Projective representations of compact quantum groups

Kenny De Commer

KU Leuven

September 1 2009

Table of contents

- Hopf algebras and twisting
- 2 An example
- Second Further properties
- Projective representations

Twists

Definition

Let (A, Δ_A) and (D, Δ_D) be two Hopf algebras. We say that (D, Δ_D) is a *twisting* of (A, Δ_A) if there exists

$$\Delta_{E}: E:=\left(\begin{array}{cc}D & B\\C & A\end{array}\right) \rightarrow \left(\begin{array}{cc}D\odot D & B\odot B\\C\odot C & A\odot A\end{array}\right) \subseteq E\odot E$$

with BC = A and CB = D. We then call (B, Δ_B) , as a right A-module coalgebra, an associated *twist*, and (E, Δ_E) an associated linking structure.

Categorical interpretation

Theorem (B. Pareigis)

There is a one-to-one correspondence between isomorphism classes of

- lacktriangle linking structures between (A,Δ_A) and (D,Δ_D) , and
- 2 comonoidal equivalences between A-Mod and D-Mod.

Remark: The equivalence F is the functor $B \odot -$, while the monoidal structure is given by

$$u: B \underset{A}{\odot} (V \odot W) \rightarrow (B \underset{A}{\odot} V) \odot (B \underset{A}{\odot} W):$$

$$b\underset{A}{\otimes}(v\otimes w)\rightarrow(b_{(1)}\underset{A}{\otimes}v)\otimes(b_{(2)}\underset{A}{\otimes}w).$$

2-cocycles

Definition

A 2-cocycle for a Hopf algebra (A, Δ_A) is an invertible element $\Omega \in A \odot A$ such that

$$(\Omega \otimes 1)(\Delta_A \otimes \iota)(\Omega) = (1 \otimes \Omega)(\iota \otimes \Delta_A)(\Omega).$$

Two 2-cocycles Ω and $\tilde{\Omega}$ are called *cohomologous* if there exists an invertible element $u \in A$ s.t.

$$\tilde{\Omega} = (u \otimes u)\Omega\Delta_A(u^{-1}).$$

2-cocycles

Definition

A 2-cocycle for a Hopf algebra (A, Δ_A) is an invertible element $\Omega \in A \odot A$ such that

$$(\Omega \otimes 1)(\Delta_A \otimes \iota)(\Omega) = (1 \otimes \Omega)(\iota \otimes \Delta_A)(\Omega).$$

Two 2-cocycles Ω and $\tilde{\Omega}$ are called *cohomologous* if there exists an invertible element $u \in A$ s.t.

$$\tilde{\Omega} = (u \otimes u)\Omega \Delta_A(u^{-1}).$$

Definition

A 2-coboundary is a 2-cocycle Ω which is cohomologous to $1_A \otimes 1_A$:

$$\Omega = (u \otimes u) \Delta_{\mathcal{A}}(u^{-1})$$

for $u \in A$ invertible.

Cleft twists

Definition

A twist (B, Δ_B) is called *cleft* if $B_A \cong A_A$.

Cleft twists

Definition

A twist (B, Δ_B) is called *cleft* if $B_A \cong A_A$.

Proposition

- Any 2-cocycle Ω for (A, Δ_A) determines a cleft twist $(B_A, \Delta_B) := (A_A, \Omega \Delta_A(\cdot))$.
- **2** Conversely, any cleft twist (B, Δ_B) determines a unique cohomology class of 2-cocycles.

Remark: If (B, Δ_B) is cleft by some 2-cocycle Ω , then the twisted Hopf algebra is

$$(D, \Delta_D) \cong (A, \Delta_\Omega := \Omega \Delta_A(\cdot) \Omega^{-1}).$$

From 2-coboundaries to 2-cocycles

Sometimes, one can get non-trivial 2-cocycles from 2-coboundaries, for example when

1 a 2-coboundary in a bigger structure gives a non-trivial 2-cocycle for a smaller structure, or

From 2-coboundaries to 2-cocycles

Sometimes, one can get non-trivial 2-cocycles from 2-coboundaries, for example when

- a 2-coboundary in a bigger structure gives a non-trivial 2-cocycle for a smaller structure, or
- 2 the 2-cocycle is only 'formally' a 2-coboundary.

