A classification of all finite-index subfactors for a class of II_1 factors.

Steven Deprez

September 1, 2009

Outline

- Subfactors
- 2 A class of II₁ factors
- Statement of the result
- 4 proof

Consider a II₁ subfactor $P \subset M$.

Definition (Jones, 1983)

The index of a subfactor $P \subset M$ is

$$[M:P] = \dim_P(\mathsf{L}^2(M))$$

Examples

Consider a II₁ subfactor $P \subset M$.

$$[M:P] = \dim_P(\mathsf{L}^2(M))$$

Examples

subfactor index $\mathcal{L}(H) \subset \mathcal{L}(G)$ $L^{\infty}(X,\mu) \rtimes H \subset L^{\infty}(X,\mu) \rtimes G$ $\mathsf{L}^\infty(X,\mu) \rtimes G \xrightarrow[u_g \mapsto \pi(g) \otimes u_g]{} \mathsf{M}_n(\mathbb{C}) \otimes \mathsf{L}^\infty(X,\mu) \rtimes G$

Consider a II₁ subfactor $P \subset M$.

Definition (Jones, 1983)

The index of a subfactor $P \subset M$ is

$$[M:P] = \dim_P(\mathsf{L}^2(M))$$

Examples

$\begin{array}{lll} \text{subfactor} & \text{index} \\ \mathcal{L}(H) \subset \mathcal{L}(G) & [G:H] \\ \mathbb{L}^{\infty}(X,\mu) \rtimes H \subset \mathbb{L}^{\infty}(X,\mu) \rtimes G & [G:H] \\ \mathbb{L}^{\infty}(X,\mu) \rtimes G & \longrightarrow & \mathbb{M}_{n}\left(\mathbb{C}\right) \otimes \mathbb{L}^{\infty}(X,\mu) \rtimes G & \mathbb{I}^{2} \\ \mathbb{L}^{\infty}(X,\mu) \rtimes G & \longrightarrow & \mathbb{L}^{\infty}(I \times X,c \times \mu) \rtimes G & |I| \\ \end{array}$

Consider a II₁ subfactor $P \subset M$.

The index of a subfactor $P \subset M$ is

$$[M:P] = \dim_P(\mathsf{L}^2(M))$$

Examples

subfactor index $\mathcal{L}(H) \subset \mathcal{L}(G)$ $L^{\infty}(X,\mu) \times H \subset L^{\infty}(X,\mu) \times G$ $\mathsf{L}^\infty(X,\mu) \rtimes G \xrightarrow[u_g \mapsto \pi(g) \otimes u_g]{} \mathsf{M}_n(\mathbb{C}) \otimes \mathsf{L}^\infty(X,\mu) \rtimes G$ $\mathsf{L}^\infty(X,\mu) \rtimes G \xrightarrow{f\mapsto 1\otimes f} \mathsf{L}^\infty(I\times X,c\times\mu) \rtimes G$

Consider a II₁ subfactor $P \subset M$.

Definition (Jones, 1983)

The index of a subfactor $P \subset M$ is

$$[M:P] = \dim_P(\mathsf{L}^2(M))$$

Statement of the result

Examples

subfactor index $\mathcal{L}(H) \subset \mathcal{L}(G)$ [G:H] $L^{\infty}(X,\mu) \times H \subset L^{\infty}(X,\mu) \times G$ $\mathsf{L}^\infty(X,\mu) \rtimes G \xrightarrow{u_g \mapsto \pi(g) \otimes u_g} \mathsf{M}_n(\mathbb{C}) \otimes \mathsf{L}^\infty(X,\mu) \rtimes G$ $L^{\infty}(X,\mu) \rtimes G \xrightarrow{f\mapsto 1\otimes f} L^{\infty}(I\times X,c\times\mu) \rtimes G$

Consider a II₁ subfactor $P \subset M$.

Definition (Jones, 1983)

The index of a subfactor $P \subset M$ is

$$[M:P] = \dim_P(\mathsf{L}^2(M))$$

Examples

subfactor index [G:H] $\mathcal{L}(H) \subset \mathcal{L}(G)$ $L^{\infty}(X,\mu) \times H \subset L^{\infty}(X,\mu) \times G$ [G:H] $\mathsf{L}^{\infty}(X,\mu) \rtimes G \xrightarrow[u_g \mapsto \pi(g) \otimes u_g]{} \mathsf{M}_n(\mathbb{C}) \otimes \mathsf{L}^{\infty}(X,\mu) \rtimes G$ $L^{\infty}(X,\mu) \rtimes G \xrightarrow{f\mapsto 1\otimes f} L^{\infty}(I\times X,c\times\mu) \rtimes G$

Consider a II₁ subfactor $P \subset M$.

Definition (Jones, 1983)

The index of a subfactor $P \subset M$ is

$$[M:P] = \dim_P(\mathsf{L}^2(M))$$

Examples

Consider a II₁ subfactor $P \subset M$.

