
Operator Algebras and
Noncommutative Geometric Aspects

in Conformal Field Theory

Roberto Longo

University of Rome “Tor Vergata”

Vietri, September 2009

Recent work based on joint papers
with S. Carpi, Y. Kawahigashi and R. Hillier



Things to discuss

I Getting inspired by black hole entropy

I Symmetry and supersymmetry

I Local conformal nets

I Modularity and asymptotic formulae

I Fermi and superconformal nets

I Neveu-Schwarz and Ramond representations

I Fredholm index and Jones index

I Noncommutative geometrization

I Model analysis (in progress)



Prelude. Black hole entropy

Bekenstein: The entropy S of a black hole is proportional to the
area A of its horizon

S = A/4

I S is geometric

I S is proportional to the area, not to the volume as a naive
microscopic interpretation of entropy would suggest
(logarithmic counting of possible states).

I This dimensional reduction has led to the holographic
principle by t’Hooft, Susskind, . . .

I The horizon is not a physical boundary, but a submanifold
where coordinates pick critical values → conformal symmetries

I The proportionality factor 1/4 is fixed by Hawking
temperature (quantum effect).



Black hole entropy
Discretization of the horizon (Bekenstein): horizon is made of cells
or area `2 and k degrees of freedom (` = Planck length):

A = n`2,

Degrees of freedom = kn,

S = Cn log k = C
A

`2
log k ,

dS = C log k

Conclusion.

Black hole entropy

↓
Two-dimensional conformal quantum field theory

with a “fuzzy” point of view

Legenda: Fuzzy = noncommutative geometrical



Symmetries in Physics

Spacetime symme-
tries
Lorentz,
Poincaré,. . .
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Gauge, . . .
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SUSY
Bose-Fermi

SUSY: H = Q2, Q odd operator, [·,Q] graded super-derivation
interchanging Boson and Fermions

Among consequences: Cancellation of some Higgs boson
divergence



Conformal and superconformal

I Low dimension, conformal → infinite dim. symmetry

I Low dimension, conformal + SUSY → Superconformal
symmetry (very stringent)



About three approaches to CFT

Vertex Algebras
(algebraic)
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(analytic)
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Operator Algebras
(algebraic & ana-
lytic)

partial relations known



von Neumann algebras

H Hilbert space, B(H) ∗algebra of all bounded linear operators on
H.

Def. A von Neumann algebra M is a weakly closed non-degenerate
∗-subalgebra of B(H).

• von Neumann density thm. A ⊂ B(H) non-degenerate
∗-subalgebra

A− = A′′

where ′ denotes the commutant

A′ = {T ∈ B(H) : TA = AT ∀A ∈ A}

Double aspect, analytical and algebraic

M is a factor if its center M ∩M ′ = C.



The tensor category End(M)
M an infinite factor → End(M) is a tensor C ∗-category:

I Objects: End(M)

I Arrows: Hom(ρ, ρ′) ≡ {t ∈ M : tρ(x) = ρ′(x)t ∀x ∈ M}
I Tensor product of objects: ρ⊗ ρ′ = ρρ′

I Tensor product of arrows: σ, σ′ ∈ End(M), t ∈ Hom(ρ, ρ′),
s ∈ Hom(σ, σ′),

t ⊗ s ≡ tρ(s) = ρ′(s)t ∈ Hom(ρ⊗ σ, ρ′ ⊗ σ′)

I Conjugation: ∃ isometries v ∈ Hom(ι, ρρ̄) and v̄ ∈ Hom(ι, ρ̄ρ)
such that

(v̄∗ ⊗ 1ρ̄) · (1ρ̄ ⊗ v) ≡ v̄∗ρ̄(v) =
1

d

(v∗ ⊗ 1ρ) · (1ρ ⊗ v̄) ≡ v∗ρ(v̄) =
1

d

for some d > 0.



Dimension

The minimal d is the dimension d(ρ)

[M : ρ(M)] = d(ρ)2

(tensor categorical definition of the Jones index)

d(ρ1 ⊕ ρ2) = d(ρ1) + d(ρ2)

d(ρ1ρ2) = d(ρ1)d(ρ2)

d(ρ̄) = d(ρ)

End(M) is a “universal” tensor category (cf. Popa, Yamagami)

(generalising the Doplicher-Haag-Roberts theory)



Local conformal nets
A local Möbius covariant net A on S1 is a map

I ∈ I → A(I ) ⊂ B(H)

I ≡ family of proper intervals of S1, that satisfies:

I A. Isotony. I1 ⊂ I2 =⇒ A(I1) ⊂ A(I2)

I B. Locality. I1 ∩ I2 = ∅ =⇒ [A(I1),A(I2)] = {0}
I C. Möbius covariance. ∃ unitary rep. U of the Möbius group

Möb on H such that

U(g)A(I )U(g)∗ = A(gI ), g ∈ Möb, I ∈ I.

