Inequivalent bundle representations for the Noncommutative Torus Chern numbers: from "abstract" to "concrete"

Giuseppe De Nittis

Mathematical Physics Sector of: SISSA International School for Advanced Studies, Trieste

Noncommutative Geometry and Quantum Physics Vietri sul Mare, August 31-September 5, 2009

inspired by discussions with:

G. Landi (Università di Trieste) & G. Panati (La Sapienza, Roma)

(ロ) (同) (三) (三) (三) (○) (○)

Outline

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1 Introduction

- Overview and physical motivations
- 2 The NCT and its representations
 "Abstract" geometry and gap projections
 The Π_{0,1} representation (GNS)
 The Π_{a,r} representation (Weyl)
- 3 Generalized Bloch-Floquet transform
 - The general framework
 - The main theorem
- 4 Vector bundle representations and TKNN formulæ
 - Vector bundles
 - Duality and TKNN formulæ

The seminal paper [Thouless, Kohmoto, Nightingale & Niji '82] paved the way for the explanation of the Quantum Hall Effect (QHE) in terms of geometric quantities. The model is a 2-dimensional magnetic-Bloch-electron (2DMBE), i.e. an electron in a lattice potential plus a uniform magnetic field. In the limit $B \rightarrow 0$, assuming a rational flux M/N and via the Kubo formula the guantization of the Hall conductance is related with the (first) Chern numbers of certain vector bundles related to the energy spectrum of the model. A duality between the limit cases $B \rightarrow 0$ and $B \rightarrow \infty$ is proposed:

 $N C_{B\to\infty} + M C_{B\to0} = 1$ (TKNN-formula).

The seminal paper [Thouless, Kohmoto, Nightingale & Niji '82] paved the way for the explanation of the Quantum Hall Effect (QHE) in terms of geometric quantities. The model is a 2-dimensional magnetic-Bloch-electron (2DMBE), i.e. an electron in a lattice potential plus a uniform magnetic field. In the limit $B \rightarrow 0$, assuming a rational flux M/N and via the Kubo formula the quantization of the Hall conductance is related with the (first) Chern numbers of certain vector bundles related to the energy spectrum of the model. A duality between the limit cases $B \rightarrow 0$ and $B \rightarrow \infty$ is proposed:

 $N C_{B\to\infty} + M C_{B\to0} = 1$ (TKNN-formula).

In the papers [Bellissard '87], [Helffer & Sjőstrand '89], [D. & Panati t.b.p.] is rigorously proved that the effective models for the 2DMBE in the limits B → 0,∞ are elements of two different representations of the (rational) Noncommutative Torus (NCT).

The seminal paper [Thouless, Kohmoto, Nightingale & Niji '82] paved the way for the explanation of the Quantum Hall Effect (QHE) in terms of geometric quantities. The model is a 2-dimensional magnetic-Bloch-electron (2DMBE), i.e. an electron in a lattice potential plus a uniform magnetic field. In the limit $B \rightarrow 0$, assuming a rational flux M/N and via the Kubo formula the guantization of the Hall conductance is related with the (first) Chern numbers of certain vector bundles related to the energy spectrum of the model. A duality between the limit cases $B \rightarrow 0$ and $B \rightarrow \infty$ is proposed:

 $N C_{B\to\infty} + M C_{B\to0} = 1$ (TKNN-formula).

Outline

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1 Introduction

Overview and physical motivations

2 The NCT and its representations

- "Abstract" geometry and gap projections
- The Π_{0,1} representation (GNS)
- The $\Pi_{q,r}$ representation (Weyl)
- 3 Generalized Bloch-Floquet transform
 - The general framework
 - The main theorem
- 4 Vector bundle representations and TKNN formulæ
 - Vector bundles
 - Duality and TKNN formulæ

The NCT with deformation parameter $\theta \in \mathbb{R}$ is the "abstract" C^* -algebra \mathfrak{A}_{θ} generated by:

$$\mathfrak{u}^* = \mathfrak{u}^{-1}, \qquad \mathfrak{v}^* = \mathfrak{v}^{-1}, \qquad \mathfrak{u}\mathfrak{v} = e^{i2\pi\theta}\mathfrak{v}\mathfrak{u}$$

and closed in the (universal) norm:

 $\|\mathfrak{a}\| := \sup \{ \|\pi(\mathfrak{a})\|_{\mathscr{H}} \mid \pi \text{ representation of } \mathfrak{A}_{\theta} \text{ on } \mathscr{H} \}.$

The NCT with deformation parameter $\theta \in \mathbb{R}$ is the "abstract" C^* -algebra \mathfrak{A}_{θ} generated by:

$$\mathfrak{u}^* = \mathfrak{u}^{-1}, \qquad \mathfrak{v}^* = \mathfrak{v}^{-1}, \qquad \mathfrak{u}\mathfrak{v} = e^{i2\pi\theta}\mathfrak{v}\mathfrak{u}$$

and closed in the (universal) norm:

 $\|\mathfrak{a}\| := \sup \{ \|\pi(\mathfrak{a})\|_{\mathscr{H}} \mid \pi \text{ representation of } \mathfrak{A}_{\theta} \text{ on } \mathscr{H} \}.$

The canonical trace $f: \mathfrak{A}_{\theta} \to \mathbb{C}$ (*unique* if $\theta \notin \mathbb{Q}$) is defined by:

$$f(\mathfrak{u}^n\mathfrak{v}^m)=\delta_{n,0}\delta_{m,0}.$$

It is a *state* (linear, positive, normalized), *faithful* $f(\mathfrak{a}^*\mathfrak{a}) = 0 \Leftrightarrow \mathfrak{a} = 0$ with the *tracial property* $f(\mathfrak{a}\mathfrak{b}) = f(\mathfrak{b}\mathfrak{a})$.