Definition (Jones, 1983)

The index of a subfactor $P \subset M$ is

$$[M:P] = \dim_P(\mathsf{L}^2(M))$$

Statement of the result

Examples

subfactor index [G:H] $\mathcal{L}(H) \subset \mathcal{L}(G)$ [G:H] $L^{\infty}(X,\mu) \times H \subset L^{\infty}(X,\mu) \times G$ $\mathsf{L}^\infty(X,\mu) \rtimes G \xrightarrow[u_g \mapsto \pi(g) \otimes u_g]{} \mathsf{M}_n(\mathbb{C}) \otimes \mathsf{L}^\infty(X,\mu) \rtimes G$ $L^{\infty}(X,\mu) \rtimes G \xrightarrow{f\mapsto 1\otimes f} L^{\infty}(I\times X,c\times\mu) \rtimes G$

Consider a II_1 subfactor $P \subset M$.

Definition (Jones, 1983)

The index of a subfactor $P \subset M$ is

$$[M:P]=\dim_P(\mathsf{L}^2(M))$$

Examples

subfactor	index
$\mathcal{L}(H)\subset\mathcal{L}(G)$	[G:H]
$L^\infty(X,\mu) \rtimes H \subset L^\infty(X,\mu) \rtimes G$	[G:H]
$L^{\infty}(X,\mu) \rtimes G \longrightarrow M_n(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes G$	n^2
$u_g \mapsto \pi(g) \otimes u_g$	171
$L^\infty(X,\mu) \rtimes G \xrightarrow{f\mapsto 1\otimes f} L^\infty(I\times X,c\times\mu) \rtimes G$	1

The invariants \mathcal{I} and \mathcal{C}

Definition (Jones, 1983)

For a II_1 factor M, we have the following invariants.

$$\mathcal{I}(M) = \{ [M:P] \mid P \subset M \text{ a subfactor}, [M:P] < \infty \}$$

$$\mathcal{C}(M) = \{ [M:P] \mid P \subset M \text{ a subfactor}, [M:P] < \infty, P' \cap M = \mathbb{C} \}$$

$$\mathcal{C}(M) \subset \mathcal{I}(M) \subset \mathcal{I} = \{4\cos^2(\pi/n) \mid n = 3, 4, \ldots\} \sqcup [4, \infty[$$

$$\mathcal{I}(R) = \mathcal{I}$$
 (Jones, 1983), $\mathcal{C}(R)$: open question (Connes) $\mathcal{C}(\mathcal{L}(\mathbb{F}_{\infty})) = \mathcal{I}$ (Radulescu, 1994, Shlyakhtenko-Ueda, 2002) $\mathcal{C}(\mathsf{L}^{\infty}((X_0, \mu_0)^{\mathbb{Q}^2}) \rtimes_{\Omega_{\infty}} (\mathsf{SL}_2(\mathbb{Q}) \ltimes \mathbb{Q}^2)) = \{1\}$ (Vaes, 2008)

The invariants ${\mathcal I}$ and ${\mathcal C}$

Definition (Jones, 1983)

For a II_1 factor M, we have the following invariants.

$$\mathcal{I}(M) = \{ [M:P] \mid P \subset M \text{ a subfactor}, [M:P] < \infty \}$$

$$\mathcal{C}(M) = \{ [M:P] \mid P \subset M \text{ a subfactor}, [M:P] < \infty, P' \cap M = \mathbb{C} \}$$

$$\mathcal{C}(M) \subset \mathcal{I}(M) \subset \mathcal{I} = \{4\cos^2(\pi/n) \mid n = 3, 4, \ldots\} \sqcup [4, \infty[$$

$$\mathcal{I}(R) = \mathcal{I}$$
 (Jones, 1983), $\mathcal{C}(R)$: open question (Connes) $\mathcal{C}(\mathcal{L}(\mathbb{F}_{\infty})) = \mathcal{I}$ (Radulescu, 1994, Shlyakhtenko-Ueda, 2002) $\mathcal{C}(\mathsf{L}^{\infty}((X_0, \mu_0)^{\mathbb{Q}^2}) \rtimes_{\Omega_{\infty}} (\mathsf{SL}_2(\mathbb{Q}) \ltimes \mathbb{Q}^2)) = \{1\}$ (Vaes, 2008)

Definition (Jones, 1983)

For a II_1 factor M, we have the following invariants.

$$\mathcal{I}(M) = \{ [M:P] \mid P \subset M \text{ a subfactor}, [M:P] < \infty \}$$

$$\mathcal{C}(M) = \{ [M:P] \mid P \subset M \text{ a subfactor}, [M:P] < \infty, P' \cap M = \mathbb{C} \}$$

$$\mathcal{C}(M) \subset \mathcal{I}(M) \subset \mathcal{I} = \{4\cos^2(\pi/n) \mid n = 3, 4, \ldots\} \sqcup [4, \infty[$$

$$\mathcal{I}(R) = \mathcal{I}$$
 (Jones, 1983), $\mathcal{C}(R)$: open question (Connes) $\mathcal{C}(\mathcal{L}(\mathbb{F}_{\infty})) = \mathcal{I}$ (Radulescu, 1994, Shlyakhtenko-Ueda, 2002)

The invariants \mathcal{I} and \mathcal{C}

Definition (Jones, 1983)

For a II_1 factor M, we have the following invariants.