I D. Positivity of the energy. Generator L0 of rotation subgroup
of U (conformal Hamiltonian) is positive.

I E. Existence of the vacuum. ∃! U-invariant vector Ω ∈ H
(vacuum vector), and Ω is cyclic for

∨
I∈I A(I ).



First consequences

I Irreducibility:
∨

I∈I A(I ) = B(H).

I Reeh-Schlieder theorem: Ω is cyclic and separating for each
A(I ).

I Bisognano-Wichmann property: Tomita-Takesaki modular
operator ∆I and conjugation JI of (A(I ),Ω), are

U(ΛI (2πt)) = ∆it
I , t ∈ R, dilations

U(rI ) = JI reflection

(Frölich-Gabbiani, Guido-L.)

I Haag duality: A(I )′ = A(I ′)

I Factoriality: A(I ) is III1-factor (in Connes classification)

I Additivity: I ⊂ ∪i Ii =⇒ A(I ) ⊂ ∨iA(Ii ) (Fredenhagen,
Jorss).



Local conformal nets

Diff(S1) ≡ group of orientation-preserving smooth diffeomorphisms of S1.

Diff I (S1) ≡ {g ∈ Diff(S1) : g(t) = t ∀t ∈ I ′}.

A local conformal net A is a Möbius covariant net s.t.

F. Conformal covariance. ∃ a projective unitary representation U
of Diff(S1) on H extending the unitary representation of Möb s.t.

U(g)A(I )U(g)∗ = A(gI ), g ∈ Diff(S1),

U(g)xU(g)∗ = x , x ∈ A(I ), g ∈ Diff I ′(S1),

−→ unitary representation of the Virasoro algebra

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 −m)δm,−n

[Ln, c] = 0, L∗n = L−n.



Representations

A representation π of A on a Hilbert space H is a map

I ∈ I 7→ πI , normal rep. of A(I ) on B(H)

πĨ �A(I ) = πI , I ⊂ Ĩ

π is automatically diffeomorphism covariant: ∃ a projective, pos.
energy, unitary rep. Uπ of Diff(∞)(S1) s.t.

πgI (U(g)xU(g)∗) = Uπ(g)πI (x)Uπ(g)∗

for all I ∈ I, x ∈ A(I ), g ∈ Diff(∞)(S1) (Carpi & Weiner)

DHR argument: given I , there is an endomorphism of A localized
in I equivalent to π; namely ρ is a representation of A on the
vacuum Hilbert space H, unitarily equivalent to π, such that
ρI ′ = id �A(I ′).

• Rep(A) is a braided tensor category (DHR, FRS, L.)



Index-statistics theorem

DHR dimension d(ρ) =
√

Jones index Ind(ρ)

tensor category RepI (A)
full functor−−−−−−→
restriction

tensor category End(A(I ))



Black hole incremental free energy

Define the incremental free energy F (ϕσ|ϕρ) between the thermal
states ϕσ and ϕρ in reps ρ, σ localized in I (β−1 = Hawking
temperature)

F (ϕσ|ϕρ) = ϕρ(Hρ)− β−1S(ϕσ|ϕρ)

S(ϕσ|ϕρ) = −(log ∆ξσ ,ξρξρ, ξρ) is Araki relative entropy

Then

F (ϕσ|ϕρ) =
1

2
β−1

(
d(σ)− d(ρ)

)
=

1

2
β−1(log m − log n)

If the charges ρ, σ come from a spacetime of dimension d ≥ 2 + 1
then n, m integers by DHR restriction on the values d(ρ), d(σ).



Complete rationality

I1, I2 intervals Ī1 ∩ Ī2 = ∅, E ≡ I1 ∪ I2.

µ-index : µA ≡ [A(E ′)′ : A(E )]

(Jones index). A conformal:

A completely rational
def
= A split & µA <∞

Thm. (Y. Kawahigashi, M. Müger, R.L.) A completely rational:
then

µA =
∑

i

d(ρi )
2

sum over all irreducible sectors. (F. Xu in SU(N) models);

• A(E ) ⊂ A(E ′)′ ∼ LR inclusion (quantum double);

• Representations form a modular tensor category (i.e.
non-degenerate braiding).



