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Outline

I representations and states of conformal nets are algebraic
objects in noncommutative (=quantum) field theory

I noncommutative geometry described by spectral triples and
cyclic homology

I overall question: possible to encode representation and states
in these NCG objects? e.g., as (co-)homology classes, or
K(K)-classes?
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Entire Cyclic Cohomology and the JLO-Cocycle

First and Main Example: The Supersymmetric Free Field – nice toy

Second Example: The (N = 1) Super-Virasoro Net – universal

Further Models

Conclusions... and then?

Robin Hillier
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Entire cyclic homology

given a Z/2-graded Banach algebra A.

I chains C∗(A) :=
∑∞

n=0 A⊗ (A/C)⊗n so-called universal
differential algebra of A

I consider (a0, a1, ...) ∈ C∗(A) such that

z ∈ C 7→ ||(a1, a2, ...)||z :=
∑
n

1√
n!
||an||zn

is entire

I entire cochains defined dually

I usual (cyclic) boundary operator d = b + B

Robin Hillier
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Entire cyclic homology (skip)

boundary operator d = b + B where ...

b(a0, . . . , an)n =
n∑

k=0

(−1)k(a0, . . . , akak+1, . . . , an)n−1

+ (−1)n(ana0, . . . , an−1)n−1

B(a0, . . . , an)n =
n∑

i=0

(−1)kn(1, ak , . . . , an, a0, . . . , ak−1)n+1

Robin Hillier
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The JLO cocycle
I here consider: θ-summable spectral triples (A,H,D), meaning

e−tD2
is trace-class for all t > 0, and D2 = L0 up to a

constant
I various cohomologous expressions for the EC cocycle

associated to (A,H,D), here JLO-cocycle:

τn(a1...an) :=

∫

∆n

tr
(
Γa0αis1(δ(γ

1(a1))) . . . αisn(δ(γ
n(an)))e−D2

)
ds

with (αt)t∈R the one-parameter automorphism group with
infinitesimal generator ad L0, Γ the grading in the Z/2-graded
case

I for simplicity, identify A with πR(A) ⊂ B(H), corresponding
to some fixed (Ramond) representation πR of the net

I homotopy invariance yields pairing of cocycle with K-theory:

K ∗(A) 3 τ : K∗(A) → K0(C) = Z
Robin Hillier
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Cocycles in the sectors
what happens in a sector π1 6' πR? how to define cocycle? two
answers:

1 consider different triple (A,Hπ1 ,Dπ1) such that D2
π1

= Lπ1
0

and associated JLO-cocycle τ (π1)

2 DHR-reps are described by localised endomorphisms of the net
A, namely π1 ' π0 ◦ ρπ1

, so

(ρ∗π1
τn)(a) := τn(ρπ1∗(a))

well-defined for a ∈ Cn(A)

I the two descriptions expected to be cohomologous; at least,
for certain models

I locally, on A(I ), the second one cohomologous to τ , hence
work on (global) universal C ∗-algebra

Robin Hillier
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Now the questions:

I in models, are the cocycles nontrivial classes? when? under
what assumptions?

I can we distiguish the representations, i.e., [ρ∗1τ ] 6= [ρ∗2τ ] for
ρ1 6' ρ2?

I if not, can we distiguish the induced metrics?

I abstract general arguments?

I explicit arguments: find suitable projections and unitaries in
Mn(A) corresponding to classes K0(A) and K1(A),
respectively, and explicit expressions for the localised
endomorphisms in the respective model

Robin Hillier
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Definition

I consider (unbounded) bosonic and (bounded) fermionic fields:
J(f ) and ψ(f ), f ∈ C∞(S), on H, the product of bosonic and
fermionic Fock spaces on the circle

I field algebra A(I ) = {eiJ(f ) : f ∈ C∞(I )}′′ ⊗ Cliff(C∞(I ))′′

for I ∈ I
I conformal Hamiltonian L0 and supercharge D =

∑
k Jkψ−k

with D2 = L0, densely defined, essentially self-adjoint, domain
containing the set of finite energy vectors ⊂ H

Robin Hillier
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Some facts

mostly owing to Buchholz/Mack/Todorov:

I irreducible unitary positive energy Ramond representations of
the net A described by q ∈ R+ such that
(L0 − 1/16)Ω = q2/2Ω

I the (localisable) DHR-automorphism explicitly known

I D(δ) ∩ A(I ) is strongly dense in A(I )

Robin Hillier
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Spectral triples and the Cocycle

Theorem
Let A be the net associated to the supersymmetric free field,
represented on the (Z/2-graded) Ramond Fock space H. Let L0

be the associated conformal Hamiltonian on H, and D a
self-adjoint (odd) square-root of L0, as above.

I (A,H,D), with A := D(δ) ∩ A(I ) for some fixed interval I , or
A := D(δ) are θ-summable spectral triples.

I For the corresponding even JLO-cocycle we have τe = 0;
doubling procedure gives nontrivial τe .