The NCT with deformation parameter $\theta \in \mathbb{R}$ is the "abstract" C^* -algebra \mathfrak{A}_{θ} generated by:

$$\mathfrak{u}^* = \mathfrak{u}^{-1}, \qquad \mathfrak{v}^* = \mathfrak{v}^{-1}, \qquad \mathfrak{u}\mathfrak{v} = e^{i2\pi\theta}\mathfrak{v}\mathfrak{u}$$

and closed in the (universal) norm:

 $\|\mathfrak{a}\| := \sup \{ \|\pi(\mathfrak{a})\|_{\mathscr{H}} \mid \pi \text{ representation of } \mathfrak{A}_{\theta} \text{ on } \mathscr{H} \}.$

The canonical trace $f: \mathfrak{A}_{\theta} \to \mathbb{C}$ (*unique* if $\theta \notin \mathbb{Q}$) is defined by:

$$f(\mathfrak{u}^n\mathfrak{v}^m)=\delta_{n,0}\delta_{m,0}.$$

It is a *state* (linear, positive, normalized), *faithful* $f(\mathfrak{a}^*\mathfrak{a}) = 0 \Leftrightarrow \mathfrak{a} = 0$ with the *tracial property* $f(\mathfrak{a}\mathfrak{b}) = f(\mathfrak{b}\mathfrak{a})$. The canonical derivations $\tilde{\sigma}_j: \mathfrak{A}_{\theta} \to \mathfrak{A}_{\theta}, j = 1, 2$ are defined by

$$\mathcal{F}_1(\mathfrak{u}^n\mathfrak{v}^m) = in(\mathfrak{u}^n\mathfrak{v}^m), \quad \mathcal{F}_2(\mathfrak{u}^n\mathfrak{v}^m) = im(\mathfrak{u}^n\mathfrak{v}^m)$$

Symmetric $\partial_j (\mathfrak{a}^*) = \partial_j (\mathfrak{a})^*$, commuting $\partial_1 \circ \partial_2 = \partial_2 \circ \partial_1$ and $f \circ \partial_j = 0$.

A $\mathfrak{p} \in \mathfrak{A}_{\theta}$ is a projection if $\mathfrak{p} = \mathfrak{p}^* = \mathfrak{p}^2$. Let $\operatorname{Proj}(\mathfrak{A}_{\theta})$ the collection of the projections of \mathfrak{A}_{θ} . If $\theta = \frac{M}{N}$ with $M \in \mathbb{Z}$, $N \in \mathbb{N}^*$ and $\operatorname{g.c.d}(M, N) = 1$, then $f: \operatorname{Proj}(\mathfrak{A}_{M/N}) \to \{0, \frac{1}{N}, \dots, \frac{N-1}{N}, 1\}$.

(日) (日) (日) (日) (日) (日) (日)

A $\mathfrak{p} \in \mathfrak{A}_{\theta}$ is a projection if $\mathfrak{p} = \mathfrak{p}^* = \mathfrak{p}^2$. Let $\operatorname{Proj}(\mathfrak{A}_{\theta})$ the collection of the projections of \mathfrak{A}_{θ} . If $\theta = \frac{M}{N}$ with $M \in \mathbb{Z}$, $N \in \mathbb{N}^*$ and $\operatorname{g.c.d}(M, N) = 1$, then $f: \operatorname{Proj}(\mathfrak{A}_{M/N}) \to \{0, \frac{1}{N}, \dots, \frac{N-1}{N}, 1\}$. The "abstract" (first) Chern number of $\mathfrak{p} \in \operatorname{Proj}(\mathfrak{A}_{\theta})$ is defined by:

$$\mathfrak{Ch}(\mathfrak{p}) := \frac{i}{2\pi} f(\mathfrak{p}[\mathfrak{F}_1(\mathfrak{p});\mathfrak{F}_2(\mathfrak{p})]).$$

(日) (日) (日) (日) (日) (日) (日)

A selfadjoint $\mathfrak{h} \in \mathfrak{A}_{\theta}$ has a band spectrum if it is a locally finite union of closed intervals in \mathbb{R} , i.e. $\sigma(\mathfrak{h}) = \bigcup_{j \in \mathbb{Z}} I_j$. The open interval which separates two adjacent bands is called *gap*.

Let χ_{I_j} the characteristic functions for the *spectral band* I_j , then $\chi_{I_j} \in C(\sigma(\mathfrak{h})) \simeq C^*(\mathfrak{h}) \subset \mathfrak{A}_{\theta}$. One to one correspondence between I_j and *band projection* $\mathfrak{p}_j \in \operatorname{Proj}(\mathfrak{A}_{\theta})$. Gap projection $\mathfrak{P}_j := \bigoplus_{k=1}^j \mathfrak{p}_j$. If $\theta = M/N$ then $1 \leq j \leq N$.

