Gap-labelling of the pinwheel tiling

H. Moustafa

Université Blaise Pascal

Lab. de Mathématiques, Clermont-Ferrand France, CNRS UMR 6620

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Vietri Sul Mare, August 31 2009

Plan

• Pinwheel tiling, tiling spaces and the gap labelling conjecture

・ロト ・回ト ・ヨト ・ヨト

Plan

• Pinwheel tiling, tiling spaces and the gap labelling conjecture Bellissard, 1989

イロト イポト イヨト イヨト

Plan

- Pinwheel tiling, tiling spaces and the gap labelling conjecture
- Index theorem to solve the gap-labelling conjecture

Plan

- Pinwheel tiling, tiling spaces and the gap labelling conjecture
- Index theorem to solve the gap-labelling conjecture

Connes, 1979 (Moore, Schochet, 1988)

Plan

- Pinwheel tiling, tiling spaces and the gap labelling conjecture
- Index theorem to solve the gap-labelling conjecture

Connes, 1979 (Moore,Schochet, 1988) Douglas, Hurder and Kaminker, 1991

< ロ > < 同 > < 回 > < 回 > .

Plan

- Pinwheel tiling, tiling spaces and the gap labelling conjecture
- Index theorem to solve the gap-labelling conjecture
- Gap labelling for the pinwheel tiling

Plan

- Pinwheel tiling, tiling spaces and the gap labelling conjecture
- Index theorem to solve the gap-labelling conjecture
- Gap labelling for the pinwheel tiling

Anderson and Putnam, 1998

Plan

- Pinwheel tiling, tiling spaces and the gap labelling conjecture
- Index theorem to solve the gap-labelling conjecture
- Gap labelling for the pinwheel tiling

Anderson and Putnam, 1998 Bellissard and Savinien, 2007

Plan

- Pinwheel tiling, tiling spaces and the gap labelling conjecture
- Index theorem to solve the gap-labelling conjecture
- Gap labelling for the pinwheel tiling
- Computation

Plan

- Pinwheel tiling, tiling spaces and the gap labelling conjecture
- Index theorem to solve the gap-labelling conjecture
- Gap labelling for the pinwheel tiling
- Computation

The gap-labelling is given by $\frac{1}{264}\mathbb{Z}\left[\frac{1}{5}\right]$

Tiling Construction Tiling space Ω The canonical transversal Ξ Gap-labelling conjecture

Pinwheel tiling, tiling spaces and the gap-labelling conjecture

H. Moustafa Gap-labelling of the pinwheel tiling

Tiling Construction Tiling space Ω The canonical transversal Ξ Gap-labelling conjecture

Definitions

Definition :

- **Tiling** of the plane : countable family $P = \{t_1, t_2, ...\}$ of non empty polygons t_i , called *tiles* s.t. :
 - t_1, t_2, \ldots cover the Euclidean plane.
 - Two tiles only meet on their border.

 $\begin{array}{l} \textbf{Tiling} \\ \textbf{Construction} \\ \textbf{Tiling space } \Omega \\ \textbf{The canonical transversal } \Xi \\ \textbf{Gap-labelling conjecture} \end{array}$

Definitions

Definition :

- **Tiling** of the plane : countable family $P = \{t_1, t_2, ...\}$ of non empty polygons t_i , called *tiles* s.t. :
 - t_1, t_2, \ldots cover the Euclidean plane.
 - Two tiles only meet on their border.
- Patch : finite union of tiles of the tiling.

Tiling **Construction** Tiling space Ω The canonical transversal Ξ Gap-labelling conjecture

Pinwheel tiling

(a)

FIG. 1: Construction of a (1,2)-pinwheel tiling

・ロト ・回ト ・ヨト ・ヨト

Tiling **Construction** Tiling space Ω The canonical transversal Ξ Gap-labelling conjecture

Pinwheel tiling

FIG. 1: Construction of a (1,2)-pinwheel tiling

・ロン ・部 と ・ ヨ と ・ ヨ と …

Tiling **Construction** Tiling space Ω The canonical transversal Ξ Gap-labelling conjecture

Pinwheel tiling

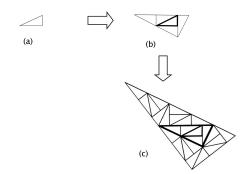


FIG. 1: Construction of a (1,2)-pinwheel tiling

・ロト ・回ト ・ヨト ・ヨト

Tiling Construction Tiling space Ω The canonical transversal Ξ Gap-labelling conjecture

