
Noncommutative geometry of CP `
q

Vietri 3/09/2009

Ludwik D¡browski

SISSA, Trieste

The algebra of antiholomorhic forms on the

quantum projective space CP`
q is constructed.

The associated Dolbeault-Dirac operator de�nes

a 0-dimensional Uq(su(` + 1))-equivariant spectral

triple. (Based on [F. D'Andrea, L. D¡browski,

arXiv:0901.4735]).



'QG' match 'NCG'

QG is q-deformed matrix group à la Woronowicz (and dual QUEA),

or its homogeneous space.

NCG is à la Connes:

riemannian, spin manifold ←→ spectral triple (A,H, D),

where A is a ∗-algebra, H is a Hilbert space representation of A and

D is an operator on H s.t. D=D†, (D−z)−1 ∈ K and [D,A] ⊂ B(H).

(Here compact M & unital A only).

Even if ∃ γ s.t. γ2 = 1, aγ = γa, ∀a ∈ A, Dγ = −γD; so H = H++H−.



Prototype: given a spin manifold M with a Riemannian metric g:

A = C∞(M, C) (commutative), H = L2(Σ, volg), and D = D/ .

Even (γ = ”γ5”) i� dimM is even.

It satis�es further 7 conditions which permit reconstruction [Connes08].

Two crucial properties directly pass to NC(di�)G of Connes

(D− z)−1 ∈ K ⇒ D|H± coupled to gauge connections, vector

bundles, projections, or their classes in the K-theory, are Fredholm

 `topological' invariants via index computations.

Instead [D,A] ⊂ B(H) serves for 'locality'.

The tension between them + (some of) 7 other 'axioms', Connes

formulated for NC algebras, permit spectacular calculations.

Among the axioms is dimension given by the assymptotics of specD.

Another one is reality, c.f. the talk by G. Dossena.



• How to construct NC spectral triples (S.T.) on QG ?

Our strategy: equivariance under QUEA and 'harmonic analysis'.

E.g. 'isospectral' D, c.f. [CP03a, DLS05, DLPS05, DDLW07].

But on the standard Podle± quantum sphere S2
q0 ≡ CP1

q , ∃ also D

[DS03] with exponential spectrum (and a 0+-summable S.T.)

This D has elegant description [SW04] in terms of Uq(su(2)) which

act as derivations on S2
q0, and so [D, a] are bounded.

Along this line, [K04] constructed D on q-�ag manifolds, e.g. CP`
q.

However, specD & (D−z)−1 ∈ K are not addressed.

We completed this task [DD09]: constructed 'Dirac-Dolbeaut' oper-

ator D with derivation property (thus [D, a] ⊂ B(H)) and by relating

D2 to a Casimir element control specD.

It is exponentially growing (so (D−z)−1 ∈ K) and yields a 0+-dim ST.

I'll recall CP1
q , describe CP2

q (only spinc) [DDL08-2] and mention CP`
q.



• CP1
q = SUq(2)/U(1) = S3

q /U(1), 0 < q < 1.

The symmetry Hopf ∗-algebra is Uq(su(2)), generated by K, K−1, E, F

KE = qEK , [E, F ] = (q − q−1)−1(K2 −K−2)

(+ coproduct, counit and antipode).

The dual A(SUq(2)) is a Uq(su(2))-bimodule ∗-algebra w.r.t. . and /.

Let ∀ N ∈ Z, ΓN =
{
a ∈ A(SUq(2)) | a / K = q

N
2 a
}
.

A := Γ0 is just the ∗-algebra of CP1
q = S2

q0.

Each ΓN is a A-bimodule. Also, a Uq(su(2)). -module and as such

ΓN '
⊕

n−|N |∈2N
Vn , (1)

where Vn is the spin1
2n irrep & ' is unitary wrt the Haar state on ΓN .



The Casimir

Cq = (q − q−1)−2 (q
1
2K − q−

1
2K−1)2 + FE

has spectrum

Cq
∣∣∣
Vn

= [n+1
2 ]2 · id

with multiplicity dimVn = n + 1. (Here [x] := qx−q−x

q−q−1 ).

