K-theory for certain expanders Joint work with G. Yu (Vanderbilt University)

H. Oyono-Oyono

September 4, 2009

Coarse structures

Definition

(X, d) and (Y, d) metric spaces,

- $f: X \rightarrow Y$ is a coarse map if

 - 2 $Z \subset Y$ bounded $\Rightarrow f^{-1}(Z)$ bounded.
- X and Y are coarsely equivalent if there exist coarse maps
 f : X → Y and g : Y → X and M > 0 such that d(f ∘ g(y), y) < M
 and d(g ∘ f(x), x) < M ∀x ∈ X and ∀y ∈ Y.

Example

- **①** \mathbb{Z} and \mathbb{R} are coarsely equivalent;
- If a finitely generated discrete group Γ equipped with the word metric acts isometrically, properly and cocompactly on a proper metric space X, then Γ and X are coarsely equivalent.

Definition

A discrete metric space Σ has bounded geometry if $\forall R > 0, \exists N \in \mathbb{N}$ s.t $\#B(x, R) \leq N$ for all x in Σ ;

- Σ: discrete metric space with bounded geometry.
- C[Σ] : *-algebra of loc. cpct operators on ℓ²(Σ)⊗H with finite propagation (H separable Hilbert space), i.e T = (T_{x,y})_{(x,y)∈Σ²} bounded with
 - $T_{x,y}$ cpct operator H;
 - there exists r > 0 s.t that $T_{x,y} = 0$ if d(x, y) > r.
- $C^*(\Sigma) = \overline{C[\Sigma]} \subset B(\ell^2(\Sigma) \otimes H);$
- C^{*}(Σ) encodes the large scale geometry of Σ.
- *K*_{*}(*C*^{*}(Σ)) is the receptacle for higher order indices of elliptic operators on manifolds coarsely equivalent to Σ;

For *X* proper metric space and μ borelian measure on *X* with $Supp \mu = X$, the preceding construction can be generalised to $L^2(\mu) \otimes H$ (*H* sep. Hilbert) $\Rightarrow C^*(X, \mu)$

Definition

Let (X, d) be a proper metric space. A discrete set $\Sigma \subset X$ is a net in X if $\exists \epsilon > 0$ and R > 0 s.t

- $d(y, y') > \varepsilon$ for all y and y' in Σ ;
- For all x in X, there exists y in Σ s.t d(x, y) < R;

Example : \mathbb{Z} is a net in \mathbb{R} .

If μ is any borelian measure on X with $Supp \mu = X$, Σ a net in X, then $L^2(\mu) \otimes H \cong \ell^2(\Sigma) \otimes H$ by an isometry that preserves finite propagation, hence $C^*(X, \mu) \cong C^*(\Sigma)$ (non canonical);

The isomorphism is canonical in *K*-theory (Higson-Roe)

How can we construct elements in $K_*(C^*(\Sigma))$ (Higson-Roe)?

- Let X be a proper metric space that contains a net Σ with bounded geometry;
- Let $x \in K_*(X) = KK_*(C_0(X), \mathbb{C})$ given by a K-cycle (\mathcal{H}, ρ, F) where
 - *H* is a Hilbert space;
 - $\rho: C_0(X) \to B(\mathcal{H})$ is a representation;
 - $F \in B(\mathcal{H})$ satisfies the K-cycle condition i.e $\rho(f)(F^2 Id_{\mathcal{H}}), \rho(f)(F F^*)$ and $[\rho(f), F]$ are compact operators for all f in $C_0(X)$.

