

Spectral Triples and JLO Cocycles for Conformal Field Theory

Robin Hillier

September 2009 Vietri sul Mare

joint work in progress with Sebastiano Carpi, Yasuyuki Kawahigashi, and Roberto Longo

Outline	ECC		Further Models	Conclusion
Outline				

- representations and states of conformal nets are algebraic objects in noncommutative (=quantum) field theory
- noncommutative geometry described by spectral triples and cyclic homology
- overall question: possible to encode representation and states in these NCG objects? e.g., as (co-)homology classes, or K(K)-classes?

Outline	ECC		Further Models	Conclusion

Outline

- representations and states of conformal nets are algebraic objects in noncommutative (=quantum) field theory
- noncommutative geometry described by spectral triples and cyclic homology
- overall question: possible to encode representation and states in these NCG objects? e.g., as (co-)homology classes, or K(K)-classes?

Outline	ECC		Further Models	Conclusion
Outline				

- representations and states of conformal nets are algebraic objects in noncommutative (=quantum) field theory
- noncommutative geometry described by spectral triples and cyclic homology
- overall question: possible to encode representation and states in these NCG objects? e.g., as (co-)homology classes, or K(K)-classes?

Entire Cyclic Cohomology and the JLO-Cocycle

First and Main Example: The Supersymmetric Free Field - nice toy

Second Example: The (N = 1) Super-Virasoro Net – *universal*

Further Models

Conclusions... and then?

Entire cyclic homology

given a $\mathbb{Z}/2$ -graded Banach algebra A.

- ► chains C_{*}(A) := ∑_{n=0}[∞] A ⊗ (A/ℂ)^{⊗n} so-called universal differential algebra of A
- ▶ consider $(a_0, a_1, ...) \in C_*(A)$ such that

$$z \in \mathbb{C} \mapsto ||(a_1, a_2, ...)||_z := \sum_n \frac{1}{\sqrt{n!}} ||a_n||z^n|$$

is entire

- entire cochains defined dually
- usual (cyclic) boundary operator d = b + B

Entire cyclic homology (skip)

boundary operator d = b + B where ...

$$b(a_0, \dots, a_n)_n = \sum_{k=0}^n (-1)^k (a_0, \dots, a_k a_{k+1}, \dots, a_n)_{n-1} \\ + (-1)^n (a_n a_0, \dots, a_{n-1})_{n-1} \\ B(a_0, \dots, a_n)_n = \sum_{i=0}^n (-1)^{kn} (1, a_k, \dots, a_n, a_0, \dots, a_{k-1})_{n+1}$$

Robin Hillier

- ▶ here consider: θ-summable spectral triples (A, H, D), meaning e^{-tD²} is trace-class for all t > 0, and D² = L₀ up to a constant
- ▶ various cohomologous expressions for the EC cocycle associated to (A, H, D), here JLO-cocycle:

$$\tau_n(a_1...a_n) := \int_{\Delta_n} \operatorname{tr}\left(\Gamma_{a_0} \alpha_{\mathrm{i}s_1}(\delta(\gamma^1(a_1))) \dots \alpha_{\mathrm{i}s_n}(\delta(\gamma^n(a_n))) \mathrm{e}^{-D^2} \right) \mathrm{d}s$$

with $(\alpha_t)_{t\in\mathbb{R}}$ the one-parameter automorphism group with infinitesimal generator ad L_0 , Γ the grading in the $\mathbb{Z}/2$ -graded case

- For simplicity, identify A with π_R(A) ⊂ B(H), corresponding to some fixed (Ramond) representation π_R of the net
- homotopy invariance yields pairing of cocycle with K-theory:

$$K^*(A) \ni \tau : K_*(A) \to K_0(\mathbb{C}) = \mathbb{Z}$$

Robin Hillier

- ▶ here consider: θ-summable spectral triples (A, H, D), meaning e^{-tD²} is trace-class for all t > 0, and D² = L₀ up to a constant
- ▶ various cohomologous expressions for the EC cocycle associated to (A, H, D), here JLO-cocycle:

$$\tau_n(a_1...a_n) := \int_{\Delta_n} \operatorname{tr}\left(\mathsf{\Gamma} a_0 \alpha_{\mathrm{i}\mathfrak{s}_1}(\delta(\gamma^1(a_1))) \dots \alpha_{\mathrm{i}\mathfrak{s}_n}(\delta(\gamma^n(a_n))) \mathrm{e}^{-D^2} \right) \mathrm{d}\mathfrak{s}_n$$

with $(\alpha_t)_{t\in\mathbb{R}}$ the one-parameter automorphism group with infinitesimal generator ad L_0 , Γ the grading in the $\mathbb{Z}/2$ -graded case

