• ⇒ Complete classification of local extensions of Virasoro nets with c < 1 (Kawahigashi-

Longo):

(Am, Am+1), (A4n−4, D2n), (D2n, A4n−2), (A10, E6), (E6, A12), (A28, E8), (E8, A30). Only

Deven and Eeven occur.

• (A28, E8) at c = 144
145 cannot be produced by known field-theoretic methods.
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Mirror extensions

Suppose that two nets A and C arise as each other’s cosets (relative commutants) within some

net B:

A(I) ⊗ C(I) ⊂ B(I).

Then the dual canonical endomorphism associated with ι : A⊗ C → B is of the form

θ =
⊕

i

ρA,i ⊗ ρC,i

with a bijection between the superselection sectors [ρA] of A and [ρC ] of C (KHR). This bijection

is actually part of an isomorphism (with opposite braiding) between the superselection categories

(Müger?).

This implies that every DHR triple (θA, wA, xA) of A is isomorphic to a DHR triple (θC , wC, xC)

of C, and there is a bijection between local extensions of A and local extensions of C (Xu).

• By this, one can construct local extensions of a coset theory Ac, in terms of those of A.

• Among others, the one “new” example of the KL classification at c = 144
145 arises in this way.
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Mirror extensions (ct’d)

The exceptional Virasoro extensions arise in pairs:

• (E6, A12) at c = 25
26

, and (A10, E6) at c = 21
22

;

• (E8, A30) at c = 154
155

, and (A28, E8) at c = 144
145

.

The first entry in each pair arises via subgroups and cosets, while the second arises as a mirror:

SU(2)11

cosets
⊗ Vir(25

26
)

∩ SU(2)9 ⊗ SU(2)1
SU(2)10 ⊗ SU(2)1 ∪

∩ versus SU(2)10

cosets
⊗ Vir(21

22
)

SO(5)1 ⊗ SU(2)1 ∩ ∩

∪ SO(5)1
mirror
↔ (A10, E6)

SU(2)11

cosets
⊗ (E6, A12)

The inclusions for the second pair look the same, with SU(2)10 ⊂ SO(5)1 replaced by

SU(2)28 ⊂ (G2)1.
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6. From chiral CFT to two dimensions

Remember the previous question:

What is the field content of a 2D QFT beyond the chiral fields? Extension problem:

A+(I) ⊗ A−(J) ⊂ B2D(O).

• Classification for c < 1

• Direct construction

• Boundary CFT

• Removing the boundary
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Classification for c < 1

• 2D local extensions of Vir(c) ⊗ Vir(c) for c < 1 can be classified in terms of “ισ-graphs”

(Kawahigashi-Longo), as in the chiral case.

• The classification of maximal extensions is again in terms of pairs of A-D-E graphs (allowing

Dodd and Eodd).

• For the uniqueness (for a given pair of graphs), a nontrivial cohomological problem must be

solved.

• Each maximal extension has a finite number of intermediate nonmaximal extensions.
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Direct construction

A local extension A⊗A ⊂ B2D is characterized by its DHR triple

(Θ,W,X)

where Θ ∈ DHR(A⊗A) = DHR(A)⊗DHR(A), and W , X isometric intertwiners subject to

relations (as above).

• (Longo-KHR) There is a “universal” solution (hence a local 2D ACFT) with

Θ =
⊕

ρ⊗ ρ̄.

In particular, every chiral sector arises from this 2D extension. (Remember the question

about the “origin of sectors” in low-dim QFT!)

• (KHR) For every nonlocal chiral extension A ⊂ B there is a solution (hence a local 2D

ACFT) with

Θ =
⊕

Zρ,σ · ρ⊗ σ̄,

where Zρ,σ := dim Hom(α+
ρ , α

−
σ ) (constructed using α-induction).

Alternative construction “via boundary CFT”. →→
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Boundary CFT

Given A a local chiral net (completely rational), and A ⊂ B a chiral extension (relatively local

but possibly nonlocal).

Define

B+(O) := B(K)′ ∩ B(L).

This defines a Haag dual Möbius covariant local net on

the halfspace x > 0, containing

A(I) ∨A(J) ⊂ B+(O).

Its “restriction” to the boundary (= time axis) gives

back the nonlocal chiral net B, namely

B(L) = B+(WL).

A double−cone
O = I x J

x=0 M+

I

KL

J

O

Explains why local n-point correlations behave like nonlocal chiral 2n-point correlations (Cardy):

f(t1 + x1, t1 − x1, . . . , tn + xm, tn − xn).

Namely, bulk fields are products of charged chiral fields in I and oppositely charged fields in J .
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Removing the boundary

• Pick a doublecone O0 = I0 × J0 in the halfspace.

• Exploit the split isomorphism A(I0∪J0) ∼ A(I0)⊗A(J0) to find a state ξ on A(I0)∨A(J0)

such that ξ(aIaJ) = ω(aI)ω(aJ).

• Extend the state to a state ξ̂ on B+(O0) by the unique conditional expectation.

• Construct the GNS Hilbert space H for ξ̂.

• Use the modular groups for the subalgebras A(I1) (I1 ⊂ I0) and A(J1) (J1 ⊂ J0) to

generate a unitary representation of Möb × Möb on H.

• Define a net B2D on H by transporting B2D(O0) := B+(O0) with Möb × Möb.

• The 2D vacuum state ω2D = (Ωξ̂, · Ωξ̂) on B2D can also be obtained as a limit of the chiral

vacuum state ω ◦βa, where a ∈ Möb⊗Möb are the spacelike shifts x 7→ x+a, as a→ ∞.

This construction gives the same result as the α-induction construction, but appears physically

more transparent. Interesting question: why does one need the “boundary as a catalyser”?

Generating the boundary CFT with the trivial extension B = A, one gets the “universal” 2D

theory with Θ =
⊕

ρ⊗ ρ̄ (“Cardy case”).