An important example of selfadjoint element in \mathfrak{A}_{θ} is the Harper Hamiltonian

$$\mathfrak{h}_{Har} := \mathfrak{u} + \mathfrak{u}^{-1} + \mathfrak{v} + \mathfrak{v}^{-1}$$

Spectrum of \mathfrak{h}_{Har} for $\theta \in \mathbb{Q}$ [Hofstadter '76]:

Outline

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1 Introduction

Overview and physical motivations

2 The NCT and its representations

- "Abstract" geometry and gap projections
- **The** $\Pi_{0,1}$ representation (GNS)
- The $\Pi_{q,r}$ representation (Weyl)
- 3 Generalized Bloch-Floquet transform
 - The general framework
 - The main theorem
- 4 Vector bundle representations and TKNN formulæ
 - Vector bundles
 - Duality and TKNN formulæ

 $\Pi_{0,1} : \mathfrak{A}_{\theta} \to \mathscr{B}(\mathscr{H}_{0,1}) \text{ with } \mathscr{H}_{0,1} := L^{2}(\mathbb{T}^{2}) \text{ defined by:}$ $\begin{cases} \Pi_{0,1}(\mathfrak{u}) =: U_{0,1} : \psi_{n,m} \mapsto e^{i\pi\theta n} \psi_{n,m+1} \\ \Pi_{0,1}(\mathfrak{v}) =: V_{0,1} : \psi_{n,m} \mapsto e^{-i\pi\theta m} \psi_{n+1,m} \end{cases}$

 $\psi_{n,m}(k_1,k_2) := (2\pi)^{-1} e^{i(nk_1+mk_2)}$ Fourier basis of $\mathscr{H}_{0,1}$.

(日) (日) (日) (日) (日) (日) (日)

 $\Pi_{0,1} : \mathfrak{A}_{\theta} \to \mathscr{B}(\mathscr{H}_{0,1})$ with $\mathscr{H}_{0,1} := L^{2}(\mathbb{T}^{2})$ defined by:

$$\begin{cases} \Pi_{0,1}(\mathfrak{u}) =: U_{0,1} : \psi_{n,m} \mapsto e^{i\pi\theta n} \psi_{n,m+1} \\ \Pi_{0,1}(\mathfrak{v}) =: V_{0,1} : \psi_{n,m} \mapsto e^{-i\pi\theta m} \psi_{n+1,m} \end{cases}$$

 $\psi_{n,m}(k_1, k_2) := (2\pi)^{-1} e^{i(nk_1 + mk_2)}$ Fourier basis of $\mathscr{H}_{0,1}$. It is the GNS representation related to f, indeed $\psi_{n,m} \leftrightarrow e^{i\pi\theta nm} \mathfrak{v}^n \mathfrak{u}^m$, cyclic vector $\psi_{0,0} = (2\pi)^{-1}$,

$$f(\mathfrak{u}^{a}\mathfrak{v}^{b}) = \delta_{a,0}\delta_{b,0} = (\psi_{0,0}; \Pi_{0,1}(\mathfrak{u}^{a}\mathfrak{v}^{b})\psi_{0,0}) = e^{i\pi\theta b} \int_{\mathbb{T}^{2}} \psi_{b,a}(k) \, dk$$

(日) (日) (日) (日) (日) (日) (日)

 $\Pi_{0,1}:\mathfrak{A}_{\theta} \to \mathscr{B}(\mathscr{H}_{0,1})$ with $\mathscr{H}_{0,1}:=L^{2}(\mathbb{T}^{2})$ defined by:

$$\begin{cases} \Pi_{0,1}(\mathfrak{u}) =: U_{0,1} : \psi_{n,m} \mapsto e^{i\pi\theta n} \psi_{n,m+1} \\ \Pi_{0,1}(\mathfrak{v}) =: V_{0,1} : \psi_{n,m} \mapsto e^{-i\pi\theta m} \psi_{n+1,m} \end{cases}$$

 $\psi_{n,m}(k_1, k_2) := (2\pi)^{-1} e^{i(nk_1+mk_2)}$ Fourier basis of $\mathcal{H}_{0,1}$. It is the GNS representation related to f, indeed $\psi_{n,m} \leftrightarrow e^{i\pi\theta nm} v^n u^m$, cyclic vector $\psi_{0,0} = (2\pi)^{-1}$,

$$f(\mathfrak{u}^{a}\mathfrak{v}^{b}) = \delta_{a,0}\delta_{b,0} = (\psi_{0,0}; \Pi_{0,1}(\mathfrak{u}^{a}\mathfrak{v}^{b})\psi_{0,0}) = e^{i\pi\theta b} \int_{\mathbb{T}^{2}} \psi_{b,a}(k) \, dk$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\Pi_{0,1}$ is injective since f is faithful.

