Temperature for double-cones in 2D boundary CFT

P. Martinetti

Göttingen Universität

Vietri sul Mare, September 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline:

1. Physical interpretation of the modular group as a flow of time

2. Wedges in Minkowski space-time

3. Double-cones in Minkowski space-time

4. Double-cones in 2d boundary conformal field theory

1. Time flow from the modular group

Time, state and temperature

- $\ensuremath{\mathcal{A}}$: algebra of observables of a system,
- α_t : time evolution (e.g. $\alpha_t a = e^{-iHt} a e^{iHt}$).

An equilibrium state ω at temperature β^{-1} is a state that satisfies the KMS condition:

$$\omega((\alpha_t a)b) = \omega(b(\alpha_{t+i\beta}a)) \qquad \forall a, b \in \mathcal{A}.$$

"Von Neumann algebras naturally evolve with time" (Connes)

Tomita's operator: $\left.\begin{array}{l} - \text{ a von Neumann algebra } \mathcal{A} \text{ acting on } \mathcal{H} \\ - \text{ a vector } \Omega \text{ in } \mathcal{H} \text{ cyclic and separating}\end{array}\right\} \xrightarrow{\begin{array}{l} \mathcal{S} a\Omega \to a^*\Omega \\ \Rightarrow \text{ yields a 1-parameter group} \\ \sigma \text{ of automorphisms of } \mathcal{A} \end{array}$ (modular group)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The state $\omega : a \mapsto \langle \Omega, a \Omega \rangle$ is KMS with respect to σ_s ,

$$\omega((\sigma_s a)b) = \omega(b(\sigma_{s-i}a)) \quad \forall a, b \in \mathcal{A}, \ s \in \mathbb{R}.$$

Hence ω is thermal at temperature -1 with respect to the evolution σ_s .

"Von Neumann algebras naturally evolve with time" (Connes)

Tomita's operator: $\left.\begin{array}{l} \text{- a von Neumann algebra }\mathcal{A} \text{ acting on }\mathcal{H} \\ \text{- a vector }\Omega \text{ in }\mathcal{H} \text{ cyclic and separating} \end{array}\right\} \xrightarrow{\begin{array}{l} S a\Omega \to a^*\Omega \\ \Rightarrow \text{ yields a 1-parameter group} \\ \sigma \text{ of automorphisms of }\mathcal{A} \end{array}$ (modular group)

The state $\omega : a \mapsto \langle \Omega, a \Omega \rangle$ is KMS with respect to σ_s ,

$$\omega((\sigma_s a)b) = \omega(b(\sigma_{s-i}a)) \quad \forall a, b \in \mathcal{A}, \ s \in \mathbb{R}.$$

Hence ω is thermal at temperature -1 with respect to the evolution σ_s .

Writing $\alpha_{-\beta s} \doteq \sigma_s$,

$$\omega((\alpha_{-\beta s}a)b) = \omega(b(\alpha_{-\beta s+i\beta}a))$$

An equilibrium state at temperature β^{-1} is a faithful state over the algebra of observables whose modular group σ_s is the physical time translation, up to rescaling $t = -\beta s.$

$$\begin{cases} \text{ time flow } \alpha_t \\ \text{ temperature } \beta^{-1} & \xrightarrow{\text{ KMS}} \text{ equilibrium state } \omega \\ \end{cases}$$

$$\begin{cases} \text{ state } \omega \\ \text{ temperature } \beta^{-1} & \xrightarrow{\text{ modular theory}} \text{ time flow } \alpha_{-\beta s} \end{cases}$$

<u>The thermal time hypothesis</u> (Connes, Rovelli 1993): assuming the system is in a thermal state at temperature β^{-1} , then the physical time t is the modular flow up to rescaling $t = -\beta s$.

If another notion of time is available (e.g. geometrical time τ), one should check that $\tau = t$, i.e. $\beta = -\frac{\tau}{s}$.

$$\begin{cases} \text{ state } \\ \text{ time } \end{cases} \Longrightarrow \text{temperature } \end{cases}$$

2. Temperature for the wedge

Bisognano, Wichman, Sewell

$$W \longrightarrow \begin{cases} \text{ algebra of observables } \mathcal{A}(W) \\ \text{vacuum modular group } \sigma_s^W \to \text{ boosts } \to \text{ geometrical action} \end{cases}$$

uniformly accelerated observer's trajectory
 $\tau \in]-\infty, +\infty[$ $s \in]-\infty, +\infty[$
 $s \in]-\infty, +\infty[$
 $\beta = |\frac{\tau}{s}| = \frac{2\pi}{a} = T_{\text{Unruh}}^{-1}.$

The temperature is constant along a given trajectory.

