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Introduction
m Overview and physical motivations



m The seminal paper [Thouless, Kohmoto, Nightingale & Niji
'82] paved the way for the explanation of the Quantum Hall
Effect (QHE) in terms of geometric quantities. The model
is a 2-dimensional magnetic-Bloch-electron (2DMBE), i.e.
an electron in a lattice potential plus a uniform magnetic
field. In the limit B — 0, assuming a rational flux M/N and
via the Kubo formula the quantization of the Hall
conductance is related with the (first) Chern numbers of
certain vector bundles related to the energy spectrum of
the model. A duality between the limit cases B — 0 and
B — « is proposed:

N Cg_...+M Cg_g=1 (TKNN-formula).
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m In the papers [Bellissard '87], [Helffer & Sjostrand '89], [D.
& Panati t.b.p.] is rigorously proved that the effective
models for the 2DMBE in the limits B — 0, are elements
of two different representations of the (rational)
Noncommutative Torus (NCT).
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m Rigorous proof and generalization of the - TKNN-formula.
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The NCT and its representations
m “Abstract” geometry and gap projections



The NCT with deformation parameter 6 € R is the “abstract”
C*-algebra 20 generated by:
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The NCT with deformation parameter 6 € R is the “abstract”
C*-algebra 20 generated by:

=o', uw=e?"
and closed in the (universal) norm:
||la|| := sup{]||m(a)|l.« | = representation of Ay on 57} .
The canonical trace f: g — C (unique if 6 ¢ Q) is defined by:
F (u"0™) = 6n,00m,0-

It is a state (linear, positive, normalized), faithful
f (a*a) = 0 < a = 0 with the tracial property + (ab) =f (ba).
The canonical derivations J ;: ¢ — g, j = 1,2 are defined by

g1 (W™ =in(u"™), Jo (™) =im(u"™).

Symmetric J ; (a*) =d j (a)*, commuting d y o d 3=d 2 o d 1y and
fod;=0.



A p € 2y is a projection if p = p* = p2. Let Proj(2y) the
collection of the projections of 2.
If 6 = with M € Z, Ne]N* andgcd(M,N):1,then

JC: Proj(QlM/N)H{(L‘INa ) N 71}



A p € 2y is a projection if p = p* = p2. Let Proj(2y) the
coIIectlon of the projections of 2.
lfo="™M ~n With M€ Z, N € N* and g.c.d(M,N) =1, then
£: Proj(Apn) — {0, 4, N5t 17,
The “abstract” (first) Chern number of p € Proj(2le) is defined
by: '

i

Ch(p) == or f (pld1 (p)id2(p)])-



A selfadjoint h € 20 has a band spectrum if it is a locally finite
union of closed intervals in R, i.e. o(h) = Ujez /j. The open
interval which separates two adjacent bands is called gap.

XI Py-1:=p1F ... EPpN-_1

P2 | Pn—1 v b
i —
I oL Iya ! In

---Gapsg ---------

Let %, the characteristic functions for the spectral band I;, then
X € C(o(h)) ~ C*(h) C Ag. One to one correspondence
between /; and band projection y; € Proj(2g). Gap projection
Pj:=@)_pj. f0=M/Nthen 1 <j<N.



An important example of selfadjoint element in 2, is the Harper
Hamiltonian

BHar =u4u+o+07"

Spectrum of by for 6 € Q [Hofstadter '76]:

(DHar)

4
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The NCT and its representations

m The Mg 4 representation (GNS)
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iTOm
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Vnm(ki, ko) = (2r)~te/("i+mke) Fourier basis of 7 1.



