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Why coordinate quantisation?

First proposal: Snyder (’49). Motivations: to mimick lattice
regularisation in a Lorentz covariant way. Superseded by the
success of the Renormalisation Programme.
Known letters between Heisenberg and Pauli, never published
(probably because they where not keen to break Lorentz
covariance). Motivations: why should spacetime remain
classical? (general philosophy).
Doplicher et al (’94). Motivations: to enforce spacetime stability
under localisation alone! Energy transfer to geometric
background due to localisation could produce a closed horyzon
preventing localisation itself (paradoxical).
N.B. Above remark = 60’s folk lore (Wheeler, Mead, . . . ). But
their conclusion was: minimal length. In DFR model, no
minimal length.
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κ-Minkowski relations

There’s another model on market: the κ-minkowski spacetime.
We will discuss quantised coordinates q0, . . . ,qd fulfilling

[q0,qj ] =
i
κ

qj , [qj ,qk ] = 0.

This model known as κ-Minkowski Spacetime: first proposed by
Lukierski Ruegg (’91), Majid Ruegg (’94).
• Original motivation: quest for Hopf-algebraic deformations

of group Lie algebras (quantum groups)
• Renewed interest: as a toy model in the framework of

spacetime quantisation (towards Quantum Gravity?).
This model however analysed mainly from the algebraic
viewpoint. What about C*-algebras? Representations?
Physical interpretation?
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One step back: Quantum Mechanics
and Dear Old Weyl Quantisation

With the canonical commutation relations

[P,Q] = −i~I,

we need a quantisation prescriptions from functions f = f (p,q)
of the canonical coordinates (p,q) of classical phase space.
Weyl solution:

f (P,Q) =

∫
dα dβ f̌ (α, β)ei(αP+βQ),

where

f̌ (α, β) =
1

(2π)2

∫
dp dq f (p,q)e−i(αp+βq).
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Merits of Weyl Prescrition

• f̄ (P,Q) = f (P,Q)∗ and in particular the quantisation of a
real function is selfadjoint.

• if f is a function of p alone, Weyl prescription is the same
as the replacement p → P in the sense of functional
calculus (hence spectral mapping). Analogously for Q

Note that ei(αP+βQ) is precisely the Weyl quantisation of
ei(αp+βq) (internal consistency).
The product defined implicitly by

(f ? g)(P,Q) = f (P,Q)g(P,Q)

can be explicitly computed from the Weyl relations:

ei(αP+βQ)ei(α′P+β′Q) = ei(αβ′−α′β)/2ei((α+α′)P+(β+β′)Q)
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Representations of κ-Minkowski (1+1)

We fix d = 2, κ = 1 in absolute units. (T =“time”, X=“space”)
Def. [T ,X ] = iX in the regular (i.e. Weyl) form if

eiαT eiβX = eiβe−αX eiαT , α, β ∈ R. (1)

Prop. Let P,Q be Schröd. ops on R. The universal
representation

(T ,X ) = (T−,X−)⊕ (T0,X0)⊕ (T+,X+),

where

(T+,X+) = (P,e−Q), (T0,X0) = (Q,0), (T−,X−) = (P,−e−Q)

contains (up to multiplicities) any regular representation of (1).
(same as [Agostini] under different def of regularity (and
techiniques))
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Weyl Operators?

Problem: Given (T ,X ) reg. rep., find explicit form of the Weyl
Operators

W (α, β) = ei(αT +βX).

Strategy: They provide the unique solution of:

W (α,0) = eiαT , W (0, β) = eiβX , (2)

W (α, β)−1 = W (α, β)∗, (3)

W (λα, λβ)W (λ′α, λ′β) = W ((λ+ λ′)α, (λ+ λ′)β). (4)
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Weyl Operators!

