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The gap-labelling is given by 2572 [%]
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Definition

e Tiling of the plane : countable family P = {t;, t,,
empty polygons t;, called tiles s.t. :

e ty,ty,... cover the Euclidean plane.
o Two tiles only meet on their border.

...} of non
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Definition

e Tiling of the plane : countable family P = {t;, t,,
empty polygons t;, called tiles s.t. :

e ty,ty,... cover the Euclidean plane.
o Two tiles only meet on their border.

...} of non
e Patch : finite union of tiles of the tiling.
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F1a. 1: Construction of a (1,2)-pinwheel tiling
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G = R? x S group of rigid motions.
e Aperiodic tiling P : no translation of R? fixes P.

e Finite G-type tiling : VR > 0, there exists a finite number of
patches with diameter smaller than R modulo the action of G.

o G-Repetitive tiling P : for any patch A of P, IR(A) > 0 s.t.

any ball of radius R(.A) intersects P on a patch containing a
G-copy of A.
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Pinwheel tiling and the gap labelling conjecture

P a pinwheel tiling.

o Q = completion of P - (R? x S1).

e {2 is a compact metric space.
° (Q,R2 X 51) is a minimal dynamical system.

o C(Q) x R2 x S* = completion of C.(R? x S x Q).
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e =:={P €Q|0¢€ Punct(P') & P’ is well oriented}
e = is a Cantor set

o Qs a foliated space and = is a transversal of €.
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.

e  is endowed with a G-invariant ergodic probability measure

@ x induces an invariant transverse measure ' on = defined
locally by the quotient of i by the Lebesgue measure .

o (f):= [ f(0,0,w)du(w) for f € C.(R? x S x Q) defines
a trace on C() x R? x St.
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Gap-Labelling conjecture : ( Bellissard, 1989)

w1 (Ko(C(R) % B2 1 §1)) = u!(C(Z,2))
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Theorem : (M., 2009)
Vb e Ko(C(Q) x R? x S), J[u] € K1(C(Q)) s.t.

2 (b) = £ ([u] ®c(q) [Ds])
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Theorem : (M., 2009)

Vb e Ko(C(Q) » R2 x S1), 3[u] € Ki(C(Q)) s.t.

r2(b) = 7([u] @c(e [Ds]) = | CHi([u]) | 1G]]

where [C,c] € H(Q) is the Ruelle-Sullivan current associated to uf
and Ch} : Ki(C(R)) — HZ(RQ) is the degree 3 component of the
longitudinal Chern character.
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Index theorem to solve the gap-labelling conjecture

Theorem : (M., 2009)

lim H*(B,; Z) ~ C(Z,Z)/H
with Vh € H, uf(h) =0
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Theorem : (M., 2009)
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Computation

P a pinwheel tiling.
P.

o First corona of a tile : union of all the tiles intersecting it in

e collared prototile of P : equivalence class of tiles with the
same first corona up to rigid motions.
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A = matrix with a; ; = number of collared tiles of type i in the
substitution of the collared prototile of type .

Proposition : (M. ,2009)

lim(Z%®, A ~ C(Z,2)/H’

with Vh € H' | pt(h) = 0.

Tf:(KO(C(Q) 3 R2 51)) = 1t (C(E,2))
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A = matrix with a; ; = number of collared tiles of type i in the
substitution of the collared prototile of type j.
Proposition : (M. ,2009)

lim(Z%, A ~ C(Z,2)/H’
with Vh e H", pt(h) = 0.

T;f(KO(C(Q) x R? x 51)) = 1t (C(Z,2))
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