$$\mathcal{I}(M) = \{ [M:P] \mid P \subset M \text{ a subfactor}, [M:P] < \infty \}$$

$$\mathcal{C}(M) = \{ [M:P] \mid P \subset M \text{ a subfactor}, [M:P] < \infty, P' \cap M = \mathbb{C} \}$$

$$\mathcal{C}(M) \subset \mathcal{I}(M) \subset \mathcal{I} = \{4\cos^2(\pi/n) \mid n = 3, 4, \ldots\} \sqcup [4, \infty[$$

$$\mathcal{I}(R) = \mathcal{I}$$
 (Jones, 1983), $\mathcal{C}(R)$: open question (Connes) $\mathcal{C}(\mathcal{L}(\mathbb{F}_{\infty})) = \mathcal{I}$ (Radulescu, 1994,Shlyakhtenko-Ueda, 2002) $\mathcal{C}(\mathbb{L}^{\infty}((X_0, \mu_0)^{\mathbb{Q}^2}) \rtimes_{\Omega_0} (SL_2(\mathbb{Q}) \ltimes \mathbb{Q}^2)) = \{1\}$ (Vaes, 2008)

The invariants \mathcal{I} and \mathcal{C}

Definition (Jones, 1983)

For a II_1 factor M, we have the following invariants.

$$\mathcal{I}(M) = \{ [M:P] \mid P \subset M \text{ a subfactor}, [M:P] < \infty \}$$

$$\mathcal{C}(M) = \{ [M:P] \mid P \subset M \text{ a subfactor}, [M:P] < \infty, P' \cap M = \mathbb{C} \}$$

$$\mathcal{C}(M) \subset \mathcal{I}(M) \subset \mathcal{I} = \{4\cos^2(\pi/n) \mid n = 3, 4, \ldots\} \sqcup [4, \infty[$$

$$\mathcal{I}(R) = \mathcal{I}$$
 (Jones, 1983), $\mathcal{C}(R)$: open question (Connes) $\mathcal{C}(\mathcal{L}(\mathbb{F}_{\infty})) = \mathcal{I}$ (Radulescu, 1994, Shlyakhtenko-Ueda, 2002) $\mathcal{C}(\mathsf{L}^{\infty}((X_0, \mu_0)^{\mathbb{Q}^2}) \rtimes_{\Omega_{\alpha}} (\mathsf{SL}_2(\mathbb{Q}) \ltimes \mathbb{Q}^2)) = \{1\}$ (Vaes, 2008)

Good actions of good groups

Definition (Vaes, 2008)

An action of a countable group Γ on a countable set I is a good action of a good group if

- T Γ admits an infinite (almost) normal subgroup with relative property (T)
- C1 Stab(i) · j is infinite if $i \neq j$.
- C2 there is no sequence $i_1, i_2, \ldots \in I$ with Stab $\{i_1, \ldots, i_n\}$ stictly decreasing with n.
- C3 For all $g \in G$, Fix $(g) \subset I$ has inifinite index.

(C2) there is no sequence $i_1, i_2, \ldots \in I$ with $\mathsf{Stab}\{i_1, \ldots, i_n\}$ stictly decreasing with n.

- $\mathsf{SL}_n(\mathbb{Z}) \ltimes \mathbb{Z}^n \curvearrowright \mathbb{Z}^n$, $\mathsf{SL}_n(\mathbb{Q}) \ltimes \mathbb{Q}^n \curvearrowright \mathbb{Q}^n$, $n \ge 2$
- $\mathsf{PSL}_{n+1}(\mathbb{Z}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), \qquad \mathsf{PSL}_{n+1}(\mathbb{Q}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), n \geq 2$
- Left-right action Γ × Γ → Γ with minimal condition on centralizers (linear groups, word-hyperbolic groups, C/(1/6)-small cancellation groups).
- $G \times H \curvearrowright I \times J$ if $G \curvearrowright I$ and $H \curvearrowright J$ satisfy C2.
- $\Gamma_0 \curvearrowright I_0$ if $\Gamma_0 \subset \Gamma$, $I_0 \subset I$ and $\Gamma \curvearrowright I$ satisfies C2.

(C2) there is no sequence $i_1, i_2, \ldots \in I$ with $\mathsf{Stab}\{i_1, \ldots, i_n\}$ stictly decreasing with n.

- $SL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n \curvearrowright \mathbb{Z}^n$, $SL_n(\mathbb{Q}) \ltimes \mathbb{Q}^n \curvearrowright \mathbb{Q}^n$, $n \geq 2$
- $\mathsf{PSL}_{n+1}(\mathbb{Z}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), \qquad \mathsf{PSL}_{n+1}(\mathbb{Q}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), n \geq 2$
- Left-right action $\Gamma \times \Gamma \curvearrowright \Gamma$ with minimal condition on centralizers (linear groups, word-hyperbolic groups, $C_{1}(1/6)$ -small cancellation groups).
- $G \times H \cap I \times J$ if $G \cap I$ and $H \cap J$ satisfy C2.
- $\Gamma_0 \curvearrowright I_0$ if $\Gamma_0 \subset \Gamma$, $I_0 \subset I$ and $\Gamma \curvearrowright I$ satisfies C2.

(C2) there is no sequence $i_1, i_2, \ldots \in I$ with $\mathsf{Stab}\{i_1, \ldots, i_n\}$ stictly decreasing with n.