Mot : A — B(p1) With % 1 := L2(T?) defined by:

iTOm

Mo.1(w) =: Uo 1 : Wnm— €™y m 1
Mo,1(0) =: Vo1 :WYnm—e€" Vnti,m

Vnm(ki, ko) = (2r)~te/("i+mke) Fourier basis of 7 1.
It is the GNS representation related to f, indeed
Wn.m <> €mMMyMyM cyclic vector yoo = (27) ",

F (1%0P) = 82080 = (Wo.0: Mo.1 (1%0°) w0 ) meb/ Wb.a(



Mot : A — B(p1) With % 1 := L2(T?) defined by:

{ Mo,1 (u)=:Uy : Ynm— emenllfn,m-H

. : _in8
Mo1(0) =: Vo1 :Wnm—e ™ Mypi1m

Vnm(ki, ko) = (2r)~te/("i+mke) Fourier basis of 7 1.
It is the GNS representation related to f, indeed
Wn.m <> €mMMyMyM cyclic vector yoo = (27) ",

F (%) = 8208p,0 = (Wo,0: Mo,1 (4?02 Yo 0) meb/ Vbalk) dk

M1 is injective since f is faithful.



Mot : e — B(Hp 1) with 75 1 = L2(T?) defined by:

iTOm

Mo, 1 (u)=:Uy : Ynm— emenll/n,m-H
Mo1(v)=: Vo1 :Vnm—€ """Woi1m

Vnm(ki, ko) = (2r)~te/("i+mke) Fourier basis of 7 1.
It is the GNS representation related to f, indeed
Wn.m <> €mMMyMyM cyclic vector yoo = (27) ",

F (1%0P) = 82080 = (Wo.0: Mo.1 (1%0°) w0 ) meb/ Vb.a(k) dk

M1 is injective since f is faithful.
297 =g 1(2e) describes the effective models for the 2DMBE
in the limits B — 0 (6 o< f5 := flux trough the unit cell).
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The commutant 2(871/ is generated by:
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. irOm
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If &6 = M/N then
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/
is a maximal commutative C*-subalgebra of 23"



The commutant 2(871/ is generated by:
Fi:Wnm— einenll/n,mq
/:_2 " VYnmt— einemllfn-m,m-

If &6 = M/N then
So1:=C*(F1,Fo:= FY)
is a maximal commutative C*-subalgebra of 912’1/.

So.1 is a unitary representation of 7?2 on 7.1, moreover
{q),-}jli’o1 C Jp.1 With ¢; := ;o is wandering for Sg 4, i.e.

So.1 [{@h“iﬂ =M1, (¢ FAFPe;) = 8 62.00b.0-
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The NCT and its representations

m The Mg, representation (Weyl)



Mg.r: Ag — B(Hp) with 7 := L2(R) ® CY ~ L3(R; Zq) defined
by:
Ngr(u)=Ug,=T1 U
ar(t) o 19_L r<qeN g.cd.(r,q) =1
nqir(n) = Vq_’r = T2 q ®Vr

where T; and T, are the Weyl operators on L2(R), i.e.

T,:=eP?™Q  T,.=e 2P Q.=multiplication by x, P:= 2_7;88)(
while U and V act on C9 as:
1 0 1
U= P , V= 1
.0
o 10

where @, := %3, UV = @, VU.



Mg.r: Ag — B(Hp) with 7 := L2(R) ® CY ~ L3(R; Zq) defined
by:
Ngr(u)=Ug,=T1 U
ar(t) o 19_L r<qeN g.cd.(r,q) =1
nqir(n) = Vq_’r = T2 q ®Vr

where T; and T, are the Weyl operators on L2(R), i.e.

_ ai27Q . a—i2nP — TR P-:ii
Ty:=e™ T,:=e ,  Q:=multiplication by x, = 59y
while U and V act on C9 as:

1 0 1
)
U:= 7 . V=
o 10

where @, := e?"s UV = @, VU.
Mg, is injective and A" := Mg (Ag) describes the 2DMBE in
the limits B— o (g=1, r=0, 8 o fz ).
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The commutant 22" is generated by [Takesaki '69]:
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ég = Tg‘l'l ®V_1 .

If 6 =M/N (with g.c.d.(N,g)=1) then
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The commutant 22" is generated by [Takesaki '69]:

;
Gy :=Ty@r U2
~1 11 bq—ar=1.