Pinwheel tiling

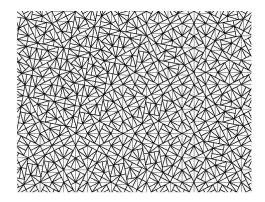


FIG. 2: (1,2)-pinwheel tiling

H. Moustafa Gap-labelling of the pinwheel tiling

・ロト ・回ト ・ヨト ・ヨト

Tiling **Construction** Tiling space Ω The canonical transversal Ξ Gap-labelling conjecture

Repetitivity

- $G = \mathbb{R}^2 \rtimes S^1$ group of rigid motions.
 - Aperiodic tiling P : no translation of \mathbb{R}^2 fixes P.
 - Finite G-type tiling : ∀ R > 0, there exists a finite number of patches with diameter smaller than R modulo the action of G.
 - G-Repetitive tiling P : for any patch A of P, ∃R(A) > 0 s.t. any ball of radius R(A) intersects P on a patch containing a G-copy of A.

Pinwheel tiling and the gap labelling conjecture Index theorem to solve the gap-labelling conjecture Computation Conclusion Tiling space Ω The canonical transversal Ξ Gap-labelling conjecture

Tiling space Ω

- P a pinwheel tiling.
 - $\Omega = \text{completion of } P \cdot (\mathbb{R}^2 \rtimes S^1).$
 - Ω is a compact metric space.
 - $(\Omega, \mathbb{R}^2 \rtimes S^1)$ is a minimal dynamical system.
 - $C(\Omega) \rtimes \mathbb{R}^2 \rtimes S^1 = \text{completion of } C_c(\mathbb{R}^2 \rtimes S^1 \times \Omega).$

Tiling Construction Tiling space Ω **The canonical transversal \Xi** Gap-labelling conjecture

The canonical transversal Ξ

•
$$\Xi := \{ P' \in \Omega \mid 0 \in Punct(P') \& P' \text{ is well oriented} \}.$$

- Ξ is a Cantor set
- Ω is a foliated space and Ξ is a transversal of Ω .

-

Tiling Construction Tiling space Ω The canonical transversal Ξ Gap-labelling conjecture

Gap-labelling conjecture

- Ω is endowed with a *G*-invariant ergodic probability measure μ .
- μ induces an invariant transverse measure μ^t on Ξ defined locally by the quotient of μ by the Lebesgue measure .
- $\tau^{\mu}(f) := \int_{\Omega} f(0, 0, \omega) d\mu(\omega)$ for $f \in C_{c}(\mathbb{R}^{2} \rtimes S^{1} \times \Omega)$ defines a trace on $C(\Omega) \rtimes \mathbb{R}^{2} \rtimes S^{1}$.

Tiling Construction Tiling space Ω The canonical transversal Ξ Gap-labelling conjecture

Gap-labelling conjecture

Gap-Labelling conjecture : (Bellissard, 1989)

$$au_*^{\mu}\Big(\mathcal{K}_0ig(\mathcal{C}(\Omega)
times\mathbb{R}^2
times S^1ig)\Big)=\mu^tig(\mathcal{C}(\Xi,\mathbb{Z})ig)$$

イロン 不同 とくほう イロン

Index theorem Interger group of coinvariants

Index theorem to solve the gap-labelling conjecture

H. Moustafa Gap-labelling of the pinwheel tiling

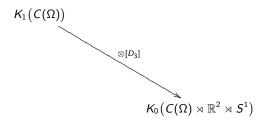
Index theorem Interger group of coinvariants

Index theorem to solve the gap-labelling conjecture

Theorem : (M., 2009) $\forall b \in K_0(C(\Omega) \rtimes \mathbb{R}^2 \rtimes S^1), \exists [u] \in K_1(C(\Omega)) \text{ s.t.}$ $\tau^{\mu}_*(b) = \tau^{\mu}_*([u] \otimes_{C(\Omega)} [D_3])$

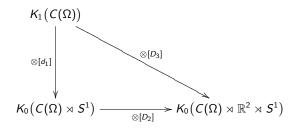
Index theorem Interger group of coinvariants