We can assume without loss of generality that

- *H* = L²(µ) ⊗ *H* with µ borelian measure on *X* with Supp µ = X and *H* separable Hilbert space;
- ρ is induced by the representation $C_0(X) \hookrightarrow L^2(\mu)$;
- *F* has finite propagation (replace *F* by ∑_i f_i^{1/2} *F* f_i^{1/2} for some suitable partition of the unit (f_i));

In the even case set $W = \begin{pmatrix} I_d & F \\ 0 & I_d \end{pmatrix} \begin{pmatrix} I_d & 0 \\ -F^* & I_d \end{pmatrix} \begin{pmatrix} I_d & F \\ 0 & I_d \end{pmatrix} \begin{pmatrix} 0 & -I_d \\ I_d & 0 \end{pmatrix}$ Then

 $W\begin{pmatrix} l_{d} & 0\\ 0 & 0 \end{pmatrix} W^{-} 1 - \begin{pmatrix} l_{d} & 0\\ 0 & 0 \end{pmatrix} \in C^{*}(X, \mu) \otimes M_{2}(\mathbb{C})$ and hence $\begin{bmatrix} W\begin{pmatrix} l_{d} & 0\\ 0 & 0 \end{pmatrix} W^{-} 1 \end{bmatrix} - \begin{bmatrix} \begin{pmatrix} l_{d} & 0\\ 0 & 0 \end{bmatrix} \end{bmatrix}$ defines an element in $K_{0}(C^{*}(X, \mu))$ We get an assembly map

$$\mathcal{K}_*(\mathcal{X}) \to \mathcal{K}_*(\mathcal{C}^*(\mathcal{X},\mu)) \cong \mathcal{K}_*(\mathcal{C}^*(\Sigma))$$

Definition (The rips complex)

 Σ discrete with bounded geometry. $P_r(\Sigma)$ is the set of probabilities on Σ with support of diameter less than r

 Σ is a net in $P_r(\Sigma)$ (viewed as Dirac measures).

Definition (Coarse Baum-Connes assembly map)

$$\mu_{\Sigma,*}: \lim_{r>0} K_*(P_r(\Sigma)) \longrightarrow K_*(C^*(\Sigma)).$$

Theorem (Higson, Roe, Skandalis-Tu-Yu)

For Γ finitely generated group, if $\mu_{|\Gamma|,*}$ is an isomorphism, then the Novikov conj. holds for Γ . ($|\Gamma|$ is the underlying metric space equipped with the word metric)

Definition

A discrete metricc space Σ is uniformly embeddable into a Hilbert space H if there exists a map $f : \Sigma \to H$ such that for every R > 0, there exists S > 0 such that

•
$$d(x,y) < R \Rightarrow ||f(x),f(y)|| < S;$$

•
$$||f(x), f(y)|| < R \Rightarrow d(x, y) < S.$$

Theorem (Yu)

If Σ is uniformly embeddable into a Hilbert space, then Σ satisfies the coarse Baum-connes conj. (i.e μ_{Σ} is an iso).

In particular if Γ is a finitely generated discrete group uniformly embeddable into a Hilbert space, then Γ satisfies Novikov conjecture.

Example

- Linear groups (Guentner)
- 2 Exact groups (Yu).

Counterexamples for the coarse Baum-Connes conjecture (CBC)

Infinite families of expander graphs are not uniformly embeddable into a Hilbert space (Gromov).

Theorem (Higson-Lafforgue-Skandalis)

Infinite families of expander graphs are counterexamples for CBC

Conjecture (Baum-Connes)

If A is a Γ - C^* -algebra, $\mu_{\Gamma,A,*} : K_*^{top}(\Gamma, A) \longrightarrow K_*(A \rtimes_r \Gamma)$ is an isomorphism, with $K_*^{top}(\Gamma, A) = \lim_{r>0} KK^{\Gamma}(C_0(P_r(\Gamma)), A)$.

Theorem (Higson-Lafforgue-Skandalis)

If the Cayley graph of Γ quasi-contains an infinite families of expander graphs, then $\mu_{\Gamma,A,*}$ fails to be an iso for some Γ -*C*^{*}-algebra *A*.

How can we construct families of expander graphs?