- For simplicity, identify A with π_R(A) ⊂ B(H), corresponding to some fixed (Ramond) representation π_R of the net
- homotopy invariance yields pairing of cocycle with K-theory:

$$K^*(A) \ni \tau : K_*(A) \to K_0(\mathbb{C}) = \mathbb{Z}$$

Robin Hillier

- ▶ here consider: θ-summable spectral triples (A, H, D), meaning e^{-tD²} is trace-class for all t > 0, and D² = L₀ up to a constant
- ▶ various cohomologous expressions for the EC cocycle associated to (A, H, D), here JLO-cocycle:

$$\tau_n(a_1...a_n) := \int_{\Delta_n} \operatorname{tr}\left(\mathsf{\Gamma} a_0 \alpha_{\mathrm{i} \mathfrak{s}_1}(\delta(\gamma^1(a_1))) \dots \alpha_{\mathrm{i} \mathfrak{s}_n}(\delta(\gamma^n(a_n))) \mathrm{e}^{-D^2} \right) \mathrm{d} \mathfrak{s}_n$$

with $(\alpha_t)_{t \in \mathbb{R}}$ the one-parameter automorphism group with infinitesimal generator ad L_0 , Γ the grading in the $\mathbb{Z}/2$ -graded case

- For simplicity, identify A with π_R(A) ⊂ B(H), corresponding to some fixed (Ramond) representation π_R of the net
- homotopy invariance yields pairing of cocycle with K-theory:

 $K^*(A) \ni \tau : K_*(A) \to K_0(\mathbb{C}) = \mathbb{Z}$

Robin Hillier

- ▶ here consider: θ-summable spectral triples (A, H, D), meaning e^{-tD²} is trace-class for all t > 0, and D² = L₀ up to a constant
- ▶ various cohomologous expressions for the EC cocycle associated to (A, H, D), here JLO-cocycle:

$$\tau_n(a_1...a_n) := \int_{\Delta_n} \operatorname{tr}\left(\mathsf{\Gamma} a_0 \alpha_{\mathrm{i} \mathfrak{s}_1}(\delta(\gamma^1(a_1))) \dots \alpha_{\mathrm{i} \mathfrak{s}_n}(\delta(\gamma^n(a_n))) \mathrm{e}^{-D^2} \right) \mathrm{d} \mathfrak{s}_n$$

with $(\alpha_t)_{t \in \mathbb{R}}$ the one-parameter automorphism group with infinitesimal generator ad L_0 , Γ the grading in the $\mathbb{Z}/2$ -graded case

- For simplicity, identify A with π_R(A) ⊂ B(H), corresponding to some fixed (Ramond) representation π_R of the net
- homotopy invariance yields pairing of cocycle with K-theory:

$$K^*(A) \ni \tau : K_*(A) \to K_0(\mathbb{C}) = \mathbb{Z}$$

Robin Hillier

what happens in a sector $\pi_1 \not\simeq \pi_R$? how to define cocycle? two answers:

- 1 consider different triple $(A, \mathcal{H}_{\pi_1}, D_{\pi_1})$ such that $D_{\pi_1}^2 = L_0^{\pi_1}$ and associated JLO-cocycle $\tau^{(\pi_1)}$
- 2 DHR-reps are described by localised endomorphisms of the net \mathcal{A} , namely $\pi_1 \simeq \pi_0 \circ \rho_{\pi_1}$, so

$$(\rho_{\pi_1}^*\tau_n)(a):=\tau_n(\rho_{\pi_1*}(a))$$

- the two descriptions expected to be cohomologous; at least, for certain models
- ▶ locally, on A(I), the second one cohomologous to \(\tau\), hence work on (global) universal C*-algebra

what happens in a sector $\pi_1 \not\simeq \pi_R$? how to define cocycle? two answers:

