product of real spectral triples

G. Dossena (joint work with L. Dąbrowski)

SISSA, Trieste

Noncommutative Geometry and Quantum Physics Vietri sul Mare, September 2009

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

introduction

Riemannian spin geometries on compact manifolds are encoded by *commutative* real spectral triples [Connes, arxiv 2008].

Riemannian spin geometry		real spectral triples
Cartesian products	\iff	?

additional (more physical) motivation: products of real spectral triples are used in the construction of the noncommutative standard model of particle physics [Connes-Lott, Chamseddine-Connes, etc.].

definition of a spectral triple (A, \mathcal{H}, D)

- 1. A is a real or complex associative unital *-algebra
- 2. $\rho: A \to \mathcal{B}(\mathcal{H})$ is a faithful unital *-rep on the C^* -algebra of bounded linear ops $\mathcal{B}(\mathcal{H})$ on some separable \mathbb{C} -Hilbert space \mathcal{H} ;
- 3. D (Dirac op) is a densely defined self-adjoint op:

$$D: \operatorname{dom} D \subset \mathcal{H} \to \mathcal{H} \tag{1}$$

with compact resolvent (i.e. for $\lambda \notin \operatorname{sp}(D)$ the operator $(D - \lambda I)^{-1} \colon \mathcal{H} \to \operatorname{dom} D$ is compact) and such that

- $\rho(a) \operatorname{dom} D \subset \operatorname{dom} D$ for each $a \in A$ and
- [D, ρ(a)] is a (a priori densely defined) bounded op for each a ∈ A;

4. J (charge conjugation) is an antiunitary on \mathcal{H} [i.e. J is antilinear bijective and (Jv|Jw) = (w|v)] such that:

$$J^2 = \pm I \text{ and } J_{\pm}D = \pm DJ_{\pm} \quad ; \tag{2}$$

moreover we request:

$$[\rho(a), J\rho(b^*)J^{-1}] = 0$$
(3)

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

for each $a, b \in A$;

- note that the map $b \mapsto J\rho(b^*)J^{-1}$ is a unital *-rep of the opposite algebra A° on $\mathcal{B}(\mathcal{H})$;
- ▶ a spectral triple with J is called real.

5. [optional] $\chi \in \mathcal{B}(\mathcal{H})$ (chirality) is a self-adjoint unitary such that:

$$\chi D = -D\chi$$

[$\chi, \rho(a)$] = 0 $\forall a \in A$; (4)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- χ implements the $\mathbb{Z}/2$ -grading of \mathcal{H} ;
- a spectral triple with χ is called even.

$$J^{2} = \epsilon 1, \quad JD = \epsilon' DJ, \quad J\chi = \epsilon'' \chi J \tag{5}$$

Table: Case J_+

$n \mod 8$	0	1	2	3	4	5	6	7
ϵ	+		—	_	—		+	+
ϵ'	+		+	+	+		+	+
ϵ''	+		-		+		-	

Table: Case J_{-}

$n \mod 8$	0	1	2	3	4	5	6	7
ϵ	+	+	+		—	—	-	
ϵ'	-	_	_		_	_	-	
ϵ''	+		_		+		-	

(ロ)、(型)、(E)、(E)、 E のQで

remarks

- ▶ tables are constructed in accordance with the commutative case (mod 8 ↔ Clifford periodicity)
- integers mod 8 define the so-called KO-dimension of the triple, a priori different from the metric dimension; recall a triple has metric dimension n if the compact op

$$|D|^{-n} \colon \mathcal{H}/\ker D \to \mathcal{H} \tag{6}$$

is a first order infinitesimal, i.e. the eigenvalues

$$\lambda_0 \le \lambda_1 \le \dots \tag{7}$$

behave asymptotically as $\lambda_m = O(1/m)$ and $\sum_{m < N} \lambda_m = O(logN)$; for simplicity we will consider these two dimensions as equal.