Recall that a family of *k*-regular graphs $(X_i)_{i \in I}$ is a family of expanders if there exists $\varepsilon > 0$ s.t $\lambda_1(\Delta_{X_i}) > \varepsilon$ for all *i*.

Definition

 Γ has the property (τ) with respect to a family $(\Gamma_i)_{i \in \mathbb{N}}$ of finite index normal subgroups if the trivial rep. is isolated from irr. representation that factorises through some Γ/Γ_i .

Example

For
$$n \geq 2$$
, $\Gamma = SL_n(\mathbb{Z})$ with $\Gamma_i = \ker SL_n(\mathbb{Z}) \to SL_n(\mathbb{Z}/\mathbb{Z}_i)$.

Theorem

The family of Caley Graphs of Γ/Γ_i is a family of expanders iff Γ has property (τ) holds with respect to $(\Gamma_i)_{i \in \mathbb{N}}$.

Assembly maps and expanders

For Γ f.g and residually finite with respect to a family (Γ_i)_{i∈N} of finite index normal subgroups (i.e ∩_{i∈N}Γ_i = {e}), we set

$$X(\Gamma) = \coprod_{i \in \mathbb{N}} \Gamma / \Gamma_i$$

equipped with a left invariant metric d

- Induced by the word metric of Γ on Γ/Γ_i ;
- $d(\Gamma/\Gamma_i, \Gamma/\Gamma_j) \geq i+j.$
- The behaviours of X(Γ) with respect to CBC and of Γ with respect to BC substancially differ :
- for $\Gamma = SL_2(\mathbb{Z})$
 - X(Γ) is a family of expander graphs so is a counterexample for CBC
 - Γ has the Haagerup property and thus satisfies BC with coefficients (Higson-Kasparov).
 - If we consider maximal *C**-algebras, the behaviours become quite similar!

Lemma (Gong-Wang-Yu)

For any T in $C[\Sigma]$, there exists a real c_T such that for any *-representation ϕ of $C[\Sigma]$ on a Hilbert space H_{ϕ} , then $\|\phi(T)\| \leq c_T$.

Definition (Gong-Wang-Yu)

 $C^*_{max}(\Sigma)$ is the completion of $C[\Sigma]$ with respect to the *-norm

$$\|T\| = \sup_{(\phi,H_{\phi})} \|\phi(T)\|,$$

when (ϕ, H_{ϕ}) runs through representations ϕ of $C[\Sigma]$ on a Hilbert space H_{ϕ} .

We can define a maximal coarse assembly map

$$\mu_{\Sigma,\max}: \lim_{r>0} K_*(P_r(\Sigma)) \longrightarrow K_*(C^*_{\max}(\Sigma))$$

Main result

Proposition (O-Yu)

For $A_{\Gamma} = \ell^{\infty}(X(\Gamma), \mathcal{K}(H)) / C_0(X(\Gamma), \mathcal{K}(H))$, we have an exact sequence

$$0 \longrightarrow \mathcal{K}(\ell^{2}(X(\Gamma)) \otimes H) \longrightarrow \mathcal{C}^{*}_{max}(X(\Gamma)) \longrightarrow \mathcal{A}_{\Gamma} \rtimes_{max} \Gamma \longrightarrow 0$$

which gives rise to a $\mathbb{Z}/2\mathbb{Z}$ -graded exact sequence

$$0 \longrightarrow \mathbb{Z} \oplus \{0\} \longrightarrow \mathcal{K}_*(C^*_{max}(X(\Gamma))) \longrightarrow \mathcal{K}_*(\mathcal{A}_{\Gamma} \rtimes_{max} \Gamma) \longrightarrow 0.$$

Not exact for $C^*(X(\Gamma))$ and $A_{\Gamma} \rtimes_{red} \Gamma$ (Higson-Lafforgues-Skandalis).