- 1 consider different triple $(A, \mathcal{H}_{\pi_1}, D_{\pi_1})$ such that $D_{\pi_1}^2 = L_0^{\pi_1}$ and associated JLO-cocycle $\tau^{(\pi_1)}$
- 2 DHR-reps are described by localised endomorphisms of the net \mathcal{A} , namely $\pi_1 \simeq \pi_0 \circ \rho_{\pi_1}$, so

$$(
ho_{\pi_1}^* au_n)(a):= au_n(
ho_{\pi_1*}(a))$$

- the two descriptions expected to be cohomologous; at least, for certain models
- ▶ locally, on A(I), the second one cohomologous to \(\tau\), hence work on (global) universal C*-algebra

what happens in a sector $\pi_1 \not\simeq \pi_R$? how to define cocycle? two answers:

- 1 consider different triple $(A, \mathcal{H}_{\pi_1}, D_{\pi_1})$ such that $D_{\pi_1}^2 = L_0^{\pi_1}$ and associated JLO-cocycle $\tau^{(\pi_1)}$
- 2 DHR-reps are described by localised endomorphisms of the net \mathcal{A} , namely $\pi_1 \simeq \pi_0 \circ \rho_{\pi_1}$, so

$$(\rho_{\pi_1}^*\tau_n)(a):=\tau_n(\rho_{\pi_1*}(a))$$

- the two descriptions expected to be cohomologous; at least, for certain models
- ▶ locally, on A(I), the second one cohomologous to \(\tau\), hence work on (global) universal C*-algebra

what happens in a sector $\pi_1 \not\simeq \pi_R$? how to define cocycle? two answers:

- 1 consider different triple $(A, \mathcal{H}_{\pi_1}, D_{\pi_1})$ such that $D_{\pi_1}^2 = L_0^{\pi_1}$ and associated JLO-cocycle $\tau^{(\pi_1)}$
- 2 DHR-reps are described by localised endomorphisms of the net \mathcal{A} , namely $\pi_1 \simeq \pi_0 \circ \rho_{\pi_1}$, so

$$(\rho_{\pi_1}^*\tau_n)(a):=\tau_n(\rho_{\pi_1*}(a))$$

- the two descriptions expected to be cohomologous; at least, for certain models
- ▶ locally, on A(I), the second one cohomologous to \(\tau\), hence work on (global) universal C*-algebra

Now the questions:

- in models, are the cocycles nontrivial classes? when? under what assumptions?
- ► can we distiguish the representations, i.e., $[\rho_1^*\tau] \neq [\rho_2^*\tau]$ for $\rho_1 \not\simeq \rho_2$?
- if not, can we distiguish the induced metrics?
- abstract general arguments?
- explicit arguments: find suitable projections and unitaries in *M_n(A)* corresponding to classes *K₀(A)* and *K₁(A)*, respectively, and explicit expressions for the localised endomorphisms in the respective model

Now the questions:

- in models, are the cocycles nontrivial classes? when? under what assumptions?
- ► can we distiguish the representations, i.e., $[\rho_1^*\tau] \neq [\rho_2^*\tau]$ for $\rho_1 \neq \rho_2$?
- if not, can we distiguish the induced metrics?
- abstract general arguments?
- explicit arguments: find suitable projections and unitaries in *M_n(A)* corresponding to classes *K₀(A)* and *K₁(A)*, respectively, and explicit expressions for the localised endomorphisms in the respective model

Now the questions:

- in models, are the cocycles nontrivial classes? when? under what assumptions?
- ► can we distiguish the representations, i.e., $[\rho_1^*\tau] \neq [\rho_2^*\tau]$ for $\rho_1 \neq \rho_2$?
- if not, can we distiguish the induced metrics?
- abstract general arguments?
- ► explicit arguments: find suitable projections and unitaries in *M_n(A)* corresponding to classes *K₀(A)* and *K₁(A)*, respectively, and explicit expressions for the localised endomorphisms in the respective model