- $SL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n \curvearrowright \mathbb{Z}^n$, $SL_n(\mathbb{Q}) \ltimes \mathbb{Q}^n \curvearrowright \mathbb{Q}^n$, $n \ge 2$
- $\mathsf{PSL}_{n+1}(\mathbb{Z}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), \qquad \mathsf{PSL}_{n+1}(\mathbb{Q}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), n \geq 2$
- Left-right action Γ × Γ → Γ with minimal condition on centralizers (linear groups, word-hyperbolic groups, C/(1/6)-small cancellation groups).
- $G \times H \cap I \times J$ if $G \cap I$ and $H \cap J$ satisfy C2.
- $\Gamma_0 \curvearrowright I_0$ if $\Gamma_0 \subset \Gamma$, $I_0 \subset I$ and $\Gamma \curvearrowright I$ satisfies C2.

(C2) there is no sequence $i_1, i_2, \ldots \in I$ with $\mathsf{Stab}\{i_1, \ldots, i_n\}$ stictly decreasing with n.

- $SL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n \curvearrowright \mathbb{Z}^n$, $SL_n(\mathbb{Q}) \ltimes \mathbb{Q}^n \curvearrowright \mathbb{Q}^n$, $n \ge 2$
- $\mathsf{PSL}_{n+1}(\mathbb{Z}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), \qquad \mathsf{PSL}_{n+1}(\mathbb{Q}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), n \geq 2$
- Left-right action Γ × Γ → Γ with minimal condition on centralizers (linear groups, word-hyperbolic groups, C/(1/6)-small cancellation groups).
- $G \times H \curvearrowright I \times J$ if $G \curvearrowright I$ and $H \curvearrowright J$ satisfy C2.
- $\Gamma_0 \curvearrowright I_0$ if $\Gamma_0 \subset \Gamma$, $I_0 \subset I$ and $\Gamma \curvearrowright I$ satisfies C2.

(C2) there is no sequence $i_1, i_2, \ldots \in I$ with $\mathsf{Stab}\{i_1, \ldots, i_n\}$ stictly decreasing with n.

- $SL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n \curvearrowright \mathbb{Z}^n$, $SL_n(\mathbb{Q}) \ltimes \mathbb{Q}^n \curvearrowright \mathbb{Q}^n$, $n \ge 2$
- $\mathsf{PSL}_{n+1}(\mathbb{Z}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), \qquad \mathsf{PSL}_{n+1}(\mathbb{Q}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), n \geq 2$
- Left-right action Γ × Γ → Γ with minimal condition on centralizers (linear groups, word-hyperbolic groups, C/(1/6)-small cancellation groups).
- $G \times H \cap I \times J$ if $G \cap I$ and $H \cap J$ satisfy C2.
- $\Gamma_0 \curvearrowright I_0$ if $\Gamma_0 \subset \Gamma$, $I_0 \subset I$ and $\Gamma \curvearrowright I$ satisfies C2.

- $SL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n \curvearrowright \mathbb{Z}^n$, $SL_n(\mathbb{Q}) \ltimes \mathbb{Q}^n \curvearrowright \mathbb{Q}^n$, $n \geq 2$
- $\mathsf{PSL}_{n+1}(\mathbb{Z}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), \qquad \mathsf{PSL}_{n+1}(\mathbb{Q}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), n \geq 2$
- $\mathsf{PSL}_{n+1}(\mathbb{Z}) \times \Gamma \times \Gamma \curvearrowright \mathbb{P}_n(\mathbb{Q}) \times \Gamma$
- finite index subgroups of the above

- $SL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n \curvearrowright \mathbb{Z}^n$, $SL_n(\mathbb{Q}) \ltimes \mathbb{Q}^n \curvearrowright \mathbb{Q}^n$, $n \geq 2$
- $\mathsf{PSL}_{n+1}(\mathbb{Z}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), \qquad \mathsf{PSL}_{n+1}(\mathbb{Q}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), n \geq 2$
- $\mathsf{PSL}_{n+1}(\mathbb{Z}) \times \Gamma \times \Gamma \curvearrowright \mathbb{P}_n(\mathbb{Q}) \times \Gamma$ if Γ satisfies the minimal condition on centralizers.
- finite index subgroups of the above

- $SL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n \curvearrowright \mathbb{Z}^n$, $SL_n(\mathbb{Q}) \ltimes \mathbb{Q}^n \curvearrowright \mathbb{Q}^n$, $n \ge 2$
- $\mathsf{PSL}_{n+1}(\mathbb{Z}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), \qquad \mathsf{PSL}_{n+1}(\mathbb{Q}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), n \geq 2$
- $\mathsf{PSL}_{n+1}(\mathbb{Z}) \times \Gamma \times \Gamma \curvearrowright \mathbb{P}_n(\mathbb{Q}) \times \Gamma$ if Γ satisfies the minimal condition on centralizers.
- finite index subgroups of the above

- $SL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n \curvearrowright \mathbb{Z}^n$, $SL_n(\mathbb{Q}) \ltimes \mathbb{Q}^n \curvearrowright \mathbb{Q}^n$, $n \ge 2$
- $\mathsf{PSL}_{n+1}(\mathbb{Z}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), \qquad \mathsf{PSL}_{n+1}(\mathbb{Q}) \curvearrowright \mathbb{P}_n(\mathbb{Q}), n \geq 2$
- $\mathsf{PSL}_{n+1}(\mathbb{Z}) \times \Gamma \times \Gamma \curvearrowright \mathbb{P}_n(\mathbb{Q}) \times \Gamma$ if Γ satisfies the minimal condition on centralizers.
- finite index subgroups of the above