Theorem (O-Yu)

We have a commutative diagram with exact rows

Theorem

$$\mu_{X(\Gamma),max,*}: \lim_{r} \mathcal{K}_{*}(\mathcal{P}_{r}(X(\Gamma))) \to \mathcal{K}_{*}(\mathcal{C}^{*}_{max}(X(\Gamma)))$$

is an isomorphism iff

$$\mu_{\Gamma, \mathcal{A}_{\Gamma}, max, *}: \mathcal{K}^{top}_{*}(\Gamma, \mathcal{A}_{\Gamma}) \to \mathcal{K}_{*}(\mathcal{A}_{\Gamma} \rtimes_{max} \Gamma)$$

is an isomorphism.

Examples: $\Gamma = SL_2(\mathbb{Z})$ and more generally if Γ has the Haagerup property, Γ fundamental group of a compact oriented 3-manifold.

Theorem

If $\mu_{\Gamma,A_{\Gamma,*}} : K_*^{top}(\Gamma,A_{\Gamma}) \to K_*(A_{\Gamma} \rtimes_{red} \Gamma)$ is one-to-one, then $\mu_{X(\Gamma),*} : \lim_r K_*(P_r(X(\Gamma))) \to K_*(C^*(X(\Gamma)))$ is also one-to-one.

Example : Γ uniformly embeddable in a Hilbert space.

Further connection with Baum-Connes conjecture: quantitative assembly maps

- In what follows, Γ is f.g and residually finite with respect to a family (Γ_i)_{i∈ℕ} of finite index normal subgroups;
- We have a family of assembly maps

 $\mu_{\Gamma_i,\mathbb{C},\max,*}: K^{\mathsf{top}}_*(\Gamma_i,\mathbb{C}) {\longrightarrow} K_*(\mathcal{C}^*_{\max}(\Gamma_i))$

with $\mathcal{K}^{\text{top}}_{*}(\Gamma_{i},\mathbb{C}) = \lim_{r>0} \mathcal{K}\mathcal{K}^{\Gamma_{i}}_{*}(\mathcal{C}_{0}(\mathcal{P}_{r}(\Gamma)),\mathbb{C}).$

- Aim: Introduce some propagation control on (μ_{Γi,C,max})_{i∈N} to relate BC max for the Γ_i with CBC max for X(Γ) = ∐_{i∈N} Γ/Γ_i;
- The relevant propagation comes indeed from C(Γ/Γ_i) ⋊_{max} Γ under the Morita equivalence between C^{*}_{max}(Γ_i) and C(Γ/Γ_i) ⋊_{max} Γ;
- Up to this Morita equivalence, we have a family of assembly maps

 $\mu_{\Gamma_i,\mathbb{C},\max,*}: K^{\mathsf{top}}_*(\Gamma_i,\mathbb{C}) \longrightarrow K_*(C(\Gamma/\Gamma_i) \rtimes_{\mathsf{max}} \Gamma)$

Almost projection with finite propagation

Definition

For a unital Γ - C^* -algebra A and r > 0, then $f \in A \rtimes_{max} \Gamma$ has propagation less than r if $f \in C_c(\Gamma, A)$ and Supp $f \subset B(e, r)$ (where Γ is equipped with the word metric).

Idea : control the propagation in $K_*(C(\Gamma/\Gamma_i) \rtimes_{\max} \Gamma$ by the family $(KK^{\Gamma_i}(C_0(P_r(\Gamma), \mathbb{C}))_{r>0})$.

Definition

For a unital Γ - C^* -algebra A, $\varepsilon \in (0, 1/4)$ and r > 0, $p \in A \rtimes_{max} \Gamma$ is an ε -r-projection if

•
$$\rho = \rho^*, \|\rho^2 - \rho\| < \varepsilon;$$

• p has propagation less than r;

p is an ε -*r* proj \Rightarrow *p* has a spectral gap and if $\phi_{\varepsilon} : \mathbb{R} \to \mathbb{R}$ is cont. s.t $\phi_{\varepsilon}(t) = 0$ for $t < \frac{1-\sqrt{1-4\varepsilon}}{2}$ and $\phi_{\varepsilon}(t) = 1$ for $t > \frac{1+\sqrt{1-4\varepsilon}}{2}$, then $\phi_{\varepsilon}(p)$ is a proj.