Antiholomorphic forms: Ω = Ω0 ⊕Ω1, w/ Ω0 = A and Ω1 = Γ2.

The Dolbeault operator and its Hermitian conjugate are derivations

∂̄ : Ω0 → Ω1 , a 7→ a / F ,

∂̄† : Ω1 → Ω0 , a 7→ a / E .



The Dolbeault-Dirac operator D on Ω0 ⊕Ω1 is

D(ω0, ω1) := (ω1 / E, ω0 / F ) ,

and satis�es

D2ω = ω / (Cq − [12]
2).

Using / Cq = Cq., the decomposition (1) of ΓN , and

Dγ + γD = 0, where γ = 1⊕−1,

specD = {0, ±
√

[k][k + 1] | k ∈ N + 1}

with multiplicity 1 (constant 0-forms) and 2k + 1, resp.

Real spinors? Tensor Ω• with Γ−1 (=
√

canonical bundle):

H = (Ω0 ⊕Ω1)⊗A Γ−1 ' Γ−1 ⊕ Γ1 .

Then the real D/ is D twisted with the Grassmann connection of Γ−1; it

agrees [SW04] w/ [DS03] and ∃ a real structure J (= spin structure).



Byproduct: compute the Dolbeault cohomology H•
∂̄
(CP2

q ).

De�ne harmonic forms Hn = {ω ∈ Ω(0,n) |Dω = 0(≡ ∂̄ω = ∂̄†ω = 0)}.

Prop.[hodge] For all n, there is an orthogonal decomposition

Ω(0,n) = Hn ⊕ ∂̄Ω(0,n−1) ⊕ ∂̄†Ω(0,n+1) . (2)

∃! harmonic form in each cohomology class:

Hn
∂̄ (CP1

q ) ' Hn = ker D
∣∣∣
Ω(0,n) .

Pf. As classically.

Corr.

H0
∂̄ (CP1

q ) = C , H1
∂̄ (CP1

q ) = 0 .



• CPq(2)

The symmetry Hopf ∗algebra Uq(su(3)), 0 < q < 1.

Generators Ki, K
−1
i , Ei, Fi , i = 1,2, with Ki = K∗i , Fi = E∗i ,

& relations

[Ki, Kj] = 0 , KiEiK
−1
i = qEi , [Ei, Fi] = (q − q−1)−1(K2

i −K−2
i )

KiEjK
−1
i = q−1/2Ej , [Ei, Fj] = 0 , if i 6= j ,

+ (Serre)

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0 ∀ i 6= j . (3)

With the q-commutator [a, b]q := ab− q−1ba , (3) can be rewritten as

[Ei, [Ej, Ei]q]q = 0, or, [[Ei, Ej]q, Ei]q = 0 .

(+ coproduct, counit and antipode).



∗-irreps of Uq(su(3)) are classi�ed by n1, n2 ∈ N2, have dim.

# 1
2(n1 + 1)(n2 + 1)(n1 + n2 + 2) , (4)

and act on V (n1, n2) with on. basis |n1, n2, j1, j2, m〉, where

ji = 0,1,2, . . . , ni ,
j1 + j2

2
− |m| ∈ N , (5)

as (explicit) multiplication (K's) or weighted shift operators (E, F 's).

(The h.w.v. with weight (qn1/2, qn2/2) being |n1, n2, n1,0, 1
2n1〉).

∃ Casimir operator [R-P91] (add H := (K1K−1
2 )2/3 and H−1)

Cq = (q−q−1)−2
(
(H+H−1)

{
(qK1K2)

2+(qK1K2)
−2
}
+H2+H−2−6

)
+ (qHK2

2 + q−1H−1K−2
2 )F1E1 + (qH−1K2

1 + q−1HK−2
1 )F2E2

+ qH[F2, F1]q[E1, E2]q + qH−1[F1, F2]q[E2, E1]q (6)

Cq = C∗q is central and Cq|V(n1,n2)
is

# [13(n1 − n2)]
2 + [13(2n1 + n2) + 1]2 + [13(n1 + 2n2) + 1]2 × id . (7)



A(SUq(3)) is generated by 9 elements ui
j (i, j = 1, ...,3) & relations

ui
ku

j
k = qu

j
kui

k , uk
i uk

j = quk
juk

i , ∀ i < j ,

[ui
l, u

j
k] = 0 , [ui

k, u
j
l ] = (q − q−1)ui

lu
j
k , ∀ i < j, k < l ,

∑
π∈S3

(−q)|π|u1
π(1)u

2
π(2)u

3
π(3) = 1 .

