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Introduction

In the early 70s, Doplicher, Haag and Roberts

introduced tensor C∗–categories in QFT.

If we have a group G, intertwiners suffice to

reconstruct it we take into account the natural

embedding

Rep(G)→ vector spaces

(Tannaka duality)

The categories arising from AQFT are main

examples of abstract categories, in the sense

that they do not have such an a priori

associated embedding.
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• Motivated by 4 dim QFT, Doplicher and

Roberts studied the structure of abstract

tensor C∗–categories with conjugation and

permutation symmetry. They showed in 1989

how to construct

T → Hilbert spaces,

making the category T equivalent to the

representation category of a unique compact

group.

• An analogous result by Deligne in an

algebraic framework is also well known (1990).
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A main question is that of understanding

the structure of abstract tensor C∗–categories

from low dim QFT, where conjugation and

unitary braided symmetry are present.

Another problem is that of characterizing

the tensor C∗–categories corresponding to

the compact quantum groups of Woronowicz

(1987). This amounts again to decide whether

there is an embedding

T → Hilbert spaces

by Woronowicz duality

3



• In 1983 Jones initiated the theory of

subfactors.

• Longo showed a connection between Jones

theory and conjugation in 1989.

• There are classification results for categories

with rigidity and prescribed fusion rules.

Any sld–category corresponds to a twist of

Rep(Uq(sld)) (Kazhdan–Wenzl, 93).

• Motivated by Jones theory, Longo and

Roberts in 1997 studied abstract categories

with conjugation (no symmetries)

• There are G1 6= G2 finite groups with

Rep(G1) = Rep(G2) as abstract categories,

hence permutation symmetry is essential for

uniqueness (Izumi–Kosaki, 02).
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Tensor C∗–categories with conjugation

We assume that for any object ρ there

is a conjugate ρ. If ρ is irreducible, ρ is

characterized uniquely by ι < ρρ

We always assume

(ι, ι) = C

Conjugation implies (Longo–Roberts)

• existence of a real–valued dimension function

on objects ρ→ d(ρ),

• dim(ρ, σ) <∞
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Subfactors

N ⊂ M, II1 subfactors with [M : N ] < ∞
(Jones)

Ocneanu’s bimodules:

X = MMN , X = NMM ,

Tensor products

X ⊗N X ⊗M . . .

X ⊗M X ⊗N . . .

Together with bimodule maps between them,
they form the
standard invariant, a complete invariant under
amenability assumptions (Popa).

For type III subfactors (Longo)

d(ρ)2 = [M : ρ(M)]

For II1 subfactors an analogous relation holds,
conjugate equations are solved by module
bases.
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With a p.s., the embedding is unique. More
generally, various abstract duality theorems
showing
existence of an embedding are available,
modeled around the fundamental property
of the regular representation (Baaj–Skandalis
multiplicative unitaries) or the related depth
2 property for subfactors (Ocneanu, Cuntz,
Longo, Doplicher–P–Roberts).

In general, there are plenty of examples of non-
embedable categories:

• A unitary braided symmetry

Br → (ρr, ρr)⇒ amenability

An amenable object ρ generates a non-
embedable category if d(ρ) /∈ N (Longo–
Roberts).

• A similar result holds for the category arising
from an amenable inclusion of II1 factors N ⊂
M in the sense of Popa.
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(After I gave this talk, Leonid Vainerman

pointed out his joint work with Nikshych,

generalizing Ocneanu–Longo duality to depth

2 reducible II1 inclusions with non-integral

indices. In their paper, a finite quantum

groupoid in the sense of finite weak

Hopf algebras of Bohm and Szlachanyi is

constructed, cf. Vainerman slides)

• In case of amenability, if an embedding exists

(hence [M : N ] ∈ N) the dimension of the

Hilbert space is uniquely determined and only

compact quantum group of Kac-type appear.

General results about existence for categories

with infinitely many irreducibles?
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If an embedding into the Hilbert spaces exists,

it is not unique in general, and one has the

problem of classifying them.