- Now the questions:
 - in models, are the cocycles nontrivial classes? when? under what assumptions?
 - ► can we distiguish the representations, i.e., $[\rho_1^*\tau] \neq [\rho_2^*\tau]$ for $\rho_1 \neq \rho_2$?
 - if not, can we distiguish the induced metrics?
 - abstract general arguments?
 - ► explicit arguments: find suitable projections and unitaries in *M_n(A)* corresponding to classes *K₀(A)* and *K₁(A)*, respectively, and explicit expressions for the localised endomorphisms in the respective model

- consider (unbounded) bosonic and (bounded) fermionic fields: J(f) and ψ(f), f ∈ C[∞](S), on H, the product of bosonic and fermionic Fock spaces on the circle
- Field algebra A(I) = {e^{iJ(f)}: f ∈ C[∞](I)}" ⊗ Cliff(C[∞](I))" for I ∈ I
- ▶ conformal Hamiltonian L_0 and supercharge $D = \sum_k J_k \psi_{-k}$ with $D^2 = L_0$, densely defined, essentially self-adjoint, domain containing the set of finite energy vectors $\subset \mathcal{H}$

- consider (unbounded) bosonic and (bounded) fermionic fields: J(f) and ψ(f), f ∈ C[∞](S), on H, the product of bosonic and fermionic Fock spaces on the circle
- ▶ field algebra $\mathcal{A}(I) = \{ e^{iJ(f)} : f \in C^{\infty}(I) \}'' \otimes Cliff(C^{\infty}(I))''$ for $I \in \mathcal{I}$
- ▶ conformal Hamiltonian L_0 and supercharge $D = \sum_k J_k \psi_{-k}$ with $D^2 = L_0$, densely defined, essentially self-adjoint, domain containing the set of finite energy vectors $\subset \mathcal{H}$

- consider (unbounded) bosonic and (bounded) fermionic fields: J(f) and ψ(f), f ∈ C[∞](S), on H, the product of bosonic and fermionic Fock spaces on the circle
- ▶ field algebra $\mathcal{A}(I) = \{ e^{iJ(f)} : f \in C^{\infty}(I) \}'' \otimes Cliff(C^{\infty}(I))''$ for $I \in \mathcal{I}$
- ► conformal Hamiltonian L_0 and supercharge $D = \sum_k J_k \psi_{-k}$ with $D^2 = L_0$, densely defined, essentially self-adjoint, domain containing the set of finite energy vectors $\subset \mathcal{H}$

Outline	ECC	Example 1	Further Models	Conclusion

Some facts

mostly owing to Buchholz/Mack/Todorov:

- irreducible unitary positive energy Ramond representations of the net \mathcal{A} described by $q \in \mathbb{R}_+$ such that $(L_0 1/16)\Omega = q^2/2\Omega$
- ▶ the (localisable) DHR-automorphism explicitly known
- ▶ $\mathcal{D}(\delta) \cap \mathcal{A}(I)$ is strongly dense in $\mathcal{A}(I)$

Some facts

mostly owing to Buchholz/Mack/Todorov:

- irreducible unitary positive energy Ramond representations of the net \mathcal{A} described by $q \in \mathbb{R}_+$ such that $(L_0 1/16)\Omega = q^2/2\Omega$
- ▶ the (localisable) DHR-automorphism explicitly known

▶ $\mathcal{D}(\delta) \cap \mathcal{A}(I)$ is strongly dense in $\mathcal{A}(I)$

Outline	ECC	Example 1	Further Models	Conclusion

Some facts

mostly owing to Buchholz/Mack/Todorov:

- irreducible unitary positive energy Ramond representations of the net \mathcal{A} described by $q \in \mathbb{R}_+$ such that $(L_0 1/16)\Omega = q^2/2\Omega$
- ▶ the (localisable) DHR-automorphism explicitly known
- $\mathcal{D}(\delta) \cap \mathcal{A}(I)$ is strongly dense in $\mathcal{A}(I)$

Spectral triples and the Cocycle

Theorem

Let \mathcal{A} be the net associated to the supersymmetric free field, represented on the ($\mathbb{Z}/2$ -graded) Ramond Fock space \mathcal{H} . Let L_0 be the associated conformal Hamiltonian on \mathcal{H} , and D a self-adjoint (odd) square-root of L_0 , as above.