Generalized Bernoulli actions

Definition (Generalized Bernoulli action)

Given $\Gamma \curvearrowright I$ and (X_0, μ_0) , define $\Gamma \curvearrowright (X, \mu) = (X_0, \mu_0)^I$ by $(g \cdot x)(i) = x(g^{-1} \cdot i).$

For a good action of a good group $\Gamma \curvearrowright I$, and a base space (X_0, μ_0) , set

$$M(\Gamma \curvearrowright I) = L^{\infty} ((X_0, \mu_0)^I) \rtimes \Gamma$$

Generalized Bernoulli actions

Definition (Generalized Bernoulli action)

Given $\Gamma \curvearrowright I$ and (X_0, μ_0) , define $\Gamma \curvearrowright (X, \mu) = (X_0, \mu_0)^I$ by $(g \cdot x)(i) = x(g^{-1} \cdot i).$

Notation

For a good action of a good group $\Gamma \curvearrowright I$, and a base space (X_0, μ_0) , set

$$M(\Gamma \curvearrowright I) = L^{\infty} ((X_0, \mu_0)^I) \rtimes \Gamma$$

Statement of the result

The theorem

Theorem (D.-Vaes, 2009)

Let $\Gamma \curvearrowright I$ be a good action of a good group. Then every irreducible finite-index subfactor $P \subset M(\Gamma \curvearrowright I)$ is of the form

$$P^{nm} \cong L^{\infty}(X,\mu) \rtimes_{\Omega} G \qquad \qquad \left((X,\mu) = (X_{0},\mu_{0})^{I} \right)$$

$$\hookrightarrow L^{\infty}(G/G_{0} \times X, c \times \mu) \rtimes_{\Omega} G \qquad ([G:G_{0}] = m)$$

$$\cong (L^{\infty}(X,\mu) \rtimes_{\Omega} G_{0})^{m}$$

$$\hookrightarrow_{\pi} (M_{n}(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes_{G} G_{0})^{m} \qquad (\pi(g)\pi(h) = \Omega(g,h)\pi(gh))$$

$$\hookrightarrow_{\pi} (M_{n}(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes_{G} G_{0})^{m}$$

$$\cong M(\Gamma \curvearrowright I)^{mn}$$

Theorem (D.-Vaes, 2009)

Let $\Gamma \curvearrowright I$ be a good action of a good group. Then every irreducible finite-index subfactor $P \subset M(\Gamma \curvearrowright I)$ is of the form

Statement of the result

$$P^{nm} \cong L^{\infty}(X,\mu) \rtimes_{\Omega} G \qquad \qquad \left((X,\mu) = (X_{0},\mu_{0})^{I} \right)$$

$$\hookrightarrow L^{\infty}(G/G_{0} \times X, c \times \mu) \rtimes_{\Omega} G \qquad ([G:G_{0}] = m)$$

$$\cong (L^{\infty}(X,\mu) \rtimes_{\Omega} G_{0})^{m}$$

$$\hookrightarrow_{\pi} (M_{n}(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes_{G} G_{0})^{m} \qquad (\pi(g)\pi(h) = \Omega(g,h)\pi(gh))$$

$$\hookrightarrow_{\pi} (M_{n}(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes_{G} G_{0})^{m}$$

$$\cong M(\Gamma \curvearrowright I)^{mn}$$

Theorem (D.-Vaes, 2009)

Let $\Gamma \curvearrowright I$ be a good action of a good group. Then every irreducible finite-index subfactor $P \subset M(\Gamma \curvearrowright I)$ is of the form

Statement of the result

$$P^{nm} \cong L^{\infty}(X,\mu) \rtimes_{\Omega} G \qquad \qquad \left((X,\mu) = (X_{0},\mu_{0})^{I} \right)$$

$$\hookrightarrow L^{\infty}(G/G_{0} \times X, c \times \mu) \rtimes_{\Omega} G \qquad ([G:G_{0}] = m)$$

$$\cong (L^{\infty}(X,\mu) \rtimes_{\Omega} G_{0})^{m}$$

$$\hookrightarrow (M_{n}(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes G_{0})^{m} \qquad (\pi(g)\pi(h) = \Omega(g,h)\pi(gh))$$

$$\hookrightarrow (M_{n}(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes G)^{m}$$

$$\cong M(\Gamma \hookrightarrow I)^{mn}$$

Statement of the result

The theorem

Theorem (D.-Vaes, 2009)

Let $\Gamma \curvearrowright I$ be a good action of a good group. Then every irreducible finite-index subfactor $P \subset M(\Gamma \curvearrowright I)$ is of the form

$$P^{nm} \cong L^{\infty}(X,\mu) \rtimes_{\Omega} G \qquad \qquad \left((X,\mu) = (X_{0},\mu_{0})^{I} \right)$$

$$\hookrightarrow L^{\infty}(G/G_{0} \times X, c \times \mu) \rtimes_{\Omega} G \qquad ([G:G_{0}] = m)$$

$$\cong (L^{\infty}(X,\mu) \rtimes_{\Omega} G_{0})^{m}$$

$$\hookrightarrow (M_{n}(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes G_{0})^{m} \qquad (\pi(g)\pi(h) = \Omega(g,h)\pi(gh))$$

$$\hookrightarrow (M_{n}(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes G)^{m}$$

$$\cong M(\Gamma \curvearrowright I)^{mn}$$

In particular: $[M(\Gamma \curvearrowright I) : P] = [G : G_0] \dim(\pi)^2 [\Gamma : G_0] \in \mathbb{N}$