 $\Pi_{0,1} : \mathfrak{A}_{\theta} \to \mathscr{B}(\mathscr{H}_{0,1})$ with $\mathscr{H}_{0,1} := L^{2}(\mathbb{T}^{2})$ defined by:

$$\begin{cases} \Pi_{0,1}(\mathfrak{u}) =: U_{0,1} : \psi_{n,m} \mapsto e^{i\pi\theta n} \psi_{n,m+1} \\ \Pi_{0,1}(\mathfrak{v}) =: V_{0,1} : \psi_{n,m} \mapsto e^{-i\pi\theta m} \psi_{n+1,m} \end{cases}$$

 $\psi_{n,m}(k_1, k_2) := (2\pi)^{-1} e^{i(nk_1+mk_2)}$ Fourier basis of $\mathcal{H}_{0,1}$. It is the GNS representation related to f, indeed $\psi_{n,m} \leftrightarrow e^{i\pi\theta nm} v^n u^m$, cyclic vector $\psi_{0,0} = (2\pi)^{-1}$,

$$f(\mathfrak{u}^{a}\mathfrak{v}^{b}) = \delta_{a,0}\delta_{b,0} = (\psi_{0,0}; \Pi_{0,1}(\mathfrak{u}^{a}\mathfrak{v}^{b})\psi_{0,0}) = e^{i\pi\theta b} \int_{\mathbb{T}^{2}} \psi_{b,a}(k) \, dk$$

 $\Pi_{0,1}$ is injective since f is faithful.

 $\mathfrak{A}^{0,1}_{\theta} := \Pi_{0,1}(\mathfrak{A}_{\theta})$ describes the effective models for the 2DMBE in the limits $B \to 0$ ($\theta \propto f_B :=$ flux trough the unit cell).

The commutant $\mathfrak{A}_{\theta}^{\mathbf{0},\mathbf{1}'}$ is generated by:

$$\begin{cases} F_{1}: \psi_{n,m} \mapsto e^{i\pi\theta n}\psi_{n,m-1} \\ \widetilde{F}_{2}: \psi_{n,m} \mapsto e^{i\pi\theta m}\psi_{n+1,m}. \end{cases}$$

・ロト < 団 > < 三 > < 三 > のへで

The commutant $\mathfrak{A}_{\theta}^{0,1'}$ is generated by:

$$\begin{cases} F_{1}: \psi_{n,m} \mapsto e^{i\pi\theta n}\psi_{n,m-1} \\ \widetilde{F}_{2}: \psi_{n,m} \mapsto e^{i\pi\theta m}\psi_{n+1,m}. \end{cases}$$

If $\theta = M/N$ then

$$\mathfrak{S}_{\mathbf{0},\mathbf{1}} := C^*(F_1, F_2 := \widetilde{F}_2^N)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

is a maximal commutative C^* -subalgebra of $\mathfrak{A}^{0,1'}_{\theta}$.

The commutant $\mathfrak{A}_{\theta}^{0,1'}$ is generated by:

$$\begin{cases} F_{1}: \psi_{n,m} \mapsto e^{i\pi\theta n}\psi_{n,m-1} \\ \widetilde{F}_{2}: \psi_{n,m} \mapsto e^{i\pi\theta m}\psi_{n+1,m}. \end{cases}$$

If $\theta = M/N$ then

$$\mathfrak{S}_{0,1} := C^*(F_1, F_2 := \widetilde{F}_2^N)$$

is a maximal commutative *C*^{*}-subalgebra of $\mathfrak{A}_{\theta}^{0,1'}$. $\mathfrak{S}_{0,1}$ is a unitary representation of \mathbb{Z}^2 on $\mathscr{H}_{0,1}$, moreover $\{\phi_j\}_{j=0}^{N-1} \subset \mathscr{H}_{0,1}$ with $\phi_j := \psi_{j,0}$ is wandering for $\mathfrak{S}_{0,1}$, i.e.

$$\mathfrak{S}_{0,1}\left[\{\phi_j\}_{j=0}^{N-1}\right] = \mathscr{H}_{0,1}, \quad (\phi_i; F_1^a F_2^b \phi_j) = \delta_{i,j} \delta_{a,0} \delta_{b,0}.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1 Introduction

Overview and physical motivations

2 The NCT and its representations

- "Abstract" geometry and gap projections
- The Π_{0,1} representation (GNS)
- The $\Pi_{q,r}$ representation (Weyl)
- 3 Generalized Bloch-Floquet transform
 - The general framework
 - The main theorem
- 4 Vector bundle representations and TKNN formulæ
 - Vector bundles
 - Duality and TKNN formulæ

 $\Pi_{q,r}:\mathfrak{A}_{\theta}\to\mathscr{B}(\mathscr{H}_q) \text{ with } \mathscr{H}_q:=L^2(\mathbb{R})\otimes\mathbb{C}^q\simeq L^2(\mathbb{R};\mathbb{Z}_q) \text{ defined by:}$

$$\begin{cases} \Pi_{q,r}(\mathfrak{u}) =: U_{q,r} = T_1 \otimes \mathbb{U} \\ \Pi_{q,r}(\mathfrak{v}) =: V_{q,r} = T_2^{\theta - \frac{r}{q}} \otimes \mathbb{V}^r \end{cases} \quad r < q \in \mathbb{N} \ \text{g.c.d.}(r,q) = 1$$

where T_1 and T_2 are the *Weyl operators* on $L^2(\mathbb{R})$, i.e.