- (A, \mathcal{H}, D) , with $A := \mathcal{D}(\delta) \cap \mathcal{A}(I)$ for some fixed interval I, or $A := \mathcal{D}(\delta)$ are θ -summable spectral triples.
- For the corresponding even JLO-cocycle we have τ_e = 0; doubling procedure gives nontrivial τ_e.
- For the corresponding odd JLO-cocycle and a DHR-representation π₁ on H₁ ≃ H, with DHR-endomorphism ρ such that π₁ ≃ π_R ∘ ρ, we have:

$$\rho_* \tau_o \simeq \tau_o^{\pi_1}$$

Robin Hillier

Search for unitaries

are the odd cocycles non-trivial? do they distinguish the sectors?

- 1 natural physically meaningful candidates for $[u] \in K_1(A)$ are: Weyl unitaries (the generators of the $\mathcal{A}(I)$), shifts on the spectrum of D, charge transporters, braiding operators,...
- 2 some necessary conditions for non-triviality $\tau(u) \neq 0$ are: $[D, u] \neq 0$ and $(\exists n_0 \in \mathbb{N})(\forall n > n_0)u^{1/n} \notin \mathcal{D}(\delta)$
- hence $\tau(u) = 0$ for all these u
- open question: do we even have $K_1(A) = 0$?

Search for unitaries

are the odd cocycles non-trivial? do they distinguish the sectors?

- 1 natural physically meaningful candidates for $[u] \in K_1(A)$ are: Weyl unitaries (the generators of the $\mathcal{A}(I)$), shifts on the spectrum of D, charge transporters, braiding operators,...
- 2 some necessary conditions for non-triviality $\tau(u) \neq 0$ are: $[D, u] \neq 0$ and $(\exists n_0 \in \mathbb{N})(\forall n > n_0)u^{1/n} \notin \mathcal{D}(\delta)$

• hence $\tau(u) = 0$ for all these u

• open question: do we even have $K_1(A) = 0$?

Search for unitaries

are the odd cocycles non-trivial? do they distinguish the sectors?

- 1 natural physically meaningful candidates for $[u] \in K_1(A)$ are: Weyl unitaries (the generators of the $\mathcal{A}(I)$), shifts on the spectrum of D, charge transporters, braiding operators,...
- 2 some necessary conditions for non-triviality $\tau(u) \neq 0$ are: $[D, u] \neq 0$ and $(\exists n_0 \in \mathbb{N})(\forall n > n_0)u^{1/n} \notin \mathcal{D}(\delta)$

• hence
$$\tau(u) = 0$$
 for all these u

• open question: do we even have $K_1(A) = 0$?

SuSy rational extensions of the net

idea: consider the commutative algebra A = C[∞](S) represented on H = L²(S) (with basis (e_k : e^{it} → e^{itk})_{k∈Z}) by multiplication, and D = d/dt; the "spectral shift unitary" u = e₁ acts as bilateral shift on the eigenvectors and gives τ(u) = 1

back to our setting: u ∉ A, but u is in the maximal extensions A_N of the net A (i.e., those super-conformal nets containing A as a subnet covariant w.r.t. the same representation of SL(2, ℝ) as A itself: in fact.

$$\mathcal{A}_N = \mathcal{A}_{LU(1)_{2N}}, \quad \mathcal{A} = \mathcal{A}_{LU(1)_{conn-comp}})$$

SuSy rational extensions of the net

idea: consider the commutative algebra A = C[∞](S) represented on H = L²(S) (with basis (e_k : e^{it} → e^{itk})_{k∈Z}) by multiplication, and D = d/dt; the "spectral shift unitary" u = e₁ acts as bilateral shift on the eigenvectors and gives τ(u) = 1

back to our setting: u ∉ A, but u is in the maximal extensions A_N of the net A

 (i.e., those super-conformal nets containing A as a subnet covariant w.r.t. the same representation of SL(2, ℝ) as A itself; in fact,

$$\mathcal{A}_{\mathsf{N}} = \mathcal{A}_{\mathsf{LU}(1)_{2\mathsf{N}}}, \quad \mathcal{A} = \mathcal{A}_{\mathsf{LU}(1)_{\mathsf{conn-comp}}})$$

