
Temperature for double-cones
in

2D boundary CFT

P. Martinetti

Göttingen Universität

Vietri sul Mare, September 2009



Outline:

1. Physical interpretation of the modular group as a flow of time

2. Wedges in Minkowski space-time

3. Double-cones in Minkowski space-time

4. Double-cones in 2d boundary conformal field theory



1. Time flow from the modular group

Time, state and temperature

A : algebra of observables of a system,

αt : time evolution (e.g. αta = e−iHtae iHt).

An equilibrium state ω at temperature β−1 is a state that satisfies the
KMS condition:

ω((αta)b) = ω(b(αt+iβa)) ∀a, b ∈ A.



”Von Neumann algebras naturally evolve with time” (Connes)

- a von Neumann algebra A acting on H

- a vector Ω in H cyclic and separating

⇒
Tomita’s operator:

S aΩ→ a∗Ω
yields a 1-parameter group
σ of automorphisms of A
(modular group)

The state ω : a 7→ 〈Ω, aΩ〉 is KMS with respect to σs ,

ω((σsa)b) = ω(b(σs−ia)) ∀a, b ∈ A, s ∈ R.

Hence ω is thermal at temperature −1 with respect to the evolution σs .

Writing α−βs
.

= σs ,

ω((α−βsa)b) = ω(b(α−βs+iβa))

An equilibrium state at temperature β−1 is a faithful state over the algebra
of observables whose modular group σs is the physical time translation, up
to rescaling t = −βs.
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{
time flow αt

temperature β−1 =====⇒
KMS

equilibrium state ω{
state ω
temperature β−1 ==========⇒

modular theory
time flow α−βs

The thermal time hypothesis (Connes, Rovelli 1993):

assuming the system is in a thermal state at temperature β−1, then the
physical time t is the modular flow up to rescaling t = −βs.

If another notion of time is available (e.g. geometrical time τ), one
should check that τ = t, i.e. β = − τ

s .{
state
time

=⇒ temperature



2. Temperature for the wedge Bisognano, Wichman, Sewell

W−→
{

algebra of observables A(W )
vacuum modular group σW

s → boosts→ geometrical action

uniformly accelerated observer’s trajectory
τ ∈]−∞,+∞[

=
orbit of the modular group

s ∈]−∞,+∞[

X

T

W

β = |τ
s
| =

2π

a
= T−1

Unruh.

The temperature is constant along a given trajectory.



Same analysis for other open regions O of Minkowski space-time ?

I The vacuum modular group σOs must have a geometrical action.

I The orbits must coincide with the trajectories of some observers
with proper time τ .

I The ratio τ
s should be constant along each orbit.

This last assumption may be relaxed:
to identify ∂s to ∂τ , one only needs ∂s to be normalised,

∂t
.

=
∂s

β
with β

.
= ‖∂s‖ .

Putting ∂t = ∂τ then yields

∂τ =
∂s

β
⇒ β = |dτ

ds
|.

I For wedges, dτ
ds = constant along a given orbit = τ

s .

I β still makes sense when it is no longer constant ⇒ local equilibrium
temperature.
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3. Temperature for the double-cone P. M., Rovelli

D−→
{

algebra of observables A(D)
vacuum modular group σD

s

D = ϕ(W ) for a conformal map ϕ. So for conformal qft (Hislop, Longo):

uniformly accelerated observer’s trajectory
τ ∈]− τ0,+τ0[

=
orbit of the modular group

s ∈]−∞,+∞[

T

X

−L

L

Ratio τ
s no longer constant,

β(τ) = |dτ
ds
| =

2π

La2
(
√

1 + a2L2 − ch aτ).



Along a given orbit, the inverse temperature β(τ), −τ0 < τ < τ0 varies:

-10 -5 5 10

1

2

3

4

5

6

7

L=105

L=104

L=103

The conformal map ϕ : W → D induces on W a metric g̃ ,

g̃(U,V ) = g(ϕ∗U, ϕ∗V ) = C 2g(U,V ).

The double-cone temperature is proportional to the inverse of C ,

β(x) =
2π

a
C (ϕ−1(x))

where a is the acceleration characterizing the modular orbit of ϕ−1(x).
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3. Double-cone in 2d boundary CFT work in progress with R. Longo
and K. H. Rehren

A CFT on the half plane (t, x > 0) yields a
chiral net

I 7→ A(I), I =]A,B[∈ R,

and generates a net of double-cone algebras

O = I1 × I2 7→ A(O).

4/3

1

0 x

I

I

t

  1

u = t+x

v = t!x

(t,x)

  2

I

One can build on A(O) a state whose associated modular group has a
geometrical action.



Cayley transform

z =
1 + ix

1− ix
∈ S1 ⇐⇒ x =

(z − 1)/i

z + 1
∈ R ∪ {∞}.

Square and square root:

z 7→ z2 ⇐⇒ x 7→ σ(x)
.

=
2x

1− x2
,

z 7→ ±
√

z ⇐⇒ x 7→ ρ±(x) =
±
√

1 + x2 − 1

x
.



Modular group

For a pair of symmetric intervals I1, I2 , i.e.

σ(I1) = σ(I2) = I ,

the modular group has a geometrical action

(u, v) ∈ O 7→ (us , vs) ∈ O s ∈ R,

with orbits
us = ρ+ ◦m ◦ λs ◦m−1 ◦ σ(u),

vs = ρ− ◦m ◦ λs ◦m−1 ◦ σ(v),

where λs(x) = esx is the dilation of R, and m is a Möbius transformation
which maps R+ to I .



Implicit equation of the orbits

(us − A)(Aus + 1)

(us − B)(Bus + 1)
· (vs − B)(Bvs + 1)

(vs − A)(Avs + 1)
= const,

A

B

!1
A

!1
B

u

v

!1

0

1

I This equation only depends on the end
points of I2 =]A,B[, I1 =]− 1

A ,−
1
B [.

I All orbits are time-like, hence β = | dτ
ds |

makes sense as a temperature.

I One and only one orbit is a boost
(const = 1) and thus is the trajectory
of a uniformly accelerated observer.
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Other orbits have more complicated
dynamics (e. g. the sign of the accelera-
tion may change).



Temperature on the boost trajectory

Constant acceleration: dτ 2 = du dv hence

β =
dτ

ds
=
√

u′v ′

with ′ = d
ds . On the boost orbit, vs = − 1

us
hence

β =
u′

u
=

d

ds
ln us =⇒ τ(s) = ln us − ln u0 =⇒ us = uoe

τ(s).

Knowing

u′s = fAB(us)
.

=
(us − A)(Aus + 1)(B − us)(Bus + 1)

(B − A)(1 + AB) · (1 + u2
s )

.

one finally gets

β(τ) =
fAB(uoe

τ )

uoeτ
.



Contrary to double-cones in Minkowski space-time, the temperature
along the boost-orbit does not present any plateau region.
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I What happens far from the boundary (require double-cone defined
by a non-symmetric pair of intervals) ?
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