$$T_1 := e^{i2\pi Q}, \quad T_2 := e^{-i2\pi P}, \quad Q :=$$
multiplication by $x, \quad P := \frac{-i}{2\pi} \frac{\partial}{\partial x}$

while \mathbb{U} and \mathbb{V} act on \mathbb{C}^q as:

$$\mathbf{U} := \begin{pmatrix} 1 & & & \\ & \boldsymbol{\varpi}_{q} & & \\ & & \ddots & \\ & & & \boldsymbol{\varpi}_{q}^{q-1} \end{pmatrix}, \quad \mathbf{V} := \begin{pmatrix} 0 & & 1 \\ 1 & \ddots & & \\ & \ddots & 0 & \\ & & & 1 & 0 \end{pmatrix}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

where $\boldsymbol{\varpi}_q := e^{i2\pi \frac{1}{q}}$, $\mathbb{U}\mathbb{V} = \boldsymbol{\varpi}_q\mathbb{V}\mathbb{U}$.

 $\Pi_{q,r}:\mathfrak{A}_{\theta}\to\mathscr{B}(\mathscr{H}_q) \text{ with } \mathscr{H}_q:=L^2(\mathbb{R})\otimes\mathbb{C}^q\simeq L^2(\mathbb{R};\mathbb{Z}_q) \text{ defined by:}$

$$\begin{cases} \Pi_{q,r}(\mathfrak{u}) =: U_{q,r} = T_1 \otimes \mathbb{U} \\ \Pi_{q,r}(\mathfrak{v}) =: V_{q,r} = T_2^{\theta - \frac{r}{q}} \otimes \mathbb{V}^r \end{cases} \quad r < q \in \mathbb{N} \ \text{g.c.d.}(r,q) = 1$$

where T_1 and T_2 are the *Weyl operators* on $L^2(\mathbb{R})$, i.e.

$$T_1 := e^{i2\pi Q}, \quad T_2 := e^{-i2\pi P}, \quad Q :=$$
multiplication by $x, \quad P := \frac{-i}{2\pi} \frac{\partial}{\partial x}$

while \mathbb{U} and \mathbb{V} act on \mathbb{C}^q as:

where $\overline{\boldsymbol{\sigma}}_{q} := e^{i2\pi \frac{1}{q}}$, $\mathbb{U}\mathbb{V} = \overline{\boldsymbol{\sigma}}_{q}\mathbb{V}\mathbb{U}$. $\Pi_{q,r}$ is injective and $\mathfrak{A}_{\theta}^{q,r} := \Pi_{q,r}(\mathfrak{A}_{\theta})$ describes the 2DMBE in the limits $B \to \infty$ (q = 1, r = 0, $\theta \propto f_{B}^{-1}$). The commutant $\mathfrak{A}_{\theta}^{q,r'}$ is generated by [Takesaki '69]:

$$\begin{cases} \mathbf{G}_1 := T_1^{\frac{1}{q\theta-r}} \otimes \mathbb{U}^{\mathbf{a}} \\ \widetilde{\mathbf{G}}_2 := T_2^{\frac{1}{q}} \otimes \mathbb{V}^{-1}. \end{cases} \qquad \mathbf{b}q - \mathbf{a}r = 1.$$

The commutant $\mathfrak{A}_{\theta}^{q,r'}$ is generated by [Takesaki '69]:

$$\begin{cases} \mathbf{G}_{1} := T_{1}^{\frac{1}{q\theta-r}} \otimes \mathbb{U}^{\mathbf{a}} \\ \widetilde{\mathbf{G}}_{2} := T_{2}^{\frac{1}{q}} \otimes \mathbb{V}^{-1}. \end{cases} \qquad \mathbf{b}q - \mathbf{a}r = 1.$$

If $\theta = M/N$ (with g.c.d.(N,q)=1) then

$$\mathfrak{S}_{q,r} := C^*(G_1, G_2 := \widetilde{G}_2^{N_0}), \quad N_0 := qM - rN, \quad G_2 := T_2^{\frac{N_0}{q}} \otimes \mathbb{V}^{Nr}$$

is a maximal commutative C^* -subalgebra of $\mathfrak{A}^{q,r'}_{\theta}$.

The commutant $\mathfrak{A}_{\theta}^{q,r'}$ is generated by [Takesaki '69]:

$$\begin{cases} \mathbf{G}_{1} := T_{1}^{\frac{1}{q\theta-r}} \otimes \mathbb{U}^{\mathbf{a}} \\ \widetilde{\mathbf{G}}_{2} := T_{2}^{\frac{1}{q}} \otimes \mathbb{V}^{-1}. \end{cases} \qquad \mathbf{b}q - \mathbf{a}r = 1.$$

If $\theta = M/N$ (with g.c.d.(N,q)=1) then

$$\mathfrak{S}_{q,r} := \mathcal{C}^*(\mathcal{G}_1, \mathcal{G}_2 := \widetilde{\mathcal{G}}_2^{N_0}), \quad N_0 := qM - rN, \quad \mathcal{G}_2 := T_2^{\frac{N_0}{q}} \otimes \mathbb{V}^{Nr}$$

is a maximal commutative *C*^{*}-subalgebra of $\mathfrak{A}^{q,r'}_{\theta}$. $\mathfrak{S}_{q,r}$ is a unitary representation of \mathbb{Z}^2 on $\mathscr{H}_q \simeq L^2(\mathbb{R}; \mathbb{Z}_q)$, moreover $\{\phi_j\}_{j=0}^{N-1} \subset \mathscr{H}_q$ with

$$\phi_j := \begin{pmatrix} \chi_j \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \chi_j(x) := \begin{cases} 1 & \text{if } j \frac{N_0}{N} \leqslant x \leqslant (j+1) \frac{N_0}{N} \\ 0 & \text{otherwise.} \end{cases}$$

is wandering for $\mathfrak{S}_{q,r}$, i.e.