Compact quantum groups and their manifestations

A compact quantum group $\mathbb G$ has several avatars:

- **1** a Hopf-*-algebra $(\operatorname{Pol}(\mathbb{G}), \Delta)$ with an invariant state φ ,
- $oldsymbol{0}$ a unital C*-bi-algebra $(C(\mathbb{G}), \Delta)$ satisfying the cancelation property,
- **3** a von Neumann bi-algebra $(\mathscr{L}^{\infty}(\mathbb{G}), \Delta)$ with a normal invariant state φ (i.e. $(\iota \otimes \varphi)(\Delta(x)) = \varphi(x)1 = (\varphi \otimes \iota)(\Delta(x))$).

In the C*-algebraic setting, there are two *canonical* extremal ones:

- **1** a reduced C*-algebraic one, $(C_r(\mathbb{G}), \Delta)$, and
- ② a universal C*-algebraic one, $(C_u(\mathbb{G}), \Delta)$.

If these coincide, the compact quantum group is called coamenable.

Tensor products of CQG

Proposition (Wang)

If \mathbb{G}_n is a sequence of compact quantum groups, then one can form the infinite direct product $\prod_{n=1}^{\infty} \mathbb{G}_n$, with

$$Pol(\prod_{n=1}^{\infty} \mathbb{G}_n) = \underset{n=1}{\overset{\infty}{\odot}} Pol(\mathbb{G}_n),$$

$$(\mathscr{L}^{\infty}(\prod_{n=1}^{\infty}\mathbb{G}_n),\varphi)=\underset{n=1}{\overset{\infty}{\otimes}}(\mathscr{L}^{\infty}(\mathbb{G}_n),\varphi_n),$$

and the comultiplication given as

$$\mathop{\odot}\limits_{n=1}^{\infty} \mathit{Pol}(\mathbb{G}_n) \mathop{\to}\limits_{n=1}^{\otimes \Delta_n} \mathop{\odot}\limits_{n=1}^{\infty} (\mathit{Pol}(\mathbb{G}_n) \odot \mathit{Pol}(\mathbb{G}_n)) \cong (\mathop{\odot}\limits_{n=1}^{\infty} \mathit{Pol}(\mathbb{G}_n)) \odot (\mathop{\odot}\limits_{n=1}^{\infty} \mathit{Pol}(\mathbb{G}_n)).$$

Construction of a unitary 2-cocycle

Fix a square summable sequence $0 < q_n < 1$, and put

$$SU_{\mathbf{q}}(2) := \prod_{n=1}^{\infty} SU_{q_n}(2).$$

Then one can find unitaries $w_n \in \mathscr{L}^{\infty}(SU_{q_n}(2))$ such that

- the element $\bigotimes_{n=1}^{\infty} w_n$ is *ill-defined* in $\mathcal{L}^{\infty}(SU_q(2))$, but
- the unitary

$$\Omega = \mathop{\otimes}\limits_{n=1}^{\infty} ((w_n \otimes w_n) \Delta_n(w_n^*))$$

is a well-defined 2-cocycle in $\mathscr{L}^{\infty}(SU_{\mathbf{q}}(2))\otimes\mathscr{L}^{\infty}(SU_{\mathbf{q}}(2))$.

An invariant weight on the twisted QG

One can *explicitly* write down a formula for an invariant nsf weight φ_{Ω} on $(\mathscr{L}^{\infty}(SU_{\mathbf{q}}(2)), \Delta_{\Omega})$.

Hence, it is a *von Neumann algebraic quantum group* (in the sense of Kustermans-Vaes).

Consequences

Theorem

The twisted von Neumann algebraic quantum group

$$(\mathscr{L}^{\infty}(\mathit{SU}_{\Omega}(2)), \Delta_{\Omega}) := (\mathscr{L}^{\infty}(\mathit{SU}_{\mathbf{q}}(2)), \Delta_{\Omega})$$

is no longer compact (i.e. φ_{Ω} is not finite).

Consequences

Theorem

The twisted von Neumann algebraic quantum group

$$(\mathscr{L}^{\infty}(\mathit{SU}_{\Omega}(2)), \Delta_{\Omega}) := (\mathscr{L}^{\infty}(\mathit{SU}_{\textbf{q}}(2)), \Delta_{\Omega})$$

is no longer compact (i.e. φ_{Ω} is not finite).