Explicit Solution !

eiαT +iβX = eiαT eiβ eα−1
α

X . (5)

Check: Compute derivatives (Stone-von Neumann thm).
With T± = P,X± = ±e−Q,

(eiαT±+βX±ξ)(s) = (ei(αP±βe−Q)ξ)(s) = e±iβ 1−e−α

α
e−s

ξ(s+α), ξ ∈ L2(R).

With T0 = Q,X0 = 0,

(eiαT0+βX0ξ)(s) = eiαsξ(s).

Rem:P,Q are not quantum mechanical momentum and
position, only mathematical analogy:
Q|s〉 = s|s〉 ⇔ X±|s〉 = ±e−s|s〉.
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“Keisenberg” Group

The product of two W (α, β) is again such (not up to a constant
as in the CCR case). They form a subgroup of the unitary
group and R2 inherits a group law:

(α1, β1)(α2, β2) = (α1+α2,w(α1+α2, α1)eα2β1+w(α1+α2, α2)β2),

where

w(α, α′) =
α(eα

′ − 1)

α′(eα − 1)
. (6)

Rem:
w(α, α′) > 0, w(0,0) = 1, w(α1, α2)w(α2, α3) = w(α1, α3).
By construction W (α, β) provide a strongly continuous unitary
representation of the resulting "Keisenberg" group H (faithful if
(T ,X ) is not trivial).
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Unveiling the “Keisenberg” Group

H is isomorphic to the so called “ax + b” group, or to{(
ea 0
b 1

)
: (a,b) ∈ R2

}
⊂ GL(2).

The (real) Lie algebra of H has two generators u, v fulfilling

[u, v ] = −v .

For every unitary representation W of H, (T ,X ) defined by

W (Exp{λu}) = eiλT , W (Exp{λv}) = eiλX

are a regular representation of the κ-Minkowski relations.
This choice of Weyl operators is canonical in the sense that it
does not depend on any choice of order of operator products
(e.g. “time-first”, [Agostini,. . . ]).
The explicit form allows to go beyond formal computations
based on BCH or “standalone” theories of star product [Agostini
et al, Gracia-Bondia et al, Kosi nski et al].
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Quantisation à la Weyl

W (α, β) are the quantised “plane waves”. Following Weyl we
define the quantisation

f (T ,X ) =

∫
dα dβ f̌ (α, β)ei(αT +βX),

where
f̌ (α, β) =

1
(2π)2

∫
dt dx f (t , x)e−i(αt+βx),

and (T ,X ) is the universal representation of the relations (1).
Notation for the components:

f (T ,X ) = f (T−,X−)⊕ f (T0,X0)⊕ f (T+,X+).

This quantisation is “good” (in the previously discussed sense).



Twisted Products

The operator product of quantised symbold induced a twisted
product on the symbols themselves:

f (T ,X )g(T ,X ) = (f ? g)(T ,X )

provides ?-product of admissible symbols, explicitly given by

(f ? g)ˇ(α, β) =

∫
dα′dβ′ w(α− α′, α)f̌ (α′, β′)

ǧ(α− α′,w(α− α′, α)β − w(α− α′, α′)eα−α′β′).

It’s hard to study ? directly. In the case of the CCR the best way
is to realize that f 7→ f (P,Q) relates to the representation of the
group algebra of the Heisenberg group.
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Haar Magic
It is not so in our case, because the “Keisenberg” group H is
not unimodular. its left Haar measure and modular function are

dµ(α, β) =
eα − 1
α

dα dβ, ∆(α, β) = eα.

Something magic happens: with the bijective isometry

u : L1(R2)→ L1(H), (uϕ)(α, β) =
α

eα − 1
ϕ(α, β),

the *-representation

π(ϕ) :=

∫
dµ(α, β)ϕ(α, β)W (α, β), ϕ ∈ L1(H),

of the group algebra L1(H) fulfils

f (T ,X ) = π(uf̌ ) but 6= π(f̌ ).

This makes ? O.K.:

(f ? g)(T ,X ) = π(uf̌ )π(uǧ).
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Haar Magic
It is not so in our case, because the “Keisenberg” group H is
not unimodular. its left Haar measure and modular function are

dµ(α, β) =
eα − 1
α

dα dβ, ∆(α, β) = eα.