• Prime examples: Temperley–Lieb categories:

the universal tensor C∗–categories generated

by a single selfconjugate object ρ and a single

arrow R ∈ (ι, ρ2). These are classified by

±d, with d = 2 cosπ/m or d ≥ 2. They

are embedable iff d ≥ 2, embeddings may

be classified and correspond to the quantum

groups Ao(F ).

• In the non-selfconjugate case,

R ∈ (ι, ρρ), R ∈ (ι, ρρ)

embeddings faithful on objects correspond to

Au(F )

(Jones, Woronowicz, Wenzl, Popa, Goodman–

Wenzl, Wang, Banica, Yamagami, . . . , P–

Roberts)
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• A characterization of Rep(SµU(d)) as an

abstract category and its simplicity is known

(P).

• Classification of tensor C∗–categories with

an object ρ and generated by two arrows S ∈
(ι, ρd) and E ∈ (ρd−1, ρd−1) making ρ < ρd−1

(or their embeddings into the Hilbert spaces) is

not known, I believe, already for d = 3. SµU(3)

are the prime examples. The category is not

expected to be unique.

• Any tensor C∗–category with conjugation

is simple. However, this does not imply

uniqueness (P–Roberts)

How to describe non-embedable categories

with more arrows? We may hope in a complete

answer for a category generated by a single

object ρ ' ρ or two objects ρ, ρ conjugate of

each other.
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We wish to develop a general machine.

Our approach is to generalize the methods
of DR reconstruction theorem to treat
non-permutation symmetric categories with
conjugates and infinitely many irreducbles.
These methods are quite different from the
methods based on the regular representation,
and we shortly recall the main ideas.

The DR reconstruction theorem

Several reductions:

–d(ρ) ∈ N,

–An inductive process and (automatic)
amenability allow to reduce to the case where
T is generated by a single endomorphism ρ of
a unital C∗–algebra A, with ‘det(ρ) = 1’.

This implies existence of an embedding
Rep(SU(d)) ⊂ T.
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–construction of a cross product C∗–algebra

A⊗RepSU(d) Od, d = d(ρ)

with an SU(d)–action

α(g) = trivial(g)⊗ canonical(g), g ∈ SU(d).

C(Ω) := Z(A⊗RepSU(d) Od)

is SU(d)–ergodic, hence

Ω = K\SU(d)

with K an isotropy subgroup. With K one

constructs

T → Rep(K)

An alternative viewpoint

Pimsner introduced the universal C∗–algebra

OX of a Hilbert C∗–bimodule X, generalizing

both Od and A oα Z
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In case of a single object of determinant 1 one

can show that

A⊗RepSU(d) Od = OX ,

where

X = Cd ⊗ C(K\SU(d)) with SU(d)–action:

ρ(g) := fundamental(g)⊗ translation(g)

Recall that given K ⊂ G, for v ∈ Rep(K),

Ind(v) = right translation

on L2–completion of the space of continuous

functions

Xv := {f : G→ Hv, f(kg) = v(k)f(g)}

Frobenius reciprocity:

(u �K, v) ' (u, Ind(v))
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We may adopt a geometric viewpoint and

regard Ind(v) as a representation on the

induced C(K\G)–bimodule Xv. Then,

Ind(v)⊗C(K\G) Ind(v′) = Ind(v ⊗ v′)

It follows that

Ind : Rep(K)→ Bimod(G)

is a faithful tensor ∗–functor with full image.

For the DR bimodule,

X ' Ind(fundamental �K)

In fact, DR embedding is constructed as

DR : T → Bimod(SU(d))
Ind−1
→ Rep(K).

ρ→ X → fundamental �K

We regard the first arrow as abstract induction

We now drop permutation symmetry. The

framework becomes noncommutative.
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If the category is not embedable, we can not
find any quantum subgroup K and hence the
concrete induction functor Ind.

This part of DR reconstruction
for non-symmetric categories then amounts to
construct abstract induction

T → Bimod(G)

with G a cqg replacing SU(d), that should be
produced intrinsically by the category. G will
not be unique.

Analogous situation in measurable ergodic
theory. Mackey: an ergodic action of a group
G on a commutative von Neumann algebra
L∞(X,ω) should be regarded as a virtual
subgroup, and, as such, we may talk about
induction (Ramsay).