$$\mathfrak{S}_{q,r}\left[\{\phi_j\}_{j=0}^{N-1}\right] = \mathscr{H}_q, \quad (\phi_i; G_1^a G_2^b \phi_j) = \delta_{i,j} \delta_{a,0} \delta_{b,0}.$$

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1 Introduction

- Overview and physical motivations
- 2 The NCT and its representations
 "Abstract" geometry and gap projections
 The Π_{0,1} representation (GNS)
 The Π_{0,1} representation (West)
 - The $\Pi_{q,r}$ representation (Weyl)

3 Generalized Bloch-Floquet transform

- The general framework
- The main theorem
- 4 Vector bundle representations and TKNN formulæ
 - Vector bundles
 - Duality and TKNN formulæ

Ingredients:

- **1** separable Hilbert space \mathcal{H} (space of physical states);
- a C*-algebra ¹/₂ of bounded operators on *H* (physical observables);
- a (maximal) commutative C*-subalgebra [☉] of the commutant 𝔄' (simultaneous implementable symmetries).

(ロ) (同) (三) (三) (三) (○) (○)

Ingredients:

- separable Hilbert space *H* (space of physical states);
- a C*-algebra ¹/₂ of bounded operators on *H* (physical observables);
- a (maximal) commutative C*-subalgebra [☉] of the commutant 𝔄' (simultaneous implementable symmetries).

Technical assumptions:

- **1** \mathfrak{S} is generated by a unitary representation of \mathbb{Z}^d , i.e. $\mathfrak{S} := C^*(U_1, \dots, U_d)$ with $U_j^* = U_j^{-1}$;
- 2 S has the wandering property, i.e. it exists a (countable) subset {φ_i} ⊂ ℋ of orthonormal vectors such that

$$\mathfrak{S}\left[\{\phi_j\}\right] = \mathscr{H}, \quad (\phi_i; U_1^{n_1} \dots U_d^{n_d} \phi_j) = \delta_{i,j} \delta_{n_1,0} \dots \delta_{n_d,0}.$$

(ロ) (同) (三) (三) (三) (○) (○)

Ingredients:

- 1 separable Hilbert space \mathcal{H} (space of physical states);
- a C*-algebra ¹/₂ of bounded operators on *H* (physical observables);
- a (maximal) commutative C*-subalgebra [☉] of the commutant 𝔄' (simultaneous implementable symmetries).

Technical assumptions:

- 1 \mathfrak{S} is generated by a unitary representation of \mathbb{Z}^d , i.e. $\mathfrak{S} := C^*(U_1, \dots, U_d)$ with $U_j^* = U_j^{-1}$;
- 2 S has the wandering property, i.e. it exists a (countable) subset {φ_i} ⊂ ℋ of orthonormal vectors such that

$$\mathfrak{S}\left[\{\phi_j\}\right] = \mathscr{H}, \quad (\phi_i; U_1^{n_1} \dots U_d^{n_d} \phi_j) = \delta_{i,j} \delta_{n_1,0} \dots \delta_{n_d,0}.$$

Consequences:

- **1** \mathfrak{S} is algebraically compatible, i.e. $\sum a_{n_1,\ldots,n_d} U_1^{n_1} \ldots U_d^{n_d} = 0$ iff $a_{n_1,\ldots,n_d} = 0$;
- 2 the Gel'fand spectrum of \mathfrak{S} is \mathbb{T}^d ;
- 3 the Haar measure $dz := \frac{dt^d}{(2\pi)^d}$ on \mathbb{T}^d is basic for \mathfrak{S} (abs. cont. with respect the spectral measures),

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1 Introduction

- Overview and physical motivations
- 2 The NCT and its representations
 "Abstract" geometry and gap projections
 The Π_{0,1} representation (GNS)
 The Π_{a,r} representation (Weyl)
- 3 Generalized Bloch-Floquet transform ■ The general framework
 - The main theorem
- 4 Vector bundle representations and TKNN formulæ
 - Vector bundles
 - Duality and TKNN formulæ

Theorem [D. & Panati t.b.p.]

$$\Phi \ni \varphi \longmapsto (\mathscr{U} \varphi)(t) := \sum \mathsf{e}^{-i n_1 t_1} \dots \mathsf{e}^{-i n_d t_d} U_1^{n_1} \dots U_d^{n_d} \varphi \in \Phi'$$

is well defined and $(\mathscr{U}\varphi)(t)$ is a generalized eigenvector of U_i with eigenvalue e^{it_i} .

ii) Let $\mathscr{K}(t) \subset \Phi'$ the space spanned by $\{\xi_j(t) := (\mathscr{U}\phi_j)(t)\}$, then

$$\mathscr{H} \xrightarrow{\mathscr{U}} \int_{\mathbb{T}^d}^{\oplus} \mathscr{K}(t) \, dz(t) \quad (L^2 - \text{sections})$$

is a unitary map between Hilbert spaces.