Same analysis for other open regions $\mathcal O$ of Minkowski space-time ?

- ▶ The vacuum modular group $\sigma_s^{\mathcal{O}}$ must have a geometrical action.
- The orbits must coincide with the trajectories of some observers with proper time τ.

・ロト・日本・モート モー うへぐ

• The ratio $\frac{\tau}{s}$ should be constant along each orbit.

Same analysis for other open regions $\mathcal O$ of Minkowski space-time ?

- ▶ The vacuum modular group $\sigma_s^{\mathcal{O}}$ must have a geometrical action.
- The orbits must coincide with the trajectories of some observers with proper time τ.
- The ratio $\frac{\tau}{s}$ should be constant along each orbit.

This last assumption may be relaxed: to identify ∂_s to ∂_{τ} , one only needs ∂_s to be normalised,

$$\partial_t \doteq \frac{\partial_s}{\beta} \text{ with } \beta \doteq \|\partial_s\|.$$

Putting $\partial_t = \partial_\tau$ then yields

$$\partial_{\tau} = \frac{\partial_s}{\beta} \Rightarrow \beta = |\frac{d\tau}{ds}|.$$

Same analysis for other open regions \mathcal{O} of Minkowski space-time ?

- The vacuum modular group $\sigma_s^{\mathcal{O}}$ must have a geometrical action.
- The orbits must coincide with the trajectories of some observers with proper time τ.
- The ratio $\frac{\tau}{s}$ should be constant along each orbit.

This last assumption may be relaxed: to identify ∂_s to ∂_{τ} , one only needs ∂_s to be normalised,

$$\partial_t \doteq \frac{\partial_s}{\beta}$$
 with $\beta \doteq \|\partial_s\|$.

Putting $\partial_t = \partial_\tau$ then yields

$$\partial_{\tau} = \frac{\partial_s}{\beta} \Rightarrow \beta = |\frac{d\tau}{ds}|.$$

• For wedges, $\frac{d\tau}{ds} = \text{ constant along a given orbit } = \frac{\tau}{s}$.

Same analysis for other open regions $\mathcal O$ of Minkowski space-time ?

- ▶ The vacuum modular group $\sigma_s^{\mathcal{O}}$ must have a geometrical action.
- The orbits must coincide with the trajectories of some observers with proper time τ.
- The ratio $\frac{\tau}{s}$ should be constant along each orbit.

This last assumption may be relaxed: to identify ∂_s to ∂_{τ} , one only needs ∂_s to be normalised,

$$\partial_t \doteq \frac{\partial_s}{\beta}$$
 with $\beta \doteq \|\partial_s\|$.

Putting $\partial_t = \partial_\tau$ then yields

$$\partial_{\tau} = \frac{\partial_s}{\beta} \Rightarrow \beta = |\frac{d\tau}{ds}|.$$

- For wedges, $\frac{d\tau}{ds} = \text{ constant along a given orbit } = \frac{\tau}{s}$.
- β still makes sense when it is no longer constant \Rightarrow *local* equilibrium temperature.

3. Temperature for the double-cone P. M., Rovelli

$$D \longrightarrow \begin{cases} \text{algebra of observables } \mathcal{A}(D) \\ \text{vacuum modular group } \sigma_s^D \end{cases}$$

 $D = \varphi(W)$ for a conformal map φ . So for conformal qft (Hislop, Longo):

uniformly accelerated observer's trajectory $\tau \in]-\tau_0, +\tau_0[$ = orbit of the modular group $s \in]-\infty, +\infty[$

Ratio $\frac{\tau}{s}$ no longer constant,

$$\beta(\tau) = \left|\frac{d\tau}{ds}\right| = \frac{2\pi}{La^2} \left(\sqrt{1 + a^2L^2} - \operatorname{ch} a\tau\right).$$

Along a given orbit, the inverse temperature $\beta(\tau)$, $-\tau_0 < \tau < \tau_0$ varies:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Along a given orbit, the inverse temperature $\beta(\tau)$, $-\tau_0 < \tau < \tau_0$ varies:

The conformal map $\varphi: W \to D$ induces on W a metric \tilde{g} ,

$$\tilde{g}(U, V) = g(\varphi_*U, \varphi_*V) = C^2g(U, V).$$

The double-cone temperature is proportional to the inverse of C,

$$\beta(x) = \frac{2\pi}{a} C(\varphi^{-1}(x))$$

where *a* is the acceleration characterizing the modular orbit of $\varphi^{-1}(x)$.