(+ ∗-structure, coproduct, counit and antipode).

A(SUq(3)) is a Uq(su(3))-bimodule ∗-algebra, which we turn into a left
Uq(su(3)) .⊗Uq(su(3))I -module ∗-algebra. As such, by Peter-Weyl

A(SUq(3)) '
⊕

(n1,n2)∈N2 V(n1,n2)
⊗ V(n1,n2)

,

where ' is isometry wrt. the Haar state.

Important:

Cq . = Cq I . (8)



View [Meyer], [Welk] CP2
q = S5

q /U(1) and in turn S5
q = SUq(3)/SUq(2).

Dually,

A(S5
q ) :=

{
a ∈ A(SUq(3))

∣∣∣hI a = ε(h)a, ∀ h ∈ Uq(su(2))
}

(the ∗-subalgebra generated by zi := u3
i and [VS] relations), where

Uq(su(2)) is generated by {K1, K−1
1 , E1, F1}.

A(S5
q ) is a module over (Uq(su(2))I )′ = Uq(su(3)) . ⊗Uq(u(1))I ,

where Uq(u(1)) is generated by {K1K2
2 , K−1

1 K−2
2 }, and decomposes

A(S5
q ) '

⊕
(n1,n2)∈N2 V(n1,n2)

,

where K1K2
2 I |V(n1,n2)

= qn2−n1 id.



In turn

A(CP2
q ) :=

{
a ∈ A(S5

q )
∣∣∣K1K2

2 I a = a
}

=
{
a ∈ A(SUq(3))

∣∣∣hI a = ε(h)a , ∀ h ∈ Uq(u(2))
}

,

where Uq(u(2)) is generated by Uq(su(2)) and Uq(u(1)).

The ∗-algebra A(CP2
q ) is generated by pij := (u3

i )
∗u3

j , (pij)
∗ = pji,

+ relations P2 = P , P = P ∗, trq(P ) := q4p11 + q2p22 + p33 = 1,

in terms of {P}ij = pij.

A(CP2
q ) is an Uq(su(3)).-module and decomposes

A(CP2
q ) '

⊕
n∈N V(n,n) .



The Dolbeault complex

Think of A(CP2
q ) ↪→ A(S5

q ) as a quantum principal U(1)-bundle, and

sections of associated line bundle over CP2
q as U(1)-equivariant maps.

For N ∈ Z, de�ne A(CP2
q )-bimodules

LN :=
{
a ∈ A(S5

q )
∣∣∣K1K2

2 I a = qNa
}
; (9)

or ≡, being A(S5
q ) ↪→ A(SUq(3)) a quantum principal SUq(2)-bundle,

LN =
{
a ∈ A(SUq(3))

∣∣∣K1K2
2 I a = qNa , hI a = ε(h)a , ∀ h ∈ Uq(su(2))

}
.

(L0 = A(CP2
q )).

Each LN is A(CP2
q )-bimodule and also a left Uq(su(3)).-module and

decomposes

LN '
⊕

n∈N V(n,n+N).



Motivated by the case q = 1 [GS99] (Kähler structure of CP2) let

Ω(0,0) := L0 = A(CP2
q ) , Ω(0,2) := L3 .