Robin Hillier

Outline	ECC	Example 1	Further Models	Conclusion

The "shift unitary"

Theorem

The rational extensions \mathcal{A}_N of \mathcal{A} are supersymmetric and give rise to spectral triples ($A := \mathcal{D}(\delta) \cap \mathcal{A}_N, \mathcal{H}, D$) with the same representation space as before. δ extends to \mathcal{A}_N . The even cocycle vanishes. Concerning the odd cocycle, we have $\pi(u) \in \mathcal{D}(\delta)$, and $\delta(\pi(u)) = \pi(u)b_0$, and $\tau(u) = 1$. Moreover

$$\tau(\rho_{\pi}(u)) = \tau(u) = \tau^{\pi}(u) = 1$$

for all representations π of the N-th extension.

Spectral Triples and JLO Cocycles for Conformal Field Theory

Rough definition

consider a unitary positive-energy representation of the (N = 1)Ramond Super-Virasoro algebra for fixed central charge c and with finite-dimensional lowest-energy eigenspace; denote the generators in this representation by $(G_n, L_n)_{n \in \mathbb{Z}}$ and define the smoothed out fields G(f), L(f) for $f \in C_c^{\infty}(S^1)$; set

$$\mathcal{A}(I):=\{e^{iL(f)},e^{iG(f)}:f\in C^\infty_c(S^1) ext{ real}, ext{ supp} f\subset I\}'',\ I\in\mathcal{I}.$$

Spectal triples from the Ramond algebra (1)

Theorem

- Given a unitary positive energy Ramond representation π_R of \mathcal{A} , we have a net of graded, θ -summable spectral triples $(\mathcal{A}(I), \mathcal{H}, D)$ where $D = G_0$ such that $\mathcal{A}(I)$ is a strongly dense unital *-subalgebra of $\pi_R(\mathcal{A}(I))$ for every interval $I \subset S^1$ in \mathcal{I} .
- For the irreducible Ramond representation with h = c/24, we get a non-trivial even JLO-cocycle with $\tau(1) = 1$.
- For h ≠ c/24, the irreducible representations are ungraded and only the odd JLO-cocycle may be non-trivial.

Spectal triples from the Ramond algebra (2)

- ▶ lengthy proof, based on linear energy bounds and commutation relations for the Virasoro algebra; first considering the domain of G₀ in H and deducing then the domain of the associated graded derivation
- in fact, the (domain) *-algebra in this case contains as important elments the "resolvents"

 $G(f)(L(f) + i\alpha)^{-1}, \quad (L(f) + i\alpha)^{-1},$

with non-negative $f \in C_c^{\infty}(I)$ and appropriate $\alpha \in \mathbb{R}$ depending on f; it is a local C^* -algebra

▶ remark on the cocycle: some arguments work as in the free-field example; non-trivilaity of odd cocycles (i.e., for $h \neq c/24$) open problem; if so, then distinguishable among each other?

Spectal triples from the Ramond algebra (2)

- ▶ lengthy proof, based on linear energy bounds and commutation relations for the Virasoro algebra; first considering the domain of G₀ in H and deducing then the domain of the associated graded derivation
- in fact, the (domain) *-algebra in this case contains as important elments the "resolvents"

$$G(f)(L(f) + i\alpha)^{-1}, \quad (L(f) + i\alpha)^{-1},$$

with non-negative $f \in C_c^{\infty}(I)$ and appropriate $\alpha \in \mathbb{R}$ depending on f; it is a local C^* -algebra

▶ remark on the cocycle: some arguments work as in the free-field example; non-trivilaity of odd cocycles (i.e., for $h \neq c/24$) open problem; if so, then distinguishable among each other?