Theorem (D.-Vaes, 2009)

Let $\Gamma \curvearrowright I$ be a good action of a good group. Then every irreducible finite-index subfactor $P \subset M(\Gamma \curvearrowright I)$ is of the form

Statement of the result

$$P^{nm} \cong L^{\infty}(X,\mu) \rtimes_{\Omega} G \qquad \qquad \left((X,\mu) = (X_{0},\mu_{0})^{I} \right)$$

$$\hookrightarrow L^{\infty}(G/G_{0} \times X, c \times \mu) \rtimes_{\Omega} G \qquad ([G:G_{0}] = m)$$

$$\cong (L^{\infty}(X,\mu) \rtimes_{\Omega} G_{0})^{m}$$

$$\hookrightarrow (M_{n}(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes G_{0})^{m} \qquad (\pi(g)\pi(h) = \Omega(g,h)\pi(gh))$$

$$\hookrightarrow (M_{n}(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes G)^{m}$$

$$\cong M(\Gamma \curvearrowright I)^{mn}$$

Theorem (D.-Vaes, 2009)

Let $\Gamma \curvearrowright I$ be a good action of a good group. Then every irreducible finite-index subfactor $P \subset M(\Gamma \curvearrowright I)$ is of the form

Statement of the result

$$P^{nm} \cong L^{\infty}(X,\mu) \rtimes_{\Omega} G \qquad \qquad \left((X,\mu) = (X_{0},\mu_{0})^{I} \right)$$

$$\hookrightarrow L^{\infty}(G/G_{0} \times X, c \times \mu) \rtimes_{\Omega} G \qquad ([G:G_{0}] = m)$$

$$\cong (L^{\infty}(X,\mu) \rtimes_{\Omega} G_{0})^{m}$$

$$\hookrightarrow (M_{n}(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes G_{0})^{m} \qquad (\pi(g)\pi(h) = \Omega(g,h)\pi(gh))$$

$$\hookrightarrow (M_{n}(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes G)^{m}$$

$$\cong M(\Gamma \curvearrowright I)^{mn}$$

In particular: $[M(\Gamma \curvearrowright I) : P] = [G : G_0] \dim(\pi)^2 [\Gamma : G_0] \in \mathbb{N}$.

Theorem (D.-Vaes, 2009)

Let $\Gamma \curvearrowright I$ be a good action of a good group. Then every irreducible finite-index subfactor $P \subset M(\Gamma \curvearrowright I)$ is of the form

$$P^{nm} \cong L^{\infty}(X,\mu) \rtimes_{\Omega} G \qquad \qquad \left((X,\mu) = (X_{0},\mu_{0})^{I} \right)$$

$$\hookrightarrow L^{\infty}(G/G_{0} \times X, c \times \mu) \rtimes_{\Omega} G \qquad ([G:G_{0}] = m)$$

$$\cong (L^{\infty}(X,\mu) \rtimes_{\Omega} G_{0})^{m}$$

$$\hookrightarrow (M_{n}(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes G_{0})^{m} \qquad (\pi(g)\pi(h) = \Omega(g,h)\pi(gh))$$

$$\hookrightarrow (M_{n}(\mathbb{C}) \otimes L^{\infty}(X,\mu) \rtimes G)^{m}$$

$$\cong M(\Gamma \curvearrowright I)^{mn}$$

In particular: $[M(\Gamma \curvearrowright I) : P] = [G : G_0] \dim(\pi)^2 [\Gamma : G_0] \in \mathbb{N}$.

Computations of $\mathcal{C}(M)$

We use a purely atomic base space (X_0, μ_0) with unequal weights.

Statement of the result

Examples

$$\mathcal{C}\left(\mathcal{M}(\mathbb{F}_2 \ltimes \mathbb{Z}^2 \curvearrowright \mathbb{Z}^2)\right) = \mathbb{N}$$
 ([SL₂(\mathbb{Z}) : \mathbb{F}_2] = 12)
$$\mathcal{C}\left(\mathcal{M}(\mathsf{SL}_n(\mathbb{Q}) \ltimes \mathbb{Q}^n \curvearrowright \mathbb{Q}^n)\right) = \{1, 2\}$$

Computations of $\overline{\mathcal{C}(M)}$

We use a purely atomic base space (X_0, μ_0) with unequal weights.