Instead using the spin 1/2 ∗-irrep τ : Uq(su(2))→Mat2(C)

τ(K1) =

(
q1/2 0
0 q−1/2

)
, τ(E1) =

(
0 1
0 0

)
,

we de�ne Ω(0,1) as the A(CP2
q )-bimodule

Ω(0,1) :=
{
v = (v+, v−) ∈ A(SUq(3))2

∣∣∣∣∣∣K1K2
2 I v = q

3
2v, (h(1)I v)τ(S(h(2))) = ε(h)v, ∀ h ∈ Uq(su(2))

}
. (10)

It is not di�cult to see that Ω(0,1) has Uq(su(3)).-decomposition

Ω(0,1) '
⊕

n≥1
V(n,n) ⊕

⊕
n≥0

V(n,n+3) .



Now Dolbeault cochain and dual chain complexes.

Prop. Set X := F2F1 − 2[2]−1F1F2 , Y := E2E1 − 2[2]−1E1E2.

The maps

∂̄ : Ω(0,0) → Ω(0,1) , ∂̄a := (X∗I a , E2I a) , (11a)

∂̄ : Ω(0,1) → Ω(0,2) , ∂̄v := −E2I v+ − Y I v− , (11b)

with v = (v+, v−), are well de�ned and ∂̄2 = 0. Similarly, the maps

∂̄† : Ω(0,2) → Ω(0,1) , ∂̄†b := (−F2I b , −Y ∗I b) , (11c)

∂̄† : Ω(0,1) → Ω(0,0) , ∂̄†v := X I v+ + F2I v− , (11d)

are well de�ned and (∂̄†)2 = 0.



As in the commutative case, is Ω(0,•) a graded algebra?

Since Ω(0,1) and Ω(0,2) are Ω(0,0)-bimodules and dim.≤ 2, we know

how to multiply, except two 1-forms v = (v+, v−) and w = (w+, w−),
for which we de�ne

v ∧qw := 2
[2](q

1
2v+w− − q−

1
2v−w+).

It can be seen that v ∧qw ∈ Ω(0,2) = L3 and associativity is OK!

This makes Ω(0,•) a graded algebra.

Moreover, Ω(0,•) is a left Uq(su(3)). module ∗-algebra.
Using the (faithful) Haar state ϕ on SUq(3) we de�ne a non-degenerate

inner product

〈ω1, ω2〉 := ϕ(a∗1a2 + v∗1+v2+ + v∗1−v2−+ b∗1b2) , (12)

w.r.t. which Uq(su(3)). is unitary [DDL08] and the decomposition

Ω(0,•) :=
⊕

n Ω(0,n) is orthogonal.



The operators ∂̄ and ∂̄†, de�ned via I commute with Uq(su(3))..

Moreover, from [DDL08] follows ∀v with entries in A(SUq(3)) that

h∗I v = (hI )†v, wrt. 〈·, ·〉 and so ∂̄† = (∂̄)†.

Prop.[gd] ∂̄ is graded-derivation: ∀a, b ∈ Ω(0,0), v ∈ Ω(0,1), c ∈ Ω(0,2),

∂̄(ab) = a(∂̄b) + (∂̄a)b, ∂̄(av) = (∂̄a) ∧qv + a(∂̄v), ∂̄(va) = (∂̄v)a− v ∧q(∂̄a),

while ∂̄† satis�es:

[∂̄†, a]v = 2[2]−1(F2I a)v−+ q(X I a)v+, [∂̄†, a]c = −q
3
2(F2I a , F1F2I a)c.

(Pf. omitted).

Hence (Ω(0,•), ∂̄) gives a left-covariant di�erential calculus; of dim. 2

(since `antiholomorphic').



The spectral triple

On a Kähler spinc manifold ∃ a `Dolbeault-Dirac' operator ∂̄ + ∂̄†.
On CP2

q , we need wider generality, for s ∈ R+ (a parameter) let

D(a, v, b) := (∂̄†v, ∂̄a + s∂̄†b, s∂̄v) . (13)

Let H+ := Ω(0,0) ⊕Ω(0,2)
〈·,·〉

and H− = Ω(0,1)
〈·,·〉

.

Let H := H+ ⊕H− with grading γ := 1⊕−1.

Let the spinor rep. of A(CP2
q ) be just the left multiplication.

They have few good properties



Our spinor rep. is bounded since