3. Double-cone in 2d boundary CFT

work in progress with R. Longo and K. H. Rehren

$$\mathcal{I} \mapsto \mathcal{A}(\mathcal{I}), \quad \mathcal{I} =]A, B[\in \mathbb{R},$$

and generates a net of double-cone algebras

$$\mathcal{O} = I_1 \times I_2 \mapsto \mathcal{A}(\mathcal{O}).$$

 \mathbf{I}_2 (t,x) I_1 v = t - y

One can build on $\mathcal{A}(\mathcal{O})$ a state whose associated modular group has a geometrical action.

Cayley transform

$$z = \frac{1+ix}{1-ix} \in S^1 \iff x = \frac{(z-1)/i}{z+1} \in \mathbb{R} \cup \{\infty\}.$$

Square and square root:

$$z \mapsto z^2 \iff x \mapsto \sigma(x) \doteq \frac{2x}{1 - x^2},$$

 $z \mapsto \pm \sqrt{z} \iff x \mapsto \rho_{\pm}(x) = \frac{\pm \sqrt{1 + x^2} - 1}{x}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Modular group

For a pair of symmetric intervals I_1, I_2 , i.e.

$$\sigma(I_1) = \sigma(I_2) = I,$$

the modular group has a geometrical action

$$(u,v) \in \mathcal{O} \mapsto (u_s,v_s) \in \mathcal{O} \qquad s \in \mathbb{R},$$

with orbits

$$\begin{array}{lll} u_{s} & = & \rho_{+} \circ m \circ \lambda_{s} \circ m^{-1} \circ \sigma(u), \\ v_{s} & = & \rho_{-} \circ m \circ \lambda_{s} \circ m^{-1} \circ \sigma(v), \end{array}$$

where $\lambda_s(x) = e^s x$ is the dilation of \mathbb{R} , and *m* is a Möbius transformation which maps \mathbb{R}_+ to *I*.

$$\frac{(u_s-A)(Au_s+1)}{(u_s-B)(Bu_s+1)}\cdot\frac{(v_s-B)(Bv_s+1)}{(v_s-A)(Av_s+1)}=\text{const},$$

- ▶ This equation only depends on the end points of $I_2 =]A, B[, I_1 =] \frac{1}{A}, -\frac{1}{B}[.$
- All orbits are time-like, hence β = |dτ/ds| makes sense as a temperature.
- One and only one orbit is a boost (const = 1) and thus is the trajectory of a uniformly accelerated observer.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Other orbits have more complicated dynamics (e. g. the sign of the acceleration may change).

・ロト ・聞ト ・ヨト ・ヨト

æ

Temperature on the boost trajectory

Constant acceleration: $d\tau^2 = du \, dv$ hence

$$\beta = \frac{d\tau}{ds} = \sqrt{u'v'}$$

with $'=rac{d}{ds}.$ On the boost orbit, $v_s=-rac{1}{u_s}$ hence

$$\beta = \frac{u'}{u} = \frac{d}{ds} \ln u_s \Longrightarrow \tau(s) = \ln u_s - \ln u_0 \Longrightarrow u_s = u_o e^{\tau(s)}.$$

Knowing

$$u'_{s} = f_{AB}(u_{s}) \doteq \frac{(u_{s} - A)(Au_{s} + 1)(B - u_{s})(Bu_{s} + 1)}{(B - A)(1 + AB) \cdot (1 + u_{s}^{2})}.$$

one finally gets

$$\beta(\tau) = \frac{f_{AB}(u_o e^{\tau})}{u_o e^{\tau}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Contrary to double-cones in Minkowski space-time, the temperature along the boost-orbit does not present any plateau region.

What happens far from the boundary (require double-cone defined by a non-symmetric pair of intervals) ?