Corollary

The C^* -algebra $C_0(SU_{\Omega}(2)), \Delta_{\Omega})$ underlying $(\mathscr{L}^{\infty}(SU_{\Omega}(2)), \Delta_{\Omega})$ is different from $C(SU_{\mathbf{q}}(2))$.

Consequences

Theorem

The twisted von Neumann algebraic quantum group

$$(\mathscr{L}^{\infty}(SU_{\Omega}(2)),\Delta_{\Omega}):=(\mathscr{L}^{\infty}(SU_{\textbf{q}}(2)),\Delta_{\Omega})$$

is no longer compact (i.e. φ_{Ω} is not finite).

Corollary

The C^* -algebra $C_0(SU_{\Omega}(2)), \Delta_{\Omega})$ underlying $(\mathscr{L}^{\infty}(SU_{\Omega}(2)), \Delta_{\Omega})$ is different from $C(SU_{\mathbf{q}}(2))$.

Remark: There is a natural embedding

$$(\textit{C(SU}_{\textbf{q}}(2)), \Delta_{\textbf{q}}) \hookrightarrow (\mathscr{L}^{\infty}(\textit{SU}_{\Omega}(2)), \Delta_{\Omega}),$$

$$\otimes x_i \rightarrow \otimes (w_i x_i w_i^*).$$

A connecting structure

Inside $\mathscr{L}^{\infty}(SU_{\mathbf{q}}(2))\otimes M_2(\mathbb{C})$, there is a natural (non-unital) C*-algebra

$$E = \begin{pmatrix} C_0(SU_{\Omega}(2)) & C_0(SU_{\Omega,\mathbf{q}}(2)) \\ C_0(SU_{\mathbf{q},\Omega}(2)) & C(SU_{\mathbf{q}}(2)) \end{pmatrix}$$

with (non-unital) comultiplication

$$\Delta_E: \left(\begin{array}{cc} x & y \\ z & w \end{array}\right) \to \left(\begin{array}{cc} \Omega \Delta_{\mathbf{q}}(x) \Omega^* & \Omega \Delta_{\mathbf{q}}(y) \\ \Delta_{\mathbf{q}}(z) \Omega^* & \Delta_{\mathbf{q}}(w) \end{array}\right) \in M(E \otimes E).$$

Consequence for the W*-RepCat

The functor

$$\begin{split} \operatorname{Rep}^*(\mathcal{C}(SU_{\mathbf{q}}(2))) &\longrightarrow \operatorname{Rep}^*(\mathcal{C}_0(SU_{\Omega}(2))) \\ &\cong \ \ \, \Big| \qquad \qquad \Big| \cong \\ \operatorname{U-Rep}(\widehat{SU_{\mathbf{q}}(2)}) &\longrightarrow \operatorname{U-Rep}(\widehat{SU_{\Omega}(2)}) \end{split}$$

determined by the C*-bi-correspondence $C_0(SU_{\Omega,\mathbf{q}}(2))$, extends to a comonoidal equivalence by use of $\Delta_{C_0(SU_{\Omega,\mathbf{q}}(2))}$.

Consequence for the W*-RepCat

The functor

$$\begin{split} \operatorname{Rep}^*(\mathcal{C}(SU_{\mathbf{q}}(2))) &\longrightarrow \operatorname{Rep}^*(\mathcal{C}_0(SU_{\Omega}(2))) \\ & \cong \ \ \, \Big| \qquad \qquad \Big| \cong \\ \operatorname{U-Rep}(\widehat{SU_{\mathbf{q}}(2)}) &\longrightarrow \operatorname{U-Rep}(\widehat{SU_{\Omega}(2)}) \end{split}$$

determined by the C*-bi-correspondence $C_0(SU_{\Omega,\mathbf{q}}(2))$, extends to a comonoidal equivalence by use of $\Delta_{C_0(SU_{\Omega,\mathbf{q}}(2))}$.

Corollary

There exist a discrete and a non-discrete quantum group whose unitary representation categories coincide as abstract monoidal W^* -categories.