Definition

Let p_0 in some $M_{k_0}(A \rtimes_{max} \Gamma)$ and p_1 in $M_{k_1}(A \rtimes_{max} \Gamma)$ be ε -*r*-projections and let n_0 and n_1 be integers, then

 $(p_0, n_0) \sim_{\varepsilon, r} (p_1, n_1)$

if for some n, $\binom{p_0}{l_{k_0+n}}$ and $\binom{p_1}{l_{k_1+n}}$ are homotopic as ε -r-projections in some $M_N(A \rtimes_{max} \Gamma)$ with $N \ge k_0 + n_0 + n$, $k_1 + n_1 + n$.

Remark

If
$$(p_0, n_0) \sim_{\varepsilon, r} (p_1, n_1)$$
 then $[\phi_{\varepsilon}(p_0)] - [I_{n_0}] = [\phi_{\varepsilon}(p_1)] - [I_{n_1}]$ in $\mathcal{K}_0(\mathcal{A} \rtimes_{\max} \Gamma)$.

A Quantitative assembly map

- Fix for every *r* a Γ -inv. measure ν_r on $P_r(\Gamma)$ with $Supp \nu_r = P_r(\Gamma)$;
- Every element in KK^{Γ_i}_{*}(C₀(P_r(Γ)), C) can be represented by a K-cycle (L²(ν_r) ⊗ H, ρ_r, F_i) where
 - ρ_r is induced by the representation $C_0(P_r(\Gamma)) \hookrightarrow L^2(\nu_r)$;
 - *F_i* has finite propagation and is Γ_i-equivariant;

 $\Psi^{\Gamma_i}((P_r(\Gamma)))$: set of op. on $L^2(\nu_r) \otimes H$ satisfying the (even) K-cycle condition for $KK_0^{\Gamma_i}(C_0(P_r(\Gamma)), \mathbb{C})$, of finite prop., Γ_i -equiv. and $\|F_i\| \leq 1$.

Proposition (O-Yu)

Let F_i in $\Psi^{\Gamma_i}((P_r(\Gamma)))$. Then for every $\varepsilon \in (0, 1/72)$, there exists

- r (depending only on ε , d and the propagation of F_i);
- an integer n_{F_i,ε}
- a ε -r-projection $p_{F_i,\varepsilon}$ of $M_{2n_{F_i,\varepsilon}}(C(\Gamma/\Gamma_i) \rtimes_{max} \Gamma)$;

s.t if x_{F_i} in $K_0^{top}(\Gamma_i, \mathbb{C})$ comes from the K-cycle $(L^2(\nu_r) \otimes H, \rho_r, F_i)$ then $\mu_{\Gamma_i,\mathbb{C},\max,*}(x_{F_i}) = [\phi_{\varepsilon}(p_{F_i,\varepsilon})] - [I_{n_{F_i,\varepsilon}}]$ in $K_0(C(\Gamma/\Gamma_i) \rtimes_{max} \Gamma)$.

Asymptotic statements

For any integer *i* and any positive real *r*, *r'*, *s*, *s'* and any ε in (0, 1/72) $\mathbf{Ql}_{\mathbf{0}}(\mathbf{i}, \mathbf{r}, \mathbf{r}', \mathbf{s}, \varepsilon)$ for any (even) K-cycle *F* of $\Psi^{\Gamma_i}(P_r(\Gamma))$, then $(p_{F,\varepsilon}, n_{F,\varepsilon}) \sim_{18\varepsilon,s} (0, 0) \Rightarrow$ the class corresponding to *F* lies in the kernel of

$$KK_0^{\Gamma}(P_r(\Gamma), C(\Gamma/\Gamma_i)) \longrightarrow KK_0^{\Gamma}(P_{r'}(\Gamma), C(\Gamma/\Gamma_i))$$

induced by the inclusion $P_r(\Gamma) \hookrightarrow P_{r'}(\Gamma)$.