Weyl’s theorem

M compact oriented Riemann manifold, ∆ Laplace operator on
L2(M).

Theorem (Weyl)

Heat kernel expansion as t → 0+ :

Tr(e−t∆) ∼ 1

(4πt)n/2
(a0 + a1t + · · · )

The spectral invariants n and a0, a1, . . . encode geometric
information and in particular

a0 = vol(M), a1 =
1

6

∫
M
κ(m)dvol(m),

κ scalar curvature. n = 2: a1 is proportional to the Euler
characteristic = 1

2π

∫
M κ(m)dvol(m) by Gauss-Bonnet theorem.



Modularity
With ρ rep. of A, set L0,ρ conf. Hamiltonian of ρ,

χρ(τ) = Tr
(
e2πiτ(L0,ρ−c/24)

)
Im τ > 0.

specialized character, c the central charge.
A is modular if µA <∞ and

χρ(−1/τ) =
∑
ν

Sρ,νχν(τ),

χρ(τ + 1) =
∑
ν

Tρ,νχν(τ).

with S ,T the (algebraically defined) Kac-Peterson, Verlinde
Rehren matrices generating a representation of SL(2,Z). One has:

• Modularity =⇒ complete rationality

• Modularity holds in all computed rational case, e.g.
SU(N)k -models

• A modular, B ⊃ A irreducible extension =⇒ B modular.

• All conformal nets with central charge c < 1 are modular.



Asymptotics

A modular. The following asymptotic formula holds as t → 0+:

log Tr(e−2πtL0) ∼ πc

12

1

t
− 1

2
logµA −

πc

12
t

In any representation ρ, as t → 0+:

log Tr(e−2πtL0,ρ) ∼ πc

12

1

t
+

1

2
log

d(ρ)2

µA
− πc

12
t



Modular nets as NC manifolds (∞ degrees of freedom)

2-dim. cpt manifold M conformal net A
supp(f ) ⊂ I x ∈ A(I )
Laplacian ∆ conf. Hamiltonian L0

∆ elliptic L0 log-elliptic
area vol(M) NC area a0(2πL0)
Euler charact. χ(M) NC Euler char. 12a1

Entropy. Physics and geometric viewpoints:

Inv. Value Geometry Physics

a0 πc/12 NC area Entropy
a1 − 1

2
logµA NC Euler charact. 1st order entr.

a2 −πc/12 2nd spectral invariant 2nd order entr.

Rem. Physical literature: proposals for 2πc/12 = A/4.

Question: What can we say for SUSY? (Dirac operator case)



Quantum calculus with infinitely many degrees of freedom

CLASSICAL
Classical variables
Differential forms

Chern classes

Variational calculus
Infinite dimensional manifolds

Functions spaces
Wiener measure

QUANTUM

Quantum geometry
Fredholm operators

Index
Cyclic cohomology

Subfactors
Correspondences, Endomorphisms

Multiplicative index
Supersymmetric QFT, (A,H,Q)



McKean-Singer formula

Γ be a selfadjoint unitary on a Hilbert space H, thus
H = H+ ⊕H− is graded.

Q selfadjoint odd operator: ΓQΓ−1 = −Q or

Q =

[
0 Q−

Q+ 0

]
Trs = Tr(Γ ·) the supertrace.

If e−tQ2
is trace class then Trs(e−tQ2

) is an integer independent of
t:

Trs(e−tQ2
) = ind(Q+) ∀t > 0

ind(Q+) ≡ Dim ker(Q+)− Dim ker(Q∗+) is the Fredholm index of
Q+.



Fermi conformal nets

A is a Fermi net if locality is replaced by twisted locality:
∃ self-adjoint unitary Γ, ΓΩ = Ω, ΓA(I )Γ = A(I ); if I1 ∩ I2 = ∅

[x , y ] = 0, x ∈ A(I1), y ∈ A(I2) .

[x , y ] is the graded commutator w.r.t. γ = AdΓ. Then

A(I ′) ⊂ ZA(I )′Z ∗

indeed A(I ′) = ZA(I )′Z ∗ twisted duality
(
where Z ≡ 1−iΓ

1−i

)
The Bose subnet Ab ≡ Aγ of is local.

Spin-statistics:
U(2π) = Γ .

Therefore, in the Fermi case, U is representation of Diff(2)(S1).