Statement of the result

Examples

$$\mathcal{C}\left(\mathcal{M}(\mathbb{F}_2 \ltimes \mathbb{Z}^2 \curvearrowright \mathbb{Z}^2)\right) = \mathbb{N} \qquad ([\mathsf{SL}_2(\mathbb{Z}) : \mathbb{F}_2] = 12)$$

$$\mathcal{C}\left(\mathcal{M}(\mathsf{SL}_n(\mathbb{Q}) \ltimes \mathbb{Q}^n \curvearrowright \mathbb{Q}^n)\right) = \{1, 2\}$$

Theorem (Vaes, 2008)

Let $\Gamma \curvearrowright I$ and $G \curvearrowright J$ be good actions of good groups and set $M = M(\Gamma \curvearrowright I), N = M(G \curvearrowright J).$

- a restriction of M to $L^{\infty}(X,\mu) \rtimes \Gamma_0$.
- a representation bimodule of $L^{\infty}(X, \mu) \times \Gamma_0$.
- an isomorphism bimodule between $L^{\infty}(X,\mu) \times \Gamma_0$ and
- an inclusion bimodule of $L^{\infty}(Y, \nu) \times G_0$ to N

Theorem (Vaes, 2008)

Let $\Gamma \curvearrowright I$ and $G \curvearrowright J$ be good actions of good groups and set $M = M(\Gamma \curvearrowright I), N = M(G \curvearrowright J).$

- a restriction of M to $L^{\infty}(X,\mu) \rtimes \Gamma_0$.
- a representation bimodule of $L^{\infty}(X,\mu) \times \Gamma_0$.
- an isomorphism bimodule between $L^{\infty}(X,\mu) \times \Gamma_0$ and
- an inclusion bimodule of $L^{\infty}(Y, \nu) \times G_0$ to N

Theorem (Vaes, 2008)

Let $\Gamma \curvearrowright I$ and $G \curvearrowright J$ be good actions of good groups and set $M = M(\Gamma \curvearrowright I), N = M(G \curvearrowright J).$

- a restriction of M to $L^{\infty}(X,\mu) \rtimes \Gamma_0$.
- a representation bimodule of $L^{\infty}(X,\mu) \times \Gamma_0$.
- an isomorphism bimodule between $L^{\infty}(X,\mu) \times \Gamma_0$ and
- an inclusion bimodule of $L^{\infty}(Y, \nu) \times G_0$ to N

Theorem (Vaes, 2008)

Let $\Gamma \curvearrowright I$ and $G \curvearrowright J$ be good actions of good groups and set $M = M(\Gamma \curvearrowright I), N = M(G \curvearrowright J).$

- a restriction of M to $L^{\infty}(X,\mu) \rtimes \Gamma_0$.
- a representation bimodule of $L^{\infty}(X, \mu) \times \Gamma_0$.
- an isomorphism bimodule between $L^{\infty}(X,\mu) \rtimes \Gamma_0$ and $L^{\infty}(Y,\nu) \times G_0$. (given by a conjugation)
- an inclusion bimodule of $L^{\infty}(Y, \nu) \times G_0$ to N

Theorem (Vaes, 2008)

Let $\Gamma \curvearrowright I$ and $G \curvearrowright J$ be good actions of good groups and set $M = M(\Gamma \curvearrowright I), N = M(G \curvearrowright J).$

- a restriction of M to $L^{\infty}(X,\mu) \rtimes \Gamma_0$.
- a representation bimodule of $L^{\infty}(X, \mu) \times \Gamma_0$.
- an isomorphism bimodule between $L^{\infty}(X, \mu) \rtimes \Gamma_0$ and $L^{\infty}(Y,\nu) \rtimes G_0$. (given by a conjugation)
- an inclusion bimodule of $L^{\infty}(Y, \nu) \times G_0$ to N

Theorem (Vaes, 2008)

Let $\Gamma \curvearrowright I$ and $G \curvearrowright J$ be good actions of good groups and set $M = M(\Gamma \curvearrowright I), N = M(G \curvearrowright J).$

- a restriction of M to $L^{\infty}(X,\mu) \rtimes \Gamma_0$.
- a representation bimodule of $L^{\infty}(X, \mu) \times \Gamma_0$.
- an isomorphism bimodule between $L^{\infty}(X, \mu) \rtimes \Gamma_0$ and $L^{\infty}(Y,\nu) \times G_0$. (given by a conjugation)
- an inclusion bimodule of $L^{\infty}(Y, \nu) \rtimes G_0$ to N

$P \subset M = M(\Gamma \curvearrowright I)$ a subfactor with index t.

Consider $_{M}L^{2}(M_{1})_{M}$.

$$G = \{ \Delta \in \mathsf{comm}_{\mathsf{Aut}(X,\mu)}(\Gamma) \mid \exists \ u \in pP^tp : u\psi(f)u^* = \psi(f \circ \Delta) \}$$

 $P \subset M = M(\Gamma \curvearrowright I)$ a subfactor with index t. Consider $_{M}L^{2}(M_{1})_{M}$.

- ⇒ a direct sum of elementary bimodules

$$G = \{ \Delta \in \mathsf{comm}_{\mathsf{Aut}(X,\mu)}(\Gamma) \mid \exists \ u \in pP^tp : u\psi(f)u^* = \psi(f \circ \Delta) \}$$

```
P \subset M = M(\Gamma \curvearrowright I) a subfactor with index t.
Consider _{M}\mathsf{L}^{2}(\mathsf{M}_{1})_{M}.
```

- ⇒ a direct sum of elementary bimodules
- \Rightarrow describe $M \hookrightarrow M_2 \cong M^t$ in terms of subgroups, representations

But
$$\psi(M) \subset M_1 \cong P^t$$
.

$$\Rightarrow$$
 there is $p \in P^t \cap \psi(\mathsf{L}^\infty(X,\mu))'$ such that $\psi(\mathsf{L}^\infty(X,\mu))p$ is maximal abelian in pP^t ,

$$G = \{ \Delta \in \mathsf{comm}_{\mathsf{Aut}(X,u)}(\Gamma) \mid \exists \ u \in pP^t p : u\psi(f)u^* = \psi(f \circ \Delta) \}$$

Then
$$pP^tp \cong L^{\infty}(X,\mu) \rtimes G$$

```
P \subset M = M(\Gamma \curvearrowright I) a subfactor with index t.
```

Consider $_{M}L^{2}(M_{1})_{M}$.