Go :=Too ®V_1.
If 6 =M/N (with g.c.d.(N,g)=1) then

* No N Nr
Gq,r =C (G1,Gg = GZ ), Ny = QM—fN, G =T,1QV

is a maximal commutative C*-subalgebra of 23"
Sq,r is a unitary representation of Z2 on 7 ~ L?(R; Z),
moreover {¢;} ' C 7 with

X

N N

0 1 if j o <x<(j+1) 7

o= . 2i(x) = I'N VDN
6 0 otherwise.

is wandering for &4, i.e.

Sq.r [{¢/ /’\i—(f] = Hg, (01 GIG39)) = 816208b0.
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Generalized Bloch-Floquet transform
m The general framework



Ingredients:
separable Hilbert space .77 (space of physical states);
a C*-algebra 2l of bounded operators on Z (physical
observables);
a (maximal) commutative C*-subalgebra & of the
commutant 2 (simultaneous implementable symmetries).
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Ingredients:
separable Hilbert space .77 (space of physical states);
a C*-algebra 2l of bounded operators on Z (physical
observables);
a (maximal) commutative C*-subalgebra & of the
commutant 2l (simultaneous implementable symmetries).
Technical assumptions:
G is generated by a unitary representation of 77, i.e.
& := C*(Uy,..., Ug) with Uy = Ujﬂ;
& has the wandering property, i.e. it exists a (countable)
subset {¢;} C 2 of orthonormal vectors such that

S [{d)j}] =, (0 U1n1 ... Ugd(bj) = 5,'7]'5,71 0 5f7d,0'
Consequences:
S is algebraically compatible, i.e. ¥ an,, .o, Uy ... UJ =0
the Gel'fand spectrum of & is TY;
the Haar measure dz := (gf;;d on TY is basic for & (abs.
cont. with respect the spectral measures).
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Generalized Bloch-Floquet transform

m The main theorem



Theorem [D. & Panati t.b.p.]

i) Let ® the nuclear space obtained as the inductive limit of
vector spaces spanned by finite collections of vectors in

S [{¢}]. The map
35— (%o)(t):=Y e ™M e Myl U¥ped

is well defined and (% ¢)(t) is a generalized eigenvector of
U; with eigenvalue e’

ii) Let 2 (t) C ¢’ the space spanned by {&;(t) := (% ¢)(1)},
then

#Z, /Te; A () dz(t) (L% —sections)

is a unitary map between Hilbert spaces.

iii) ® is a pre-C*-module over C(T) and is mapped by % in a
dense set of continuous sections of the vector bundle
€ — T9 with fiber 7 (t) and frame of sections {&;}.

iv) 20 is mapped by % in the continuous sections of
End(Sg) — T,



Outline

Vector bundle representations and TKNN formulae
m Vector bundles



Vector bundle representation of QL,S /1,\), (GNS)

g o
oy = L2(T2) LT 1o (E01) = /2 eV dz
T

€01 — T? is a rank-N vector bundle with typical fiber
(1)~ CN, N is the cardinality of the wandering system
{¢,}N !. The vector bundle is trivial, indeed the frame of

sections {&; := % ¢}V 0 ! satisfies:
gt ) =&i(th+21, ) = &(t, +271) Vj=0,...,N=1 (t;,) € T?,
then C(Eo 1) =0, where C is the (first) Chern number.



Vector bundle representation of QL,S /1,\), (GNS)
oy = L2(T2) LT 1o (E01) = /2 eV dz
T

€01 — T? is a rank-N vector bundle with typical fiber
(1)~ CN, N is the cardinality of the wandering system
{¢,}N !. The vector bundle is trivial, indeed the frame of

sections {&; := % ¢}V 0 ! satisfies:

Ei(t k) =&t +2m, ) =&(t, b +2m) Vj=0,...,N—1 (t,b) € T?,

then C(801) 0, where C is the (first) Chern number.