I For the corresponding odd JLO-cocycle and a
DHR-representation π1 on H1 ' H, with DHR-endomorphism
ρ such that π1 ' πR ◦ ρ, we have:

ρ∗τo ' τπ1
o

Robin Hillier
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Search for unitaries

are the odd cocycles non-trivial? do they distinguish the sectors?

1 natural physically meaningful candidates for [u] ∈ K1(A) are:
Weyl unitaries (the generators of the A(I )), shifts on the
spectrum of D, charge transporters, braiding operators,...

2 some necessary conditions for non-triviality τ(u) 6= 0 are:
[D, u] 6= 0 and (∃n0 ∈ N)(∀n > n0)u

1/n 6∈ D(δ)

I hence τ(u) = 0 for all these u

I open question: do we even have K1(A) = 0?

Robin Hillier
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SuSy rational extensions of the net

I idea: consider the commutative algebra A = C∞(S)
represented on H = L2(S) (with basis (ek : eit 7→ eitk)k∈Z) by
multiplication, and D = d/dt; the “spectral shift unitary”
u = e1 acts as bilateral shift on the eigenvectors and gives
τ(u) = 1

I back to our setting: u 6∈ A, but u is in the maximal extensions
AN of the net A
(i.e., those super-conformal nets containing A as a subnet
covariant w.r.t. the same representation of SL(2,R) as A
itself; in fact,

AN = ALU(1)2N
, A = ALU(1)conn−comp

)

Robin Hillier
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The “shift unitary”

Theorem
The rational extensions AN of A are supersymmetric and give rise
to spectral triples (A := D(δ) ∩ AN ,H,D) with the same
representation space as before. δ extends to AN . The even cocycle
vanishes. Concerning the odd cocycle, we have π(u) ∈ D(δ), and
δ(π(u)) = π(u)b0, and τ(u) = 1. Moreover

τ(ρπ(u)) = τ(u) = τπ(u) = 1

for all representations π of the N-th extension.

Robin Hillier
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Rough definition

consider a unitary positive-energy representation of the (N = 1)
Ramond Super-Virasoro algebra for fixed central charge c and with
finite-dimensional lowest-energy eigenspace; denote the generators
in this representation by (Gn, Ln)n∈Z and define the smoothed out
fields G (f ), L(f ) for f ∈ C∞c (S1); set

A(I ) := {e iL(f ), e iG(f ) : f ∈ C∞c (S1) real, suppf ⊂ I}′′, I ∈ I.

Robin Hillier
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Spectal triples from the Ramond algebra (1)

Theorem

I Given a unitary positive energy Ramond representation πR of
A, we have a net of graded, θ-summable spectral triples
(A(I ),H,D) where D = G0 such that A(I ) is a strongly dense
unital ∗-subalgebra of πR(A(I )) for every interval I ⊂ S1 in I.

I For the irreducible Ramond representation with h = c/24, we
get a non-trivial even JLO-cocycle with τ(1) = 1.

I For h 6= c/24, the irreducible representations are ungraded
and only the odd JLO-cocycle may be non-trivial.

Robin Hillier
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Spectal triples from the Ramond algebra (2)

I lengthy proof, based on linear energy bounds and
commutation relations for the Virasoro algebra; first
considering the domain of G0 in H and deducing then the
domain of the associated graded derivation

I in fact, the (domain) *-algebra in this case contains as
important elments the “resolvents”

G (f )(L(f ) + iα)−1, (L(f ) + iα)−1,

with non-negative f ∈ C∞c (I ) and appropriate α ∈ R
depending on f ; it is a local C ∗-algebra

I remark on the cocycle: some arguments work as in the
free-field example; non-trivilaity of odd cocycles (i.e., for
h 6= c/24) open problem; if so, then distinguishable among
each other?

Robin Hillier
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...in progress, esp. WZW...
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Lessons from these examples

I whether even or odd cocycle – depending on the structure of
the model’s algebra

I restrict to rational theories, work on a suitable (global)
universal C ∗-algebra (which one?)

I two (different or cohomologous?) ways of associating the
cocycles to the sectors

I many special or general “vanishing arguments”, but the
search for explicit cycles (as Chern characters coming from
projections/unitaries in Mn(A)) turns out to be exhausting

I abstract criterions to check non-triviality of τ , τ (π), and ρ∗τ
still missing and helpful

Robin Hillier
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Last but not least: ideas, hopes, and dreams...

I (when) do the DHR-endomorphisms preserve the domain:
ρ(D(δ)) ⊂ D(δ)?

I if so, then possible to find special cycles (even or odd) x such
that [ρ1∗τ ] · x 6= [ρ2∗τ ] · x?

I τπ ' ρ∗τ as expected above?

I special cases indicate ρ∗ 6= 1 on K∗(A), but is this really so?
how to see in general? and if so, then ρ∗[τ ] 6= [τ ] for this
fixed τ?

I what properties does A have? suitable for KK-theory? helpful
description of DHR-endomorphisms in terms of
KK (A,A)-classes?

I what about the induced metrics?
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