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introduction
Riemannian spin geometries on compact manifolds are encoded by
commutative real spectral triples [Connes, arxiv 2008].

Riemannian spin geometry real spectral triples
Cartesian products ⇐⇒ ?

additional (more physical) motivation: products of real spectral triples
are used in the construction of the noncommutative standard model
of particle physics [Connes-Lott, Chamseddine-Connes, etc.].



definition of a spectral triple (A,H, D)

1. A is a real or complex associative unital ∗-algebra
2. ρ : A → B(H) is a faithful unital ∗-rep on the C∗-algebra of

bounded linear ops B(H) on some separable C-Hilbert space
H;

3. D (Dirac op) is a densely defined self-adjoint op:

D : domD ⊂ H → H (1)

with compact resolvent (i.e. for λ 6∈ sp(D) the operator (D −
λI)−1 : H → domD is compact) and such that

I ρ(a) domD ⊂ domD for each a ∈ A and
I [D, ρ(a)] is a (a priori densely defined) bounded op for each
a ∈ A;



4. J (charge conjugation) is an antiunitary onH [i.e. J is antilinear
bijective and (Jv|Jw) = (w|v)] such that:

J2 = ±I and J±D = ±DJ± ; (2)

moreover we request:

[ρ(a), Jρ(b∗)J−1] = 0 (3)

for each a, b ∈ A;

remarks
I note that the map b 7→ Jρ(b∗)J−1 is a unital ∗-rep of the

opposite algebra A◦ on B(H);
I a spectral triple with J is called real.



5. [optional] χ ∈ B(H) (chirality) is a self-adjoint unitary such
that:

χD = −Dχ
[χ, ρ(a)] = 0 ∀a ∈ A ;

(4)

remarks
I χ implements the Z/2-grading of H;
I a spectral triple with χ is called even.



J2 = ε1, JD = ε′DJ, Jχ = ε′′χJ (5)

Table: Case J+

n mod 8 0 1 2 3 4 5 6 7
ε + − − − + +
ε′ + + + + + +
ε′′ + − + −

Table: Case J−

n mod 8 0 1 2 3 4 5 6 7
ε + + + − − −
ε′ − − − − − −
ε′′ + − + −



remarks
I tables are constructed in accordance with the commutative case

(mod 8 ↔ Clifford periodicity)
I integers mod 8 define the so-called KO-dimension of the triple,

a priori different from the metric dimension; recall a triple has
metric dimension n if the compact op

|D|−n : H/ kerD → H (6)

is a first order infinitesimal, i.e. the eigenvalues

λ0 ≤ λ1 ≤ . . . (7)

behave asymptotically as λm = O(1/m) and
∑

m<N λm =
O(logN)); for simplicity we will consider these two dimensions
as equal.



products
given two real spectral triples (Ai, Di,Hi, Ji, (χi))i=1,2, the product
triple has algebra:

A := A1 ⊗A2 (8)

where

⊗ =

{
⊗R at least one of the algebras is real
⊗C both algebras are complex

(9)

products and adjoints are component-wise:

(a1 ⊗ a2)(b1 ⊗ b2) := (a1b1)⊗ (a2b2) ,

(a1 ⊗ a2)∗ := (a∗1)⊗ (a∗2) .
(10)

all other ingredients depend on the parity of the dimensions involved,
as follows.



even-even case

H := H1 ⊗H2

ρ := ρ1 ⊗ ρ2 : A1 ⊗A2 → B(H1 ⊗H2)
D := D1 ⊗ I + χ1 ⊗D2

D̃ := D1 ⊗ χ2 + I ⊗D2 (two choices)
J := J1 ⊗ J2

χ := χ1 ⊗ χ2

(11)

remarks

1. D2 = D2
1 ⊗ I + I ⊗D2

2 =⇒ metric dimensions add;
2. all properties of a real spectral triple are preserved; some caution

for the domain of self-adjointness of D (or D̃): this is given by
a suitable closure of the dense domain domD1 ⊗ domD2.