Spectal triples from the Ramond algebra (2)

- ▶ lengthy proof, based on linear energy bounds and commutation relations for the Virasoro algebra; first considering the domain of G₀ in H and deducing then the domain of the associated graded derivation
- in fact, the (domain) *-algebra in this case contains as important elments the "resolvents"

$$G(f)(L(f) + i\alpha)^{-1}, \quad (L(f) + i\alpha)^{-1},$$

with non-negative $f \in C_c^{\infty}(I)$ and appropriate $\alpha \in \mathbb{R}$ depending on f; it is a local C^* -algebra

remark on the cocycle: some arguments work as in the free-field example; non-trivilaity of odd cocycles (i.e., for h ≠ c/24) open problem; if so, then distinguishable among each other?

Robin Hillier

Outline	ECC		Further Models	Conclusion

...in progress, esp. WZW...

- whether even or odd cocycle depending on the structure of the model's algebra
- restrict to rational theories, work on a suitable (global) universal C*-algebra (which one?)
- two (different or cohomologous?) ways of associating the cocycles to the sectors
- ▶ many special or general "vanishing arguments", but the search for explicit cycles (as Chern characters coming from projections/unitaries in M_n(A)) turns out to be exhausting
- ▶ abstract criterions to check non-triviality of τ , $\tau^{(\pi)}$, and $\rho_* \tau$ still missing and helpful

- whether even or odd cocycle depending on the structure of the model's algebra
- restrict to rational theories, work on a suitable (global) universal C*-algebra (which one?)
- two (different or cohomologous?) ways of associating the cocycles to the sectors
- ▶ many special or general "vanishing arguments", but the search for explicit cycles (as Chern characters coming from projections/unitaries in M_n(A)) turns out to be exhausting
- ▶ abstract criterions to check non-triviality of τ , $\tau^{(\pi)}$, and $\rho_* \tau$ still missing and helpful

- whether even or odd cocycle depending on the structure of the model's algebra
- restrict to rational theories, work on a suitable (global) universal C*-algebra (which one?)
- two (different or cohomologous?) ways of associating the cocycles to the sectors
- ▶ many special or general "vanishing arguments", but the search for explicit cycles (as Chern characters coming from projections/unitaries in M_n(A)) turns out to be exhausting
- ▶ abstract criterions to check non-triviality of τ , $\tau^{(\pi)}$, and $\rho_* \tau$ still missing and helpful

- whether even or odd cocycle depending on the structure of the model's algebra
- restrict to rational theories, work on a suitable (global) universal C*-algebra (which one?)
- two (different or cohomologous?) ways of associating the cocycles to the sectors
- ▶ many special or general "vanishing arguments", but the search for explicit cycles (as Chern characters coming from projections/unitaries in M_n(A)) turns out to be exhausting
- ▶ abstract criterions to check non-triviality of τ , $\tau^{(\pi)}$, and $\rho_* \tau$ still missing and helpful

- whether even or odd cocycle depending on the structure of the model's algebra
- restrict to rational theories, work on a suitable (global) universal C*-algebra (which one?)
- two (different or cohomologous?) ways of associating the cocycles to the sectors
- ▶ many special or general "vanishing arguments", but the search for explicit cycles (as Chern characters coming from projections/unitaries in M_n(A)) turns out to be exhausting
- ▶ abstract criterions to check non-triviality of τ , $\tau^{(\pi)}$, and $\rho_* \tau$ still missing and helpful

- whether even or odd cocycle depending on the structure of the model's algebra
- restrict to rational theories, work on a suitable (global) universal C*-algebra (which one?)
- two (different or cohomologous?) ways of associating the cocycles to the sectors
- ▶ many special or general "vanishing arguments", but the search for explicit cycles (as Chern characters coming from projections/unitaries in M_n(A)) turns out to be exhausting
- ▶ abstract criterions to check non-triviality of τ , $\tau^{(\pi)}$, and $\rho_* \tau$ still missing and helpful

- (when) do the DHR-endomorphisms preserve the domain: $\rho(\mathcal{D}(\delta)) \subset \mathcal{D}(\delta)$?
- if so, then possible to find special cycles (even or odd) x such that [ρ_{1*}τ] ⋅ x ≠ [ρ_{2*}τ] ⋅ x?
- $\tau^{\pi} \simeq \rho^* \tau$ as expected above?
- special cases indicate ρ_{*} ≠ 1 on K_{*}(A), but is this really so? how to see in general? and if so, then ρ^{*}[τ] ≠ [τ] for this fixed τ?
- what properties does A have? suitable for KK-theory? helpful description of DHR-endomorphisms in terms of KK(A, A)-classes?
- what about the induced metrics?