Qlf\%\), (S Endc(rz)(M(€0,1)) = M(ENd(Eo,1)) generated by:

1 0 el

it p 1

Uo,1(t):=e" Vo,1(t):=

with p := e/27x.



Vector bundle representation of Ql,\‘j /’,\), (Weyl)
= P2R)©CT LT 2(Eqr) / eV dz
€q.r — T?is a rank-N vector bundle, N is the cardinality of the
wandering system. The vector bundle is non-trivial, indeed
0 gfat
Ei(t ) = g(t) ' (t +2m,t) 1

5/(f1,t2):§j(t1,t2+27l') g(tZ) = .0



Vector bundle representation of Ql,\‘j /’,\), (Weyl)
= P2R)©CT LT 2(Eqr) / cN dz
€q.r — T?is a rank-N vector bundle, N is the cardinality of the
wandering system. The vector bundle is non-trivial, indeed
0 gfat
Ei(t ) = g(t) ' (t +2m,t) 1

5/(f1,t2):§j(t1,t2+27l') g(tZ) = .0

QlS\j/r/\)/ v Endg12)(M(€q,r)) = F(End(Eq,r)) generated by:

1

i . gk,
Uq'r(t):el%)ﬁ Vo r(t)=e'st ( 0 |e1, )
pd(N-1) Iy O

where: /(g—sN =1 (g.c.d.(N,q)=1).




FACRD)

’1’;(/:1‘«/2) = Ran P(/l‘u) Y

g(tr, ta)

131

0 W
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Vector bundle representations and TKNN formulae

m Duality and TKNN formulae



Pot —2% . Py () =P £o4[p] —S Co(p)

Mo,1
Proj(e) > p B(H) M(End(€)) e T2 Z
Mg.r
Pq.r a7 Pq.r(-) “Ran Lg,r[p] = Cq.r(p)

C := first Chern number.



Pot —2% Py 4 () =P £o4[p] —> Co(p)
Mo,1

Proj(2g) 5 p B(A) F(End(€)) & T2 Z

Mg.r

Pq,r W q,r(’) R—an) Lq,r[p] —C> Cq,r(p)

What is the relation between Cy 1(p) and C, ((p) for a given
p € Proj(2y) ?



Pot —29 o Py(-) —22% g 1[p] —> Coa(p)

Mo,1
Proj(2e) 5p  A(#)  T(ENd(E) &2 z
Mg.r
Pq.r - Pq.r(-) T Ran Lg,rlp] = Cq.r(p)

Transforms of the torus:
T2 5 (t,b) —— (gNt, ) € T2
T2 5 (t, 1) = (—Not, ql2) € T2,
Pullback of vector bundles:
F(Lagrlp]) = 9" (Lo [p]) @ g2

|2 := line bundle with Chern number g? (global twist of Eq.r)-

q



Pot —2% L Py () =P £o4[p] —S= Co(p)

Proj(2Ag) 3 p B(HA) M(End(€)) & — T2 7

Paq.r (")

Lg,r[p] = Cq.r(p)

Ad% Ran

Functoriality of C:

Cq.r(p) = CIR,(VP) - (CIAA”/ - f) Co,1(p)

R(p) := Rk(g"(Lo,1[p]) = Rk(Lo,1[p])-



Poy —24 . Pyy(-) Lo.1[p] —S= Co1(p)

Mo 1
Proj(Ae) > p B(H) F(End(€)) & T2 7
Mg,
Pq,rW Pa.r(+) TLqr[p] — Cq.r(p)

“Abstract” version:

A0 _p ). Cortw)=en(p)

~—

Car(p) =q f (p) +(r—q0)Ch(p)




Duality between gap projections of hyar

i =
= =
= S
b b
o
o
@
o
a.
B
a
I J
o -7
B
H
0
0 1 1 0

4
Representation A" (GNS)

Courtesy of J. Avron




Thank you for your attention
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