Hence, we should be looking for G and also,
following Mackey, for an ergodic G–action, now
in a topological noncommutative setting.
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This viewpoint may be regarded analogous

to Connes–Takesaki flow of weights Mod(M)

of a type III von Neumann algebra, where

an R∗+–ergodic action on a commutative von

Neumann algebra is intrinsically produced by

M .

In our setting, both the space and the acting

group will have noncommutative structures.

Strategy

• Often, embedable categories appear as

subcategories of non-embedable ones T (e.g.

TL category in the category of Ocneanu’s

bimodules in subfactor theory)

16



• To facilitate applications, we start with

A
µ−→ T,

we regard A as a universal version of the

embedable subcategory and T as a building

block. Fix an embedding of A,

A
τ−→ Hilbert spaces

defining a compact quantum group G by

Woronowicz duality.

We thus have a pair of functors

Rep(G)
τ←− A

µ−→ T

and look for

• C (G–ergodic algebra) replacing C(K\SU(d))

and depending on µ and τ ,

• induced G–bimodules Ind(ρ) replacing XDR,

for objects in the image of µ
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Main restriction:

d(ρ) ≥ 2

For d(ρ) < 2, one would have to deal with

quantum groups at roots of unity, by Jones

fundamental result and Wenzl’s work.

Ergodic actions

G = (Q,∆) cqg,

α : C→ C⊗ Q

an ergodic G–action,

Cα := {c ∈ C : α(c) = c⊗ I} = C.

on a unital C∗–algebra.
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Spectral space of u ∈ Rep(G):

Lu := (Hu ⊗ C)u⊗α =

{(ci) : ci ∈ C, α(ci) =
∑
k

ck ⊗ u∗k,i}.

Their entries (ci) span a dense ∗–subalgebra
Cspectral (Podles).

Example K subgroup of G, C = C(K\G),
α = G–translation then

Lu ' {K − fixed vectors in Hu}
via

k → (< u(g)ψi, k >)

Ergodicity implies

• Existence of a unique G–invariant state,

• Lu are Hilbert spaces:

< c, d >:=
∑

c∗i di

19



Spectrum and multiplicities

spec(α) := {u ∈ Rep(G), irreducible : Lu 6= 0}

mult(u) := dim(Lu)

This is not enough to reconstruct the ergodic

C∗–action: an example of Todd (1950) gives

two non-conjugate subgroups K1, K2 of

a finite group G with K1\G and K2\G
isospectral. (Mackey, 1964)

If G is a compact group:

• the invariant state is a trace and

mult(u) ≤ dim(u) (H–K L S)
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• H–K, L, S problem: does any simple compact

group act ergodically on R ?

• Jones problem: does any classical compact

Lie group act ergodically on R ?

• SU(2) does not. It acts ergodically only on

type I von Neumann algebras (Wassermann).

Wasserman’s invariant (multiplicity maps) is

stronger than the spectrum

• A complete answer for SU(3) is not known

If G is a cqg:

• Haar state is not tracial (Woronowicz), there

exist examples of Au(n) on R and of Au(F )

type III factors (Wang). Since first examples

(Podles quantum spheres), one starts from the

spectral spaces
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• mult(u) ≤ q − dim(u), generalizing inequality

involving quantum and integral dimension for

a cqg (Boca)

• Tomatsu has classified certain ergodic

actions of SµU(2) embedable into the

translation action

• Bichon–De Rijdt–Vaes have given examples

of SµU(2) actions with

mult(u) > dim(u)

method:

apply Woronowicz’ Krein reconstruction to the

possible tensor embeddings

Rep(SµU(2))→ Hilbert spaces

to construct ergodic actions of SµU(2) with

Lu⊗v ' Lu ⊗ Lv.
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If G is a group,

Lu⊗v ' Lu ⊗ Lv ⇔ mult(u) = dim(u)∀u

For a general ergodic action,

(ci) ∈ Lu, (dj) ∈ Lv ⇒ (djci) ∈ Lu⊗v,

We only have isometries

Su,v : Lu ⊗ Lv → Lu⊗v.