Nets on a cover of S1

A conformal net A on S1(n) is a isotone map

I ∈ I(n) 7→ A(I ) ⊂ B(H)

with a projective unitary, positive energy representation U of
Diff(∞)(S1) on H with

U(g)A(I )U(g)−1 = A(ġ I ), I ∈ I(n), g ∈ Diff(∞)(S1)

conformal net A on S1 promotion−−−−−−→ conformal net A(n) on S1(n)



Representations of a Fermi net

Let A be a Fermi net on S1. A general representation λ of A is a
representation the cover net of A(∞) such that λb ≡ λ|Ab

is a
DHR representation Ab.

λ is indeed a representation of A(2). The following alternative
holds:

(a) λ is a DHR representation of A. Equivalently Uλb
(2π) is not

a scalar.

(b) λ is the restriction of a representation of A(2) and λ is not a
DHR representation of A. Equivalently Uλb

(2π) is a scalar.

Case (a): Neveu-Schwarz representation
Case (b): Ramond representation



Super-Virasoro algebra

The super-Virasoro algebra governs the superconformal invariance:

local conformal↔ Virasoro

superconformal↔ super-Virasoro

Two super-Virasoro algebras: They are the super-Lie algebras
generated by Ln, n ∈ Z (even), Gr (odd), and c (central):

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 −m)δm+n,0

[Lm,Gr ] = (
m

2
− r)Gm+r

[Gr ,Gs ] = 2Lr+s +
c

3
(r 2 − 1

4
)δr+s,0

Neveu-Schwarz case: r ∈ Z + 1/2, Ramond case: r ∈ Z.

Note: G 2
0 = 2L0 − c/12 in Ramond sectors



FQS: admissible values for central charge c and lowest
weight h

Either c ≥ 3/2, h ≥ 0 (h ≥ c/24 in the Ramond case) or

c =
3

2

(
1− 8

m(m + 2)

)
, m = 2, 3, . . .

and

h = hp,q(c) ≡ [(m + 2)p −mq]2 − 4

8m(m + 2)
+
ε

8

where p = 1, 2, . . . ,m− 1, q = 1, 2, . . . ,m + 1 and p− q is even or
odd corresponding to the Neveu-Schwarz case (ε = 0) or Ramond
case (ε = 1/2).

Neveu-Schwarz algebra has a vacuum representation, the Ramond
algebra has no vacuum representation.



Super-Virasoro nets

c an admissible value, h = 0. Bose and Fermi stress-energy tensors:

TB(z) =
∑
n

z−n−2Ln, TF (z) =
1

2

∑
r

z−r−3/2Gr

in any NS/Ramond rep. same commutation relations (w ≡ z2/z1):

[TF (z1),TF (z2)] =
1

2
z−1

1 TF (z1)δ(w)+z−3
1 w−

3
2

c

12

(
w 2δ′′(w)+

3

4
δ(w)

)
In the NS vacuum define the Super-Virasoro net of vN algebras:

SVir(I ) ≡ {e iTB(f1), e iTF (f2) : f1, f2 ∈ C∞(S1) real, suppf1, suppf2 ⊂ I}′′

Neveu-Schwarz rep. of SVir net ←→ rep. of Neveu-Schwarz algebra
Ramond rep. of SVir net ←→ rep. of Ramond algebra

• SVirb is modular (F. Xu)
• SVirb =

(
SU(2)N+2

)′ ∩ (SU(2)2 ⊗ SU(2)N

)
(GKO)



Supersymmetric representations
A general representation λ of the Fermi conformal net A is
supersymmetric if λ is graded

λ(γ(x)) = Γλλ(x)Γ∗λ

and the conformal Hamiltonian Hλ satisfies

H̃λ ≡ Hλ − c/24 = Q2
λ

where Qλ is a selfadjoint odd w.r.t. Γλ.

Then
Hλ ≥ c/24

McKean-Singer lemma:

Trs(e−t(Hλ−c/24)) = dim ker(Hλ − c/24) ,

the multiplicity of the lowest eigenvalue c/24 of Hλ.

Super-Virasoro net:

λ supersymmetric⇒ λ Ramond (irr. iff h= c/24 i.e. minimal)



SUSY, Fredholm and Jones index

Assume Ab modular λ|Ab
= ρ⊕ ρ′.

Trs(e−2πtH̃λ) = 2
∑

ν Ramond

Sρ,ν Tr(e−2πL̃0,ν/t) .