products

given two real spectral triples $(A_i, D_i, \mathcal{H}_i, J_i, (\chi_i))_{i=1,2}$, the product triple has algebra:

$$A := A_1 \otimes A_2 \tag{8}$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

where

$$\otimes = \begin{cases} \otimes_{\mathbb{R}} & \text{at least one of the algebras is real} \\ \otimes_{\mathbb{C}} & \text{both algebras are complex} \end{cases}$$
(9)

products and adjoints are component-wise:

$$\begin{aligned} (a_1 \otimes a_2)(b_1 \otimes b_2) &:= (a_1 b_1) \otimes (a_2 b_2) &, \\ (a_1 \otimes a_2)^* &:= (a_1^*) \otimes (a_2^*) &. \end{aligned}$$
(10)

all other ingredients depend on the parity of the dimensions involved, as follows.

even-even case

$$\begin{aligned} \mathcal{H} &:= \mathcal{H}_1 \otimes \mathcal{H}_2 \\ \rho &:= \rho_1 \otimes \rho_2 \colon A_1 \otimes A_2 \to \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2) \\ D &:= D_1 \otimes I + \chi_1 \otimes D_2 \\ \widetilde{D} &:= D_1 \otimes \chi_2 + I \otimes D_2 \text{ (two choices)} \\ J &:= J_1 \otimes J_2 \\ \chi &:= \chi_1 \otimes \chi_2 \end{aligned}$$
(11)

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

- 1. $D^2 = D_1^2 \otimes I + I \otimes D_2^2 \implies$ metric dimensions add;
- 2. all properties of a real spectral triple are preserved; some caution for the domain of self-adjointness of D (or \tilde{D}): this is given by a suitable closure of the dense domain dom $D_1 \otimes \text{dom}D_2$.

Table: D

2	0+	2_{+}	4+	6+	0_	2_	4_	6_
0+	0+	2_{+}	4_{+}	6+				
2+					2_{+}	4_{+}	6_{+}	0_{+}
4+	$ 4_+ $	6_{+}	0_{+}	2_{+}				
6+					6_{+}	0_{+}	2_{+}	4_{+}
0_					0_	2_	4_	6_
2_	2_	4_	6_{-}	0_				
4_					4_	6_	0_	2_
6_	6_	0_	2_{-}	4_				

remark

the two top blocks correspond to the even-even cases considered in [Vanhecke, 1999].

÷	$\tilde{\mathbf{D}}$	
Table:	D	

2	0+	2_{+}	4+	6+	0_	2_{-}	4_	6_
0+	0+		4_{+}			2_		6_
2_{+}	2_{+}		6_{+}			4_		0_
4+	4_{+}		0_{+}			6_		2_{-}
6+	6_{+}		2_{+}			0_		4_
0_		2_{+}		6+	0_		4_	
2_{-}		4_{+}		0_{+}	2_{-}		6_	
4_		6_{+}		2_{+}	4_		0_	
6_		0_{+}		4+	6_		2_	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

even-odd case

$$\begin{aligned} \mathcal{H} &:= \mathcal{H}_1 \otimes \mathcal{H}_2 \\ \rho &:= \rho_1 \otimes \rho_2 \colon A_1 \otimes A_2 \to \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2) \\ D &:= D_1 \otimes I + \chi_1 \otimes D_2 \quad \text{or} \\ \widetilde{D} &:= D_1 \otimes \chi_2 + I \otimes D_2 \\ J &:= J_1 \otimes J_2 \end{aligned}$$
(12)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

we get analogous tables as before; half of the cases were considered in [Vanhecke, 1999].

odd-odd case

$$A := A_1 \otimes A_2$$

$$\mathcal{H} := \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathbb{C}^2$$

$$\rho := \rho_1 \otimes \rho_2 \otimes I$$

$$D := D_1 \otimes 1 \otimes \sigma_1 + 1 \otimes D_2 \otimes \sigma_2$$

$$J_{\pm} := J_1 \otimes J_2 \otimes M_{\pm} K$$

$$\chi := 1 \otimes 1 \otimes \sigma_3$$

(13)

where

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(14)

 M_{\pm} are two complex matrices specified by the next table and K is the complex conjugation operator defined for the canonical basis of \mathbb{C}^2 .