- ⇒ a direct sum of elementary bimodules
- \Rightarrow describe $M \hookrightarrow M_2 \cong M^t$ in terms of subgroups, representations and conjugations.

```
But \psi(M) \subset M_1 \cong P^t.
```

$$\Rightarrow$$
 there is $p \in P^t \cap \psi(L^{\infty}(X,\mu))'$ such that $\psi(L^{\infty}(X,\mu))p$ is maximal abelian in pP^tp

$$G = \{ \Delta \in \mathsf{comm}_{\mathsf{Aut}(X,\mu)}(\Gamma) \mid \exists \ u \in pP^tp : u\psi(f)u^* = \psi(f \circ \Delta) \}$$

Then
$$pP^tp \cong L^{\infty}(X,\mu) \rtimes G$$

```
P \subset M = M(\Gamma \curvearrowright I) a subfactor with index t.
```

Consider $_{M}L^{2}(M_{1})_{M}$.

- ⇒ a direct sum of elementary bimodules
- \Rightarrow describe $M \hookrightarrow M_2 \cong M^t$ in terms of subgroups, representations and conjugations.

But $\psi(M) \subset M_1 \cong P^t$.

$$\Rightarrow$$
 there is $p \in P^t \cap \psi(\mathsf{L}^\infty(X,\mu))'$ such that $\psi(\mathsf{L}^\infty(X,\mu))p$ is maximal abelian in pP^tp .

$$G = \{ \Delta \in \mathsf{comm}_{\mathsf{Aut}(X,u)}(\Gamma) \mid \exists u \in pP^t p : u\psi(f)u^* = \psi(f \circ \Delta) \}$$

Then
$$pP^tp \cong L^{\infty}(X,\mu) \rtimes G$$

```
P \subset M = M(\Gamma \curvearrowright I) a subfactor with index t.
```

Consider $_{M}L^{2}(M_{1})_{M}$.

- ⇒ a direct sum of elementary bimodules
- \Rightarrow describe $M \hookrightarrow M_2 \cong M^t$ in terms of subgroups, representations and conjugations.

But
$$\psi(M) \subset M_1 \cong P^t$$
.

$$\Rightarrow$$
 there is $p \in P^t \cap \psi(\mathsf{L}^\infty(X,\mu))'$ such that $\psi(\mathsf{L}^\infty(X,\mu))p$ is maximal abelian in pP^tp .

Set

$$G = \{ \Delta \in \mathsf{comm}_{\mathsf{Aut}(X,\mu)}(\Gamma) \mid \exists \ u \in pP^tp : u\psi(f)u^* = \psi(f \circ \Delta) \}$$

Then
$$pP^tp \cong L^{\infty}(X,\mu) \rtimes G$$

 $P \subset M = M(\Gamma \curvearrowright I)$ a subfactor with index t.

Consider $_{M}L^{2}(M_{1})_{M}$.

- ⇒ a direct sum of elementary bimodules
- \Rightarrow describe $M \hookrightarrow M_2 \cong M^t$ in terms of subgroups, representations and conjugations.

But $\psi(M) \subset M_1 \cong P^t$.

 \Rightarrow there is $p \in P^t \cap \psi(\mathsf{L}^\infty(X,\mu))'$ such that $\psi(\mathsf{L}^\infty(X,\mu))p$ is maximal abelian in pP^tp .

Set

$$G = \{ \Delta \in \mathsf{comm}_{\mathsf{Aut}(X,\mu)}(\Gamma) \, | \, \exists \, u \in pP^tp : u\psi(f)u^* = \psi(f \circ \Delta) \}$$

Then $pP^tp\cong L^\infty(X,\mu)\rtimes G$.

```
P \subset M = M(\Gamma \curvearrowright I) a subfactor with index t.
```

Consider $_{M}L^{2}(M_{1})_{M}$.

- ⇒ a direct sum of elementary bimodules
- \Rightarrow describe $M \hookrightarrow M_2 \cong M^t$ in terms of subgroups, representations and conjugations.

But
$$\psi(M) \subset M_1 \cong P^t$$
.

$$\Rightarrow$$
 there is $p \in P^t \cap \psi(\mathsf{L}^\infty(X,\mu))'$ such that $\psi(\mathsf{L}^\infty(X,\mu))p$ is maximal abelian in pP^tp .

Set

$$G = \{ \Delta \in \mathsf{comm}_{\mathsf{Aut}(X,\mu)}(\Gamma) \, | \, \exists \, u \in pP^tp : u\psi(f)u^* = \psi(f \circ \Delta) \}$$

Then $pP^tp\cong L^\infty(X,\mu)\rtimes G$.