Table: D
HH

HHHH1
2

0+ 2+ 4+ 6+ 0− 2− 4− 6−

0+ 0+ 2+ 4+ 6+

2+ 2+ 4+ 6+ 0+

4+ 4+ 6+ 0+ 2+

6+ 6+ 0+ 2+ 4+

0− 0− 2− 4− 6−
2− 2− 4− 6− 0−
4− 4− 6− 0− 2−
6− 6− 0− 2− 4−

remark
the two top blocks correspond to the even-even cases considered in
[Vanhecke, 1999].



Table: D̃
HH

HHHH1
2

0+ 2+ 4+ 6+ 0− 2− 4− 6−

0+ 0+ 4+ 2− 6−
2+ 2+ 6+ 4− 0−
4+ 4+ 0+ 6− 2−
6+ 6+ 2+ 0− 4−
0− 2+ 6+ 0− 4−
2− 4+ 0+ 2− 6−
4− 6+ 2+ 4− 0−
6− 0+ 4+ 6− 2−



even-odd case

H := H1 ⊗H2

ρ := ρ1 ⊗ ρ2 : A1 ⊗A2 → B(H1 ⊗H2)
D := D1 ⊗ I + χ1 ⊗D2 or

D̃ := D1 ⊗ χ2 + I ⊗D2

J := J1 ⊗ J2

(12)

we get analogous tables as before; half of the cases were considered
in [Vanhecke, 1999].



odd-odd case

A := A1 ⊗A2

H := H1 ⊗H2 ⊗ C2

ρ := ρ1 ⊗ ρ2 ⊗ I
D := D1 ⊗ 1⊗ σ1 + 1⊗D2 ⊗ σ2

J± := J1 ⊗ J2 ⊗M±K
χ := 1⊗ 1⊗ σ3

(13)

where

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(14)

M± are two complex matrices specified by the next table and K is
the complex conjugation operator defined for the canonical basis of
C2.



Table: odd-odd case
HH

HHHH1
2

1− 3+ 5− 7+

1− σ2, σ1 σ3, σ0 σ2, σ1 σ3, σ0

3+ σ0, σ3 σ1, σ2 σ0, σ3 σ1, σ2

5− σ2, σ1 σ3, σ0 σ2, σ1 σ3, σ0

7+ σ0, σ3 σ1, σ2 σ0, σ3 σ1, σ2

remarks
I every entry contains the pair M+, M−; σ0 is the identity

matrix;
I this odd-odd construction still works under any permutation of

the Pauli matrices (e.g., one can take
D := D1 ⊗ 1⊗ σ1 + 1⊗D2 ⊗ σ3 and χ := 1⊗ 1⊗ σ2).



additional properties & their preservation under products
in Connes’ reconstruction theorem additional properties are used to
recover the spin manifold; what about their preservation under prod-
ucts?

first order

[[D, ρ(a)], Jρ(b∗)J−1] = 0 (15)

preserved (proof by computation, using commutation between the
reps of Ai and A◦i and, for even-odd or even-even, commutation
between χi and the rep of Ai).



orientation

∃ Hochschild cycle c ∈ Zn(A,A⊗A◦) s.t. πD(c) = χ (16)

where

πD(a0 ⊗ a1 ⊗ · · · an) := RJ(a0)[D, ρ(a1)] · · · [D, ρ(an)]
RJ(a0) := ρ(a′0)Jρ(a

′′∗
0 )J−1, a0 = a′0 ⊗ a′′0

(17)

preserved; Hochschild cycle on the product is given by

c := 1
r c1 × c2

r := 1
2(n1 + n2 − 1)(n1 + n2) ·

{
1 when n1n2 is even
i when n1n2 is odd

.
(18)



where × is the shuffle product:

(a1
0, a

1
1, . . . , a

1
p)× (a2

0, a
2
1, . . . , a

2
q) :=∑

τ

(−1)ττ · (a1
0 ⊗ a2

0, a
1
1 ⊗ 1, . . . , a1

p ⊗ 1, 1⊗ a2
1, . . . , 1⊗ a2

q)

(19)
τ · (a0, a1 . . . , an) := (a0, aτ−1(1), . . . , aτ−1(n)) (20)

the sum is over all (p, q)-shuffles, i.e. permutations of {1, . . . , p+q}
preserving the order of {1, . . . , p} and {p+ 1, . . . , p+ q} separately.

examples/outlook

I Chamseddine-Connes model for particle physics
I noncommutative tori
I θ-deformations
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