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Definitions

Definition :

Tiling of the plane : countable family P = {t1, t2, . . .} of non
empty polygons ti , called tiles s.t. :

t1, t2, . . . cover the Euclidean plane.
Two tiles only meet on their border.

Patch : finite union of tiles of the tiling.
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Repetitivity

G = R2 o S1 group of rigid motions.

Aperiodic tiling P : no translation of R2 fixes P.

Finite G -type tiling : ∀R > 0, there exists a finite number of
patches with diameter smaller than R modulo the action of G .

G -Repetitive tiling P : for any patch A of P, ∃R(A) > 0 s.t.
any ball of radius R(A) intersects P on a patch containing a
G -copy of A.
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Tiling space Ω

P a pinwheel tiling.

Ω = completion of P · (R2 o S1).

Ω is a compact metric space.

(
Ω,R2 o S1

)
is a minimal dynamical system.

C (Ω) o R2 o S1 = completion of Cc(R2 o S1 × Ω).
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The canonical transversal Ξ

Ξ := {P ′ ∈ Ω | 0 ∈ Punct(P ′) & P ′ is well oriented}.

Ξ is a Cantor set

Ω is a foliated space and Ξ is a transversal of Ω.
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Gap-labelling conjecture

Ω is endowed with a G -invariant ergodic probability measure
µ.

µ induces an invariant transverse measure µt on Ξ defined
locally by the quotient of µ by the Lebesgue measure .

τµ(f ) :=
∫

Ω f (0, 0, ω)dµ(ω) for f ∈ Cc(R2 o S1 × Ω) defines
a trace on C (Ω) o R2 o S1.
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Gap-labelling conjecture

Gap-Labelling conjecture : ( Bellissard, 1989)

τµ∗

(
K0

(
C (Ω) o R2 o S1

))
= µt

(
C (Ξ,Z)

)
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Theorem : (M., 2009)
∀ b ∈ K0

(
C (Ω) o R2 o S1

)
, ∃[u] ∈ K1

(
C (Ω)

)
s.t.

τµ∗
(
b
)

= τµ∗
(
[u]⊗C(Ω) [D3]

)
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Theorem : (M., 2009)
∀ b ∈ K0

(
C (Ω) o R2 o S1

)
, ∃[u] ∈ K1

(
C (Ω)

)
s.t.

τµ∗
(
b
)

= τµ∗
(
[u]⊗C(Ω) [D3]

)
=
[
Ch3

` ([u]) | [Cµt ]
]

where [Cµt ] ∈ H`
3(Ω) is the Ruelle-Sullivan current associated to µt

and Ch3
` : K1(C (Ω)) → H3

` (Ω) is the degree 3 component of the
longitudinal Chern character.
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and
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←−
Bn

with Bn simplicial complexes of dimension 2.

Thus
Ȟ3(Ω; Z) ' lim

−→
Ȟ2(Bn; Z)
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lim
−→

H2(Bn; Z) ' C (Ξ,Z)/H

with ∀h ∈ H, µt(h) = 0.
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Definitions

P a pinwheel tiling.

First corona of a tile : union of all the tiles intersecting it in
P .

collared prototile of P : equivalence class of tiles with the
same first corona up to rigid motions.
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A = matrix with ai ,j = number of collared tiles of type i in the
substitution of the collared prototile of type j .

Proposition : (M. ,2009)

lim
−→

(Z108,A′) ' C (Ξ,Z)/H ′

with ∀h ∈ H ′ , µt(h) = 0.

τµ∗
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(
C (Ω) o R2 o S1
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(
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)
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