- iii) Φ is a pre-*C**-module over $C(\mathbb{T}^d)$ and is mapped by \mathscr{U} in a dense set of continuous sections of the vector bundle $\mathcal{E}_{\mathfrak{S}} \to \mathbb{T}^d$ with fiber $\mathscr{K}(t)$ and frame of sections $\{\xi_j\}$.
- iv) \mathfrak{A} is mapped by \mathscr{U} in the continuous sections of End($\mathcal{E}_{\mathfrak{S}}$) $\rightarrow \mathbb{T}^{d}$.

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1 Introduction

Overview and physical motivations

2 The NCT and its representations

- "Abstract" geometry and gap projections
- The Π_{0,1} representation (GNS)
- The $\Pi_{q,r}$ representation (Weyl)
- 3 Generalized Bloch-Floquet transform
 - The general framework
 - The main theorem

4 Vector bundle representations and TKNN formulæ

- Vector bundles
- Duality and TKNN formulæ

Vector bundle representation of $\mathfrak{A}_{M/N}^{(0,1)}$ (GNS)

$$\mathscr{H}_{0,1} := L^{2}(\mathbb{T}^{2}) \xrightarrow{\mathscr{U}} \Gamma_{L^{2}}(\mathcal{E}_{0,1}) \simeq \int_{\mathbb{T}^{2}}^{\oplus} \mathbb{C}^{N} dz$$

 $\mathcal{E}_{0,1} \to \mathbb{T}^2$ is a rank-*N* vector bundle with typical fiber $\mathscr{K}(t) \simeq \mathbb{C}^N$, *N* is the cardinality of the wandering system $\{\phi_j\}_{j=0}^{N-1}$. The vector bundle is trivial, indeed the frame of sections $\{\xi_j := \mathscr{U}\phi_j\}_{j=0}^{N-1}$ satisfies:

$$\xi_j(t_1, t_2) = \xi_j(t_1 + 2\pi, t_2) = \xi_j(t_1, t_2 + 2\pi) \quad \forall j = 0, \dots, N-1 \quad (t_1, t_2) \in \mathbb{T}^2,$$

then $C(\mathcal{E}_{0,1}) = 0$, where *C* is the (first) Chern number.

- ロマ・山下・山下・山下・山下・山

Vector bundle representation of $\mathfrak{A}_{M/N}^{(0,1)}$ (GNS)

$$\mathscr{H}_{0,1} := L^{2}(\mathbb{T}^{2}) \xrightarrow{\mathscr{U}} \Gamma_{L^{2}}(\mathcal{E}_{0,1}) \simeq \int_{\mathbb{T}^{2}}^{\oplus} \mathbb{C}^{N} dz$$

 $\mathcal{E}_{0,1} \to \mathbb{T}^2$ is a rank-*N* vector bundle with typical fiber $\mathscr{K}(t) \simeq \mathbb{C}^N$, *N* is the cardinality of the wandering system $\{\phi_j\}_{j=0}^{N-1}$. The vector bundle is trivial, indeed the frame of sections $\{\xi_j := \mathscr{U} \phi_j\}_{j=0}^{N-1}$ satisfies:

$$\begin{aligned} \xi_j(t_1, t_2) &= \xi_j(t_1 + 2\pi, t_2) = \xi_j(t_1, t_2 + 2\pi) \quad \forall j = 0, \dots, N-1 \quad (t_1, t_2) \in \mathbb{T}^2, \\ \text{then } \begin{array}{l} C(\mathcal{E}_{0,1}) &= 0, \text{ where } C \text{ is the (first) Chern number.} \\ \mathfrak{A}_{M/N}^{(0,1)} &\stackrel{\mathscr{U} \dots \mathcal{U}^{-1}}{\longrightarrow} & \text{End}_{C(\mathbb{T}^2)}(\Gamma(\mathcal{E}_{0,1})) \simeq \Gamma(\text{End}(\mathcal{E}_{0,1})) \text{ generated by:} \end{aligned}$$

$$U_{0,1}(t) := e^{-it_1} \begin{pmatrix} 1 & & \\ \rho & & \\ & \ddots & \\ & & \rho^{N-1} \end{pmatrix} V_{0,1}(t) := \begin{pmatrix} 0 & e^{it_2} \\ 1 & \ddots & \\ & \ddots & 0 \\ & & 1 & 0 \end{pmatrix}$$

with $\rho := e^{i2\pi \frac{M}{N}}$.