- (when) do the DHR-endomorphisms preserve the domain: $\rho(\mathcal{D}(\delta)) \subset \mathcal{D}(\delta)$?
- if so, then possible to find special cycles (even or odd) x such that [ρ_{1*}τ] ⋅ x ≠ [ρ_{2*}τ] ⋅ x?
- $\tau^{\pi} \simeq \rho^* \tau$ as expected above?
- special cases indicate ρ_{*} ≠ 1 on K_{*}(A), but is this really so? how to see in general? and if so, then ρ^{*}[τ] ≠ [τ] for this fixed τ?
- what properties does A have? suitable for KK-theory? helpful description of DHR-endomorphisms in terms of KK(A, A)-classes?
- what about the induced metrics?

- (when) do the DHR-endomorphisms preserve the domain: $\rho(\mathcal{D}(\delta)) \subset \mathcal{D}(\delta)$?
- if so, then possible to find special cycles (even or odd) x such that [ρ_{1*}τ] ⋅ x ≠ [ρ_{2*}τ] ⋅ x?
- $\tau^{\pi} \simeq \rho^* \tau$ as expected above?
- special cases indicate ρ_{*} ≠ 1 on K_{*}(A), but is this really so? how to see in general? and if so, then ρ^{*}[τ] ≠ [τ] for this fixed τ?
- what properties does A have? suitable for KK-theory? helpful description of DHR-endomorphisms in terms of KK(A, A)-classes?
- what about the induced metrics?

- (when) do the DHR-endomorphisms preserve the domain: $\rho(\mathcal{D}(\delta)) \subset \mathcal{D}(\delta)$?
- if so, then possible to find special cycles (even or odd) x such that [ρ_{1*}τ] ⋅ x ≠ [ρ_{2*}τ] ⋅ x?
- $\tau^{\pi} \simeq \rho^* \tau$ as expected above?
- special cases indicate ρ_{*} ≠ 1 on K_{*}(A), but is this really so? how to see in general? and if so, then ρ^{*}[τ] ≠ [τ] for this fixed τ?
- what properties does A have? suitable for KK-theory? helpful description of DHR-endomorphisms in terms of KK(A, A)-classes?
- what about the induced metrics?

- (when) do the DHR-endomorphisms preserve the domain: $\rho(\mathcal{D}(\delta)) \subset \mathcal{D}(\delta)$?
- if so, then possible to find special cycles (even or odd) x such that [ρ_{1*}τ] ⋅ x ≠ [ρ_{2*}τ] ⋅ x?
- $\tau^{\pi} \simeq \rho^* \tau$ as expected above?
- special cases indicate ρ_{*} ≠ 1 on K_{*}(A), but is this really so? how to see in general? and if so, then ρ^{*}[τ] ≠ [τ] for this fixed τ?
- what properties does A have? suitable for KK-theory? helpful description of DHR-endomorphisms in terms of KK(A, A)-classes?
- what about the induced metrics?

- (when) do the DHR-endomorphisms preserve the domain: $\rho(\mathcal{D}(\delta)) \subset \mathcal{D}(\delta)$?
- if so, then possible to find special cycles (even or odd) x such that [ρ_{1*}τ] ⋅ x ≠ [ρ_{2*}τ] ⋅ x?
- $\tau^{\pi} \simeq \rho^* \tau$ as expected above?
- special cases indicate ρ_{*} ≠ 1 on K_{*}(A), but is this really so? how to see in general? and if so, then ρ^{*}[τ] ≠ [τ] for this fixed τ?
- what properties does A have? suitable for KK-theory? helpful description of DHR-endomorphisms in terms of KK(A, A)-classes?
- what about the induced metrics?