Dual object of an ergodic action

The dual object of an ergodic G–action (C, α)

is the pair (L, S), where L is regarded as a ∗–
functor

L : Rep(G)→ Hilbert spaces

S as a natural transformation

Su,v : Lu ⊗ Lv → Lu⊗v

23



Although u→ Lu is not tensor in general, there

are coherent rules that govern the behaviour

of L under tensor products. Rules later

recognized analogous to Popa’s commuting

squares appearing in Jones index theory:

Proposition Given spectral spaces Lu, Lv, Lw
of an ergodic action, the following diagram

commutes

Lu ⊗ Lv ⊗ Lw1⊗S//

S⊗1
��

Lu ⊗ Lv⊗w
S

��

Lu⊗v ⊗ Lw S //Lu⊗v⊗w

and it is a commuting square in the sense of

Popa:

E
Lu⊗v⊗w
Lu⊗v⊗Lw(Lu ⊗ Lv⊗w) = Lu ⊗ Lv ⊗ Lw
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An abstract pair (L, S) with

L : S→ T, Su,v ∈ Lu ⊗ Lv → Lu⊗v

satisfying the commuting square condition is a

quasitensor functor

More examples

• T tensor C∗–category;

ρ ∈ T → (ι, ρ) ∈ Hilbert spaces

is a quasitensor functor (the minimal one)

• In particular for a II1 inclusion N ⊂ M , we

get M⊗r → N ′ ∩Mr−1.

Quasitensor functors unify Jones and Boca

inequalities:

dimN ′∩Mr−1 ≤ [M : N ]r, mult(u) ≤ q−dim(u)
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Duality Theorem

a) The spectral functor (L, S) of an ergodic

action allows to reconstruct

(Cspectral, action, invariant state, maximal norm)

b) Any quasitensor functor (L, S) between

L : Rep(G)→ Hilbert spaces

is the spectral functor of an ergodic action of

G on a unital C∗–algebra.

Remark: part b) generalizes BDV construction.
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Corollary

The spectral functor (L, S) is a complete

invariant for ergodic C∗–actions of compact

quantum groups over amenable algebras:

Cred = Cmax

Examples of amenability: classical compact

transitive spaces, SµU(d) (Nagy),

of non amenability: Ao(F ), n ≥ 3 (Skandalis)

and Au(F ) (Banica)
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The ergodic algebra of a pair of functors

Theorem Given a tensor C∗–category T, with

Rep(G)
τ←− A

µ−→ T

there is a unital G–ergodic C∗–algebra µCτ

if τ is injective, we may compose:

Rep(G)
τ−1
−→ A

µ−→ T
minimal−→ Hilbert spaces

and find a quasitensor functor.

However, injectivity of µ is not necessary. On

arrows it is automatic: any tensor C∗–category

with conjugation is simple (PR, 08)
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G–Bimodules of cqg

The nc analogue of G–equivariant Hermitian

bundles over compact spaces.

Let G = (Q,∆) be a compact quantum group

acting on a unital C∗–algebra C,

α : C→ C⊗ Q

and X a Hilbert bimodule over C

A bimodule representation of G on X is a map

v : Xv → Xv ⊗ Q,

with Xv a Hilbert C–bimodule, such that

v(xc) = v(x)α(c), v(cx) = α(c)v(c)

< v(x), v(x′) >= α(< x, x′ >)

v ⊗ 1 ◦ v = 1⊗∆ ◦ v

v(Xv)1⊗ Q dense in Xv ⊗ Q
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Example

Given a C∗–action (C, α) of G and v ∈ Rep(G),

we may form X := Hv ⊗ C with action

v ⊗ α replacing Ind(v �K).

It is always a representation of G on the free

right module Hv ⊗ C.

Due to noncommutativity, trivial left C–action

c(ψ ⊗ c′) := ψ ⊗ cc′

is not a good choice:
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• If G is a group, u ⊗ α is a bimodule
representation. However,

(u⊗ α, u′ ⊗ α) ⊂ B(Hu, Hu′)⊗ Z(C).

• If G is a quantum group, u⊗ α is not even a
bimodule representation.