Something magic happens: with the bijective isometry

u : L1(R2)→ L1(H), (uϕ)(α, β) =
α

eα − 1
ϕ(α, β),

the *-representation

π(ϕ) :=

∫
dµ(α, β)ϕ(α, β)W (α, β), ϕ ∈ L1(H),

of the group algebra L1(H) fulfils

f (T ,X ) = π(uf̌ ) but 6= π(f̌ ).

This makes ? O.K.:

(f ? g)(T ,X ) = π(uf̌ )π(uǧ).
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Schrödinger Op’s Forever!

We note that X± looks like the quantisation of the restriction of
x to ±(0,∞).

• If f (·, x) = g(·, x), ±x ∈ (0,∞), then
f (T±,X±) = g(T±,X±).

• If f (·,0) = g(·,0), then f (T0,0) = g(T0,0) in the sense of
functional calculus,

• the map

(γ±f )(t , x) =

∫
dα eiαt fˇ⊗id

(
α,±eα/2 − e−α/2

α
e−x

)

fulfils
(γ±f )(P,Q) = f (T±,X±).
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α
e−x

)

fulfils
(γ±f )(P,Q) = f (T±,X±).



Trace and C*-Algebra

Big deal! Just using the properties of the CCR Weyl
quantisation, and positivity and cyclicity the operator trace Tr : if
γ±f ∈ L1(R2), then f (T ,X ) is trace class and

Tr f (T ,X ) = τ(f ), where τ = τ− + τ+

and

Tr f (T±,X±) =: τ±(f ) = (γ±f )ˇ(0,0) =

∫
dt dx f (t ,±e−x ).

If σ = τ, τ−, τ+,

σ(f̄ ? f ) > 0, σ(f ? g) = σ(g ? f ).

(If f (·,0) 6= 0, f (T ,X ) is not trace class).
We can also determine that the C*-algebra of the relations (1) is

A = K ⊕ C∞(R)⊕K,

where K is the algebra of compact operators.
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Large κ Limit

Another consequence:
the classical limit of each ± component is the same limit as the
small ~ limit of the CCR up to restrictions to open halflines,
which then are kept separated from each other and the origin.
Said differently, X has continuous spectrum R\{0} and pure
point {0} for all κ.
This survives and the large κ (classical) limit of d = 2
κ-Mikowski is

R× R̃,

where
R̃ = (−∞,0) t {0} t (0,∞).



Uncertainty Relations

∆ω(T )∆ω(X ) >
1
2
ω(|[T ,X ]|) =

1
2
ω(|X |)

for a state ω with ω(X ) small give no obstructions to have small
product of uncertainties.
Indeed we actually found, for every ε, η > 0, a non trivial pure
vector state Ψ in the domain of T ,X , such that

∆Ψ(T ) < ε, ∆Ψ(X ) < η.

This means that there is no limit on the localisation precision of
all the spacetime coordinates, at least in the region close to the
space origin (which thus is asymptotically classical at small
distances from the origin).
This is in plain contrast with the standard motivations for
spacetime quantisation, namely to prevent the formation of
closed horizons as an effect of localisation alone (see [DFR]).



Conclusions
On the mathematical side, we found an explicit quantisation
prescription of κ-Minkowski, which realises precisely the
underlying relations, its C*-algebra, and computed the trace.
Instead regarding interpretation, we find some problematic
features:
• The main motivation for spacetime quantisation, namely to

prevent arbitrarily precise localisation (which could lead to
horizon formation) is lost for this model.

• On the contrary, the noncommutativity grows ad large
distances.

• The macroscopic limit exhibits a pathological (?) topology
which should manifest itself as ’impenetrable barriers’
breaking the flat Minkowski spacetime in disconnected
regions.

• Recall also the well known fact that Lorentz and translation
covariance are broken.
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