Vector bundle representation of $\mathfrak{A}_{M/N}^{(q,r)}$ (Weyl)

$$\mathscr{H}_{q,r} := L^{2}(\mathbb{R}) \otimes \mathbb{C}^{q} \xrightarrow{\mathscr{U}} \Gamma_{L^{2}}(\mathcal{E}_{q,r}) \simeq \int_{\mathbb{T}^{2}}^{\oplus} \mathbb{C}^{N} dz$$

 $\mathcal{E}_{q,r} \to \mathbb{T}^2$ is a rank-*N* vector bundle, *N* is the cardinality of the wandering system. The vector bundle is non-trivial, indeed

$$\xi_{j}(t_{1},t_{2}) = \frac{g(t_{2})^{-1}\xi_{j}(t_{1}+2\pi,t_{2})}{\xi_{j}(t_{1},t_{2}) = \xi_{j}(t_{1},t_{2}+2\pi)} \quad g(t_{2}) := \begin{pmatrix} 0 & e^{iqt_{2}} \\ 1 & \ddots & \\ & \ddots & 0 \\ & & 1 & 0 \end{pmatrix}$$

・ロト・日本・日本・日本・日本

then $C(\mathcal{E}_{r,q}) = q$.

Vector bundle representation of $\mathfrak{A}_{M/N}^{(q,r)}$ (Weyl)

$$\mathscr{H}_{q,r} := L^{2}(\mathbb{R}) \otimes \mathbb{C}^{q} \xrightarrow{\mathscr{U}} \Gamma_{L^{2}}(\mathcal{E}_{q,r}) \simeq \int_{\mathbb{T}^{2}}^{\oplus} \mathbb{C}^{N} dz$$

 $\mathcal{E}_{q,r} \to \mathbb{T}^2$ is a rank-*N* vector bundle, *N* is the cardinality of the wandering system. The vector bundle is non-trivial, indeed

$$\begin{aligned} \xi_j(t_1,t_2) &= g(t_2)^{-1} \xi_j(t_1+2\pi,t_2) \\ \xi_j(t_1,t_2) &= \xi_j(t_1,t_2+2\pi) \end{aligned} \quad g(t_2) := \begin{pmatrix} 0 & e^{iqt_2} \\ 1 & \ddots & \\ & \ddots & 0 \\ & & 1 & 0 \end{pmatrix} \end{aligned}$$

then
$$C(\mathcal{E}_{r,q}) = q$$
.
 $\mathfrak{A}_{M/N}^{(q,r)} \xrightarrow{\mathscr{U} \dots \mathscr{U}^{-1}} \operatorname{End}_{C(\mathbb{T}^2)}(\Gamma(\mathcal{E}_{q,r})) \simeq \Gamma(\operatorname{End}(\mathcal{E}_{q,r})) \text{ generated by:}$

$$U_{q,r}(t) = e^{i\frac{N_0}{N}t_1} \begin{pmatrix} 1 & & \\ & \ddots & \\ & & \rho^{q(N-1)} \end{pmatrix} V_{q,r}(t) = e^{-ist_2} \begin{pmatrix} 0 & |e^{iqt_2}\mathbb{1}_{\ell} \\ & \mathbb{1}_{N-\ell} & | & 0 \end{pmatrix}$$

where: lq - sN = 1 (g.c.d.(N,q)=1).

<□▶ <圖▶ < ≧▶ < ≧▶ = ● ● ●

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1 Introduction

Overview and physical motivations

2 The NCT and its representations

- "Abstract" geometry and gap projections
- The Π_{0,1} representation (GNS)
- The $\Pi_{q,r}$ representation (Weyl)
- 3 Generalized Bloch-Floquet transform
 - The general framework
 - The main theorem

Vector bundle representations and TKNN formulæ Vector bundles

Duality and TKNN formulæ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

C := first Chern number.

What is the relation between $C_{0,1}(p)$ and $C_{q,r}(p)$ for a given $p \in \operatorname{Proj}(\mathfrak{A}_{\theta})$?

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Transforms of the torus:

$$\begin{split} \mathbb{T}^2 \ni (t_1, t_2) & \stackrel{f}{\longmapsto} (qNt_1, t_2) \in \mathbb{T}^2 \\ \mathbb{T}^2 \ni (t_1, t_2) & \stackrel{g}{\longmapsto} (-N_0 t_1, qt_2) \in \mathbb{T}^2. \end{split}$$

Pullback of vector bundles:

$$f^*(\mathcal{L}_{q,r}[\mathfrak{p}]) \simeq g^*(\mathcal{L}_{0,1}[\mathfrak{p}]) \otimes I_{q^2}$$

 $I_{q^2} :=$ line bundle with Chern number q^2 (global twist of $\mathcal{E}_{q,r}$).

Functoriality of *C*:

$$C_{q,r}(\mathfrak{p}) = q \frac{R(\mathfrak{p})}{N} - \left(q \frac{M}{N} - r\right) C_{0,1}(\mathfrak{p})$$

(日) (日) (日) (日) (日) (日) (日)

 $R(\mathfrak{p}) := \mathsf{Rk}(g^*(\mathcal{L}_{0,1}[\mathfrak{p}]) = \mathsf{Rk}(\mathcal{L}_{0,1}[\mathfrak{p}]).$

"Abstract" version:

$$\frac{R(\mathfrak{p})}{N} = f(\mathfrak{p}), \qquad C_{0,1}(\mathfrak{p}) = \mathfrak{Ch}(\mathfrak{p})$$
$$C_{q,r}(\mathfrak{p}) = \frac{q}{f}(\mathfrak{p}) + (r - q\theta)\mathfrak{Ch}(\mathfrak{p})$$

Duality between gap projections of $\mathfrak{h}_{\text{Har}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Courtesy of J. Avron

Thank you for your attention