Projective representations

Definition

Let \mathscr{H} be a Hilbert space. A *projective representation* of a compact quantum group \mathbb{G} on \mathscr{H} is a coaction

$$\alpha: \mathcal{B}(\mathcal{H}) \to \mathcal{L}^{\infty}(\mathbb{G}) \otimes \mathcal{B}(\mathcal{H}).$$

It is called *irreducible* if the coaction is ergodic (i.e. the space of invariants is trivial).

Returning to the example

Fix a *square summable* sequence $0 < q_n < 1$.

On \mathbb{C}^2 , consider the fundamental unitary representation of $SU_{q_n}(2)$:

$$U_n:\left(egin{array}{c} e_1 \ e_2 \end{array}
ight)
ightarrow \left(egin{array}{c} a & -qb^* \ b & a^* \end{array}
ight)\otimes \left(egin{array}{c} e_1 \ e_2 \end{array}
ight).$$

Then the induced coactions on $M_2(\mathbb{C})$ can be tensored to give an ergodic coaction

$$\alpha: \underset{n=1}{\overset{\infty}{\otimes}} (M_2(\mathbb{C}), \omega_n) \to \mathscr{L}^{\infty}(SU_{\mathbf{q}}(2)) \otimes (\underset{n=1}{\overset{\infty}{\otimes}} (M_2(\mathbb{C}), \omega_n)).$$

By the convergence rate of the q_n , we have $\mathop{\otimes}\limits_{n=1}^{\infty}(M_2(\mathbb{C}),\omega_n)$ type I, hence α is an irreducible projective representation!

Projective representations and twists

Twisting between von Neumann algebraic quantum groups:

$$\Delta_Q: Q:= (Q_{ij}):= \left(\begin{array}{cc} P & N \\ O & M \end{array}\right) \rightarrow \left(\begin{array}{cc} P\otimes P & N\otimes N \\ O\otimes O & M\otimes M \end{array}\right) \subseteq Q\otimes Q.$$

Theorem

Let $\mathbb G$ be a compact quantum group. Then there is a one-to-one correspondence between

- lacktriangledown 'outer conjugacy classes' of irreducible projective representations for \mathbb{G} , and
- ② isomorphism classes of twists for $(\mathscr{L}^{\infty}(\mathbb{G}), \Delta)$.

Duality theory for twists

Proposition (Duality theory)

To any linking structure (Q, Δ_Q) , there corresponds a dual object $(\widehat{Q}, \Delta_{\widehat{Q}})$ with

- ① $\widehat{Q}=\oplus \widehat{Q}_{ij}=\widehat{P}\oplus \widehat{O}\oplus \widehat{N}\oplus \widehat{M}$ a direct sum of vN algebras, and

Structure of the dual

Proposition

Let \mathbb{G} be a compact quantum group, and Q a linking structure between $\mathscr{L}^{\infty}(\mathbb{G})$ and some von Neumann algebraic quantum group (P, Δ_P) . Then \widehat{O} (and \widehat{N}) is atomic (i.e. $\widehat{O} = \oplus \mathcal{B}(\mathscr{H}_i)$ for certain Hilbert spaces \mathscr{H}_i).

Warning: The Hilbert spaces are not necessarily finite dimensional.

Structure of the dual

Proposition^b

Let \mathbb{G} be a compact quantum group, and Q a linking structure between $\mathscr{L}^{\infty}(\mathbb{G})$ and some von Neumann algebraic quantum group (P, Δ_P) . Then \widehat{O} (and \widehat{N}) is atomic (i.e. $\widehat{O} = \oplus B(\mathscr{H}_i)$ for certain Hilbert spaces \mathscr{H}_i).

Warning: The Hilbert spaces are not necessarily finite dimensional.

Remark: if (N, Δ_N) is a twist for $\mathscr{L}^{\infty}(\mathbb{G})$, then the 'adjoint coaction' of $\mathscr{L}^{\infty}(\mathbb{G})$ on any of the summands of \widehat{O} is an *irreducible* projective representation.

A characterization

Theorem

Let \mathbb{G} be a compact quantum group. The following two statements are equivalent:

- $(\mathscr{L}^{\infty}(\mathbb{G}), \Delta)$ can be twisted into a non-compact locally compact quantum group (P, Δ_P) .
- 2 G allows an infinite-dimensional irreducible projective representation.

Open question

Question (Vaes)

Let \mathbb{G} be a compact matrix quantum group. Can it have an infinite-dimensional irreducible projective representation?