If λ is supersymmetric then

ind(Qλ+) = 2
∑

ν Ramond

Sρ,νnull(ν, c/24)

Therefore, writing Rehren definition of the S matrix, we have

ind(Qλ+) =
d(ρ)
√
µA

∑
ν Ramond

K (ρ, ν)d(ν)null(ν, c/24)

The Fredholm index of the supercharge operator Qλ+ and the
Jones index both appear



Some consequences

I An identity for the S matrix:∑
ν Ramond

Sρ,νd(ν) = 0

I If ind(Qλ+) 6= 0 there exists a Ramond sector ν such that
c/24 is an eigenvalue of L0,ν .

I Suppose that ρ is the only Ramond sector with lowest
eigenvalue c/24 modulo integers. Then

Sρ,ρ =
d(ρ)2

√
µAb

K (ρ, ρ) =
1

2
.



Classification (S. Carpi, Y. Kawahigashi, R. L.)

Complete list of superconformal nets, i.e. Fermi extensions of the

super-Virasoro net, with c = 3
2

(
1− 8

m(m+2)

)
1. The super Virasoro net: (Am−1,Am+1).

2. Index 2 extensions of the above: (A4m′−1,D2m′+2), m = 4m′

and (D2m′+2,A4m′+3), m = 4m′ + 2.

3. Six exceptionals: (A9,E6), (E6,A13), (A27,E8), (E8,A31),
(D6,E6), (E6,D8).

Remark. Follows the classification of local conformal nets with
c < 1 with the construction of new models (Kawahigashi, L., also
F. Xu and K.H. Rehren)



Relation with Connes Noncommutative Geometry

Def. A (θ-summable) graded spectral triple (A,H,Q) consists of
a graded Hilbert space H, with selfadjoint grading unitary Γ, a
unital ∗-algebra A ⊂ B(H) graded by γ ≡ Ad(Γ), and an odd
selfadjoint operator Q on H as follows:

I A is contained in D(δ), the domain of the superderivation
δ = [Q, · ];

I For every β > 0, Tr(e−βQ2
) <∞ (θ-summability).

The operator Q is called the supercharge operator, its square the
Hamiltonian. Q is also called Dirac operator and denoted by D.

A spectral triple is a fundamental object to define NCG.



Jaffe-Lesniewski-Osterwalder cocycle

Assume we have a quantum algebra (essentially a spectral triple)
Then the JLO cocycle (Chern character) on the Bose algebra

τn(a0, a1, . . . , an) ≡

(−1)−
n
2

∫
0≤t1≤···≤tn≤1

Trs

(
e−Ha0αit1(δa1)αit2(δa2) . . . αitn(δan)

)
dt1dt2 . . . dtn

(n even) is an entire cyclic coclycle, so it gives an element in
Connes entire cyclic cohomology that pairs with K-theory.



Spectral triples in CFT

A supersymmetric representation ρ of a Fermi net A gives rise to a
θ-summable spectral triple if the superderivation δ

δ(a) ≡ [a,Qρ]

has a dense domain in the representation ρ (θ-summability is
essentially automatic)
Then the JLO cocycle (Chern character) on the Bose algebra

τρn (a0, a1, . . . , an) ≡

(−1)−
n
2

∫
0≤t1≤···≤tn≤1

Trs

(
e−Hρa0αit1(δa1)αit2(δa2) . . . αitn(δan)

)
dt1dt2 . . . dtn

(n even) is entire cyclic coclycle



Noncommutative geometrization

We want to associate to each supersymmetric sector the above
Chern character

ρ→ τρ

Thm. (Carpi, Hillier, Kawahigashi, R.L.)

The supersymmetric Ramond sectors of SVir give rise to
θ-summable spectral triple (δ has a dense domain)

For the super-Virasoro net the index map

ρ→
∑

τρn (1, 1, . . . , 1) = Trs(e−tHρ)

for Ramond sectors is given by

Index(ρh=c/24) = 1, Index(ρh 6=c/24) = 0



Further model analysis (in progress)

I Free supersymmetric CFT on the circle: all
Buchholz-Mack-Todorov sectors give the same JLO cocycle
(deformation argument). Even JLO cocycle is trivial, odd JLO
cocycle probably non-trivial

I Extension of U(1)2 ⊗ (Fermions) gives a non-trivial JLO
cocycle (there is a unitary that does not distinguish sectors)

I Super-Virasoro net: Ramond lowest energy sector is
non-trivial (see above), other Ramond sectors give trivial JLO
cocycles (NS case is not interesting).

I Richer structure is expected in the N = 2 superconformal case
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