Index theorem to solve the gap-labelling conjecture



Index theorem Interger group of coinvariants

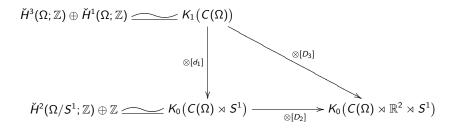
Index theorem to solve the gap-labelling conjecture



H. Moustafa Gap-labelling of the pinwheel tiling

Index theorem Interger group of coinvariants

Index theorem to solve the gap-labelling conjecture



(日) (同) (三) (三)

Index theorem Interger group of coinvariants

Index theorem to solve the gap-labelling conjecture

Theorem : (M., 2009) $\forall b \in K_0(C(\Omega) \rtimes \mathbb{R}^2 \rtimes S^1), \exists [u] \in K_1(C(\Omega)) \text{ s.t.}$ $\tau^{\mu}_*(b) = \tau^{\mu}_*([u] \otimes_{C(\Omega)} [D_3])$

Index theorem Interger group of coinvariants

Index theorem to solve the gap-labelling conjecture

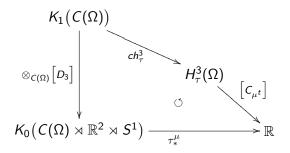
Theorem : (M., 2009) $\forall b \in K_0(C(\Omega) \rtimes \mathbb{R}^2 \rtimes S^1), \exists [u] \in K_1(C(\Omega)) \text{ s.t.}$

$$au_*^\mu(b) = au_*^\mu([u]\otimes_{\mathcal{C}(\Omega)}[D_3]) = \left\lceil \mathcal{C}h_\ell^3([u]) \mid [\mathcal{C}_{\mu^t}]
ight
ceil$$

where $[C_{\mu^t}] \in H_3^{\ell}(\Omega)$ is the Ruelle-Sullivan current associated to μ^t and $Ch_{\ell}^3 : K_1(C(\Omega)) \to H_{\ell}^3(\Omega)$ is the degree 3 component of the longitudinal Chern character.

Index theorem Interger group of coinvariants

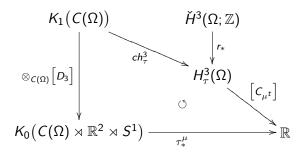
Interger group of coinvariants



イロト イポト イヨト イヨト

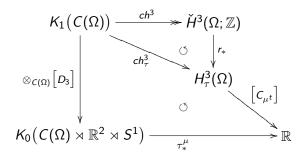
Index theorem Interger group of coinvariants

Interger group of coinvariants



Index theorem Interger group of coinvariants

Interger group of coinvariants



Index theorem Interger group of coinvariants

Interger group of coinvariants

Theorem :

$$\check{H}^3(\Omega;\mathbb{Z})\simeq H^2(\Omega/S^1;\mathbb{Z})$$

and

$$\Omega/S^1 = \lim_{\longleftarrow} B_n$$

with B_n simplicial complexes of dimension 2.

Thus

$$\check{H}^3(\Omega;\mathbb{Z})\simeq \lim_{\longrightarrow}\check{H}^2(B_n;\mathbb{Z})$$

イロン 不同 とくほう イロン

Index theorem Interger group of coinvariants

Interger group of coinvariants

Theorem :

$$\check{H}^3(\Omega;\mathbb{Z})\simeq H^2(\Omega/S^1;\mathbb{Z})$$

and

$$\Omega/S^1 = \lim_{\longleftarrow} B_n$$

with B_n simplicial complexes of dimension 2.

Thus

$$\check{H}^{3}(\Omega;\mathbb{Z})\simeq \varinjlim \check{H}^{2}(B_{n};\mathbb{Z})\simeq \varinjlim H^{2}(B_{n};\mathbb{Z})$$

イロト イポト イヨト イヨト

-

Index theorem Interger group of coinvariants

Interger group of coinvariants

Theorem : (M., 2009)

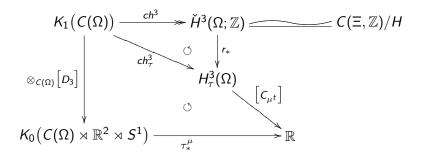
$$\lim H^2(B_n;\mathbb{Z})\simeq C(\Xi,\mathbb{Z})/H$$

with $\forall h \in H$, $\mu^t(h) = 0$.