 $\begin{aligned} & \mathbf{QS}_{\mathbf{0}}(\mathbf{i}, \mathbf{r}, \mathbf{s}, \mathbf{s}', \varepsilon) \text{ For any } \varepsilon\text{-}s\text{-}\text{projection } p \text{ in some } M_k(C(\Gamma/\Gamma_i) \rtimes_{\max} \Gamma) \\ & \text{ and any integer } n, \text{ there exists a (even) K-cycle } F \text{ of } \\ & \Psi^{\Gamma_i}(P_r(\Gamma)) \text{ such that } (p_{F,\varepsilon}, n_{F,\varepsilon}) \sim_{18\varepsilon,s} (p, n) \end{aligned}$

Remark

We have similar statement in the odd case in term of ε -*r*-unitaries (*u* with propagation less than *r* and $||u^*u - 1|| < \varepsilon$ and $||uu^* - 1|| < \varepsilon$

Theorem (O-Yu)

The following statements are equivalent:

● For any positive real r the following condition holds : there is an ε in (0, 1/72) such that for any positive real s, there exists an integer j and a positive real r' for which Ql_{*}(i, r, r', s, ε) is true for all i ≥ j.

2 $\mu_{X(\Gamma),max,*}$ is injective.

Example $SL_n(Z)$ and more generally if Γ embeds uniformally in a Hilbert space

Theorem (O-Yu)

Assume that $\exists \varepsilon \in (0, 1/72)$ s.t the following holds: $\forall s > 0$, $\exists r > 0$ and s' > 0 and an integer j such that $QS_*(i, r, s, s', \varepsilon)$ is true for all integer $i \ge j$. Then $\mu_{X(\Gamma), max, *}$ is surjective.

Up to reoganise the sequence $(\Gamma_i)_{i \in /N}$, we have the following converse

Theorem (O-Yu)

Set
$$X^{\infty}(\Gamma) = \coprod_{i \in \mathbb{N}} \coprod_{j \ge i} \Gamma / \Gamma_j$$
 and assume that

$$\mu_{X^{\infty}(\Gamma), max, *} : \lim_{r} \mathcal{K}_{*}(\mathcal{P}_{r}(X^{\infty}(\Gamma)), \mathbb{C}) \to \mathcal{K}_{*}(\mathcal{C}^{*}_{max}(X^{\infty}(\Gamma)))$$

is onto. Then $\exists \varepsilon \in (0, 1/72)$ s.t the following holds: $\forall s > 0$, $\exists r > 0$ and s' > 0 and an integer j s.t $QS_*(i, r, s, s', \varepsilon)$ is true for all integer $i \ge j$.

Examples : $SL_2(\mathbb{Z})$ and more generally Γ with the Haagerup property; Fundamental groups of compact oriented 3-manifolds.

H. Oyono-Oyono (Université Blaise Pascal, C

K-theory for certain expanders

Conditions *QI* and *QS* can obviously be defined with reduced cross products instead of maximal cross products.

Proposition (O-Yu)

Set $A^{\infty}_{\Gamma} = \ell^{\infty}(X^{\infty}(\Gamma), \mathcal{K}(H)) / C_0(X^{\infty}(\Gamma), \mathcal{K}(H))$ and assume that Γ is *K*-exact and that following condition is satisfied:

for all ε in (0, 1/72) there exists s > 0 such that for all r > and s' > 0 and j integer, there exists an integer i with $i \ge j$ for which $QS_*^{red}(i, r, s, s', \varepsilon)$ does not hold.

Then $\mu_{\Gamma, A_{\Gamma}^{\infty}, *}$ is not onto.