Example (Quantum quotients) If K is a
quantum subgroup of a compact quantum
group G then for v ∈ Rep(G),

Ind(v �K) ' Hv ⊗ C(K\G),

There is a good left module structure, non-
trivial precisely in the noncommutative cases:

< ψi ⊗ I, cψj ⊗ I >=
∑
h

v∗hicvhj.

It is not inner for K 6= trivial group.

Example

For some ergodic actions there isn’t any: C =
M3, G = SU(2)
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The induced bimodules

Theorem (P–Roberts, 09)

Given

Rep(G)
τ←− A

µ−→ T

with µ surjective on objects, there are

• induced bimodule G–representations

Ind(µu) ' u ⊗ α over µCτ with a ‘good’ left

action,

• a faithful Frobenius tensor ∗–functor with full

image

Ind : T → Bimod(G)
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The induced bimodule is constructed first

algebraically, requiring validity of Frobenius

reciprocity for the abstract ‘restriction’ functor

µ:

‘(µu, v) ' (u, Ind(v))’, u ∈ Ĝ

This determines the spectral decomposition of

Ind(v). We start with

Ind(v) := ⊕u∈Ĝ(µu, v)⊗ τu.
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‘Good’ left actions

cξ = ξc, ξ ∈ (Hu ⊗ C)u⊗α, c ∈ C.

We call such bimodule structures full, as they

give rise to a full functor:

u⊗ α ∈ Bimod(G)→ u⊗ α ∈Mod(G)

(v ⊗ α, v′ ⊗ α)Bimod = (v ⊗ α, v′ ⊗ α)Mod,

a property trivially satisfied in commutative

case.
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Corollary There is a one-to-one
correspondence between isomorphism classes

[Rep(G)→ T]→ [G,C]

Hence different categories provide non-
conjugate ergodic actions.

Which ergodic actions appear?

The ergodic actions from subfactors

If N ⊂M is a proper inclusion of II1 subfactors
with finite Jones index,

X ⊗M X = NMN

is a real object

R =
∑
i

ui ⊗ u∗i ,

with (ui) a module basis for MN .

‖R‖2 = [M : N ].
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Hence there is

Rep(Ao(F ))
µ−→ Ocneanu’s bimodules

µ :
∑

ψi ⊗ Fψi → R

if

Trace(F ∗F ) = [M : N ], FF = I.

Hence there is an Ao(F )–ergodic C∗–algebra

CN⊂M .

The spectral spaces are

Lu⊗r = N ′ ∩Mr−1.
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Generators and relations of CN⊂M :

T ⊗ ξ, T ∈ N ′ ∩Mr−1, ξ ∈ Hr,

r = 0,1,2, . . . , and relations,

a) (T ⊗ ξ)(T ′ ⊗ ξ′) = Tpr,sT ′ ⊗ ξξ′,

b) (T ⊗ ξ1 . . . ξr)
∗ = T ∗ ⊗ jξr . . . jξ1,

for r ≥ s:

c) S ⊗ (1ur ⊗R∗u ⊗ 1usη) = λSp
(2s)
r−s,2 ⊗ η,

c’) S′ ⊗ (1ur ⊗ Ru ⊗ 1usη
′) =

λEr+sEr+s+1(S′(p(2s)
r−s,2)∗)⊗ η′,
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Properties

• If N ⊂M is amenable in the sense of Popa the

Ao(F )–ergodic action is not embedable into

the translation action for [M : N ] /∈ N.

• quantum multiplicities are integral

• If [M : N ] = n ∈ N, we may choose Ao(n), of

Kac type, and in this case we find an ergodic

algebra with a tracial invariant state.
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Problems

• Jones: Is the construction of CN⊂M related

to Guionnet–Jones–Shlyakhtenko construction

of a subfactor from a planar algebra?

• Determine the type of the associated

von Neumann completions in the GNS

representation of the invariant state.