Table: odd-odd case

2	1_	3_{+}	5_	7+	
1_	σ_2, σ_1	σ_3, σ_0	σ_2, σ_1	σ_3, σ_0	
3_{+}	σ_0, σ_3	σ_1, σ_2	σ_0, σ_3	σ_1, σ_2	
5_	σ_2, σ_1	σ_3, σ_0	σ_2, σ_1	σ_3, σ_0	
7+	σ_0, σ_3	σ_1, σ_2	σ_0, σ_3	σ_1, σ_2	

- every entry contains the pair M₊, M₋; σ₀ is the identity matrix;
- ► this odd-odd construction still works under any permutation of the Pauli matrices (e.g., one can take D := D₁ ⊗ 1 ⊗ σ₁ + 1 ⊗ D₂ ⊗ σ₃ and χ := 1 ⊗ 1 ⊗ σ₂).

additional properties & their preservation under products in Connes' reconstruction theorem additional properties are used to recover the spin manifold; what about their preservation under products?

first order

$$[[D, \rho(a)], J\rho(b^*)J^{-1}] = 0$$
(15)

ション ふゆ く 山 マ チャット しょうくしゃ

preserved (proof by computation, using commutation between the reps of A_i and A_i° and, for even-odd or even-even, commutation between χ_i and the rep of A_i).

orientation

 $\exists \text{ Hochschild cycle } c \in Z_n(A, A \otimes A^\circ) \text{ s.t. } \pi_D(c) = \chi$ (16)

where

$$\pi_D(a_0 \otimes a_1 \otimes \cdots a_n) := R_J(a_0)[D, \rho(a_1)] \cdots [D, \rho(a_n)]$$

$$R_J(a_0) := \rho(a'_0) J \rho(a''_0) J^{-1}, \quad a_0 = a'_0 \otimes a''_0$$
(17)

preserved; Hochschild cycle on the product is given by

$$c := \frac{1}{r}c_1 \times c_2$$

$$r := \frac{1}{2}(n_1 + n_2 - 1)(n_1 + n_2) \cdot \begin{cases} 1 & \text{when } n_1n_2 \text{ is even} \\ i & \text{when } n_1n_2 \text{ is odd} \end{cases}$$
(18)

where \times is the shuffle product:

$$\begin{aligned} (a_0^1, a_1^1, \dots, a_p^1) \times (a_0^2, a_1^2, \dots, a_q^2) &:= \\ \sum_{\tau} (-1)^{\tau} \tau \cdot (a_0^1 \otimes a_0^2, a_1^1 \otimes 1, \dots, a_p^1 \otimes 1, 1 \otimes a_1^2, \dots, 1 \otimes a_q^2) \\ \tau \cdot (a_0, a_1 \dots, a_n) &:= (a_0, a_{\tau^{-1}(1)}, \dots, a_{\tau^{-1}(n)}) \end{aligned}$$
(19)
(20)

the sum is over all (p,q)-shuffles, i.e. permutations of $\{1, \ldots, p+q\}$ preserving the order of $\{1, \ldots, p\}$ and $\{p+1, \ldots, p+q\}$ separately.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where \times is the shuffle product:

$$\begin{aligned} (a_0^1, a_1^1, \dots, a_p^1) \times (a_0^2, a_1^2, \dots, a_q^2) &:= \\ \sum_{\tau} (-1)^{\tau} \tau \cdot (a_0^1 \otimes a_0^2, a_1^1 \otimes 1, \dots, a_p^1 \otimes 1, 1 \otimes a_1^2, \dots, 1 \otimes a_q^2) \\ \tau \cdot (a_0, a_1 \dots, a_n) &:= (a_0, a_{\tau^{-1}(1)}, \dots, a_{\tau^{-1}(n)}) \end{aligned}$$
(19)
(20)

the sum is over all (p,q)-shuffles, i.e. permutations of $\{1, \ldots, p+q\}$ preserving the order of $\{1, \ldots, p\}$ and $\{p+1, \ldots, p+q\}$ separately.

ション ふゆ く 山 マ チャット しょうくしゃ

examples/outlook

- Chamseddine-Connes model for particle physics
- noncommutative tori
- θ-deformations