イロン 不同 とくほう イロン

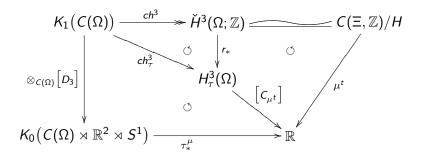
Index theorem Interger group of coinvariants

Interger group of coinvariants



Index theorem Interger group of coinvariants

Interger group of coinvariants



Index theorem Interger group of coinvariants

Interger group of coinvariants

Theorem : (M., 2009)

$$\tau^{\mu}_{*}\Big(\mathcal{K}_{0}\big(\mathcal{C}(\Omega)\rtimes\mathbb{R}^{2}\rtimes\mathcal{S}^{1}\big)\Big)=\mu^{t}\big(\mathcal{C}(\Xi,\mathbb{Z})\big)$$

・ロト ・回ト ・ヨト ・ヨト

Collared prototiles Computation

Computation

H. Moustafa Gap-labelling of the pinwheel tiling

ヘロン 人間 とくほと 人ほとう

Conclusion

Definitions

- P a pinwheel tiling.
 - First corona of a tile : union of all the tiles intersecting it in *P*.

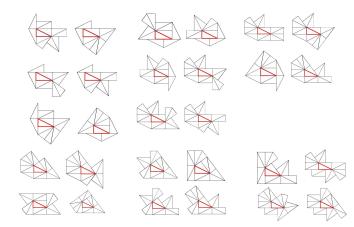
Collared prototiles

• **collared prototile** of *P* : equivalence class of tiles with the same first corona up to rigid motions.

Collared prototiles Computation

Conclusion

n Compu n



・ロト ・回ト ・ヨト ・ヨト

Collared prototiles

・ロト ・回ト ・ヨト ・ヨト

Collared prototiles Computation

Computation

A = matrix with $a_{i,j} =$ number of collared tiles of type *i* in the substitution of the collared prototile of type *j*.

Proposition : (M. ,2009)

$$\lim_{\longrightarrow} (\mathbb{Z}^{108}, A') \simeq C(\Xi, \mathbb{Z})/H'$$

with $\forall h \in H'$, $\mu^t(h) = 0$.

$$\tau^{\mu}_{*}\Big(\mathcal{K}_{0}\big(\mathcal{C}(\Omega)\rtimes\mathbb{R}^{2}\rtimes\mathcal{S}^{1}\big)\Big)=\mu^{t}\big(\mathcal{C}(\Xi,\mathbb{Z})\big)$$

Collared prototiles Computation

Computation

A = matrix with $a_{i,j} =$ number of collared tiles of type *i* in the substitution of the collared prototile of type *j*.

Proposition : (M. ,2009)

$$\lim_{\longrightarrow} (\mathbb{Z}^{108}, A') \simeq C(\Xi, \mathbb{Z})/H'$$

with $\forall h \in H'$, $\mu^t(h) = 0$.

$$\tau^{\mu}_{*}\Big(\mathcal{K}_{0}\big(\mathcal{C}(\Omega)\rtimes\mathbb{R}^{2}\rtimes\mathcal{S}^{1}\big)\Big)=\mu^{t}\big(\mathcal{C}(\Xi,\mathbb{Z})\big)$$
$$=\mu^{t}\big(\varinjlim(\mathbb{Z}^{108},\mathcal{A}')\big)$$

Collared prototiles Computation

Computation

A = matrix with $a_{i,j} =$ number of collared tiles of type *i* in the substitution of the collared prototile of type *j*.

Proposition : (M. ,2009)

$$\lim_{\longrightarrow} (\mathbb{Z}^{108}, A') \simeq C(\Xi, \mathbb{Z})/H'$$

with $\forall h \in H'$, $\mu^t(h) = 0$.

$$\tau^{\mu}_{*}\Big(\mathcal{K}_{0}\big(\mathcal{C}(\Omega)\rtimes\mathbb{R}^{2}\rtimes\mathcal{S}^{1}\big)\Big)=\mu^{t}\big(\mathcal{C}(\Xi,\mathbb{Z})\big)$$
$$=\mu^{t}\big(\varinjlim(\mathbb{Z}^{108},\mathcal{A}')\big)=\frac{1}{264}\mathbb{Z}\left[\frac{1}{5}\right]$$

(a)

Conclusion

H. Moustafa Gap-labelling of the pinwheel tiling

ヘロン 人間 とくほと 人ほとう