• In particular, we get an action of S−µU(2) for

µ+µ−1 = [M : N ]. When is the resulting CN⊂M
amenable? They are perhaps distinguished by

the standard invariant of N ⊂M1.
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Gaps

Not all ergodic actions arise from pairs of

tensor functors

Rep(G)
τ←− A

µ−→ T

The simplest gaps are the ergodic actions of

• G = SU(2) on Mn, n ≥ 2,

• finite groups on Mn with full spectrum but

low multiplicities

We may include all ergodic actions starting

with

Rep(G)
τ←− A

µ−→ T

with µ a quasitensor functor.
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Rather surprisingly, the C∗–algebra and
bimodule construction may be constructed
(computations are more complicated) the only
difference being that Ind(µu) is finite projective
rather than free.

This generalization shows that there may
be different induction theories on the same
noncommutative ergodic space, when we vary
µ. As, if we have a tensor embedding

µ : Rep(G)→ T

we also have a quasitensor one

Rep(G)→ T
minimal→ Hilbert spaces

giving rise to an inner left module structure.

However,
constructing directly examples of quasitensor
functors to non-embedable categories

Rep(G)→ T

seems difficult. Perhaps insight gained from
their structure might shed light.
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Embedding a TL subcategory

TL±d:=The universal tensor ∗–category with

objects N0 and arrows generated by a single

R ∈ (0,2),

R∗ ⊗ 1 ◦ 1⊗R = ±1,

d = R∗R

is the Temperley-Lieb category, the categorical

counterpart of the TL algebras

(often defined without reference to the ∗–
operation).

• TL±d is simple except for d = 2 cosπ/m,

when it has a single non-zero proper tensor

ideal I.

• TL±d for d ≥ 2 and TL±d/I for d = 2 cosπ/m,

are tensor C∗–categories (Goodman–Wenzl).
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Generalization to the non self-conjugate case

Consider the universal tensor ∗–category Td
generated by two objects x, x and two arrows

R ∈ (ι, x⊗ x), R ∈ (ι, x⊗ x) s.t.

R
∗ ⊗ 1x ◦ 1x ⊗R = 1x, R∗ ⊗ 1x ◦ 1x ⊗R = 1x,

R∗R = R
∗
R = d.

Goodman–Wenzl’s theorem extends to Td

• For d = 2 cosπ/m, the quotient categories

of TL±d and Td can not be embedded into the

Hilbert spaces, as these values are not taken

by Woronowicz quantum dimension

• For d ≥ 2, TL±d and Td are embedable.
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More precisely: For any F ∈Mn satisfying

Tr(FF ∗) = Tr((FF ∗)−1) = d,

(and FF = ±I, resp.) there is an isomorphism

Td → Rep(Au(F ))

(TL±d → Rep(Ao(F )), resp.)

Summary

Theorem Let T be a tensor C∗–category with

a real or pseudoreal generating object ρ with

d(ρ) ≥ 2. Then for any invertible matrix F s.t.

Trace(FF ∗) = d(ρ), FF = ±I,

there is a Frobenius tensor ∗–isomorphism

T → Bimod(Ao(F ))
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Similar conclusions if the objects of T are
generated by two conjugate objects ρ, ρ with
d(ρ) ≥ 2. The cqg is now Au(F ).

The above result sheds some light on the
problem of recognizing which non-permutation
symmetric tensor categories are embedable
into the Hilbert spaces:

This problem is related to the H–K L S and
Jones problems.

After Takesaki and H–K L S:

Theorem If we have Rep(G) → T with G a
compact Lie group, and if C′′ is of type I then
there is a tensor embedding

T → Hilbert spaces

as a full subcategory of Rep(K), with K a
closed subgroup of G.

Remark: It is proved by classifying the full
bimodule representations of G.
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After Wassermann:

Corollary A tensor C∗–category T with a

distinguished pseudoreal generating object ρ

with d(ρ) = 2 admits

T → Hilbert spaces

image is now a full subcategory of Rep(K) with

K < SU(2).
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Concluding remarks

• In a work in progress we are considering a

theory of induction for a pair of quasitensor

functors

S
τ←− A

µ−→ T.

This more general setting is perhaps helpful

to relate to JGS construction from a planar

algebra.

• I have tried to described a map

{certain tensor C∗–categories} →

{nc G–spaces and their Hermitian G–bundles}

The description of these spaces naturally

emphasizes a spectral viewpoint. It would be

interesting to try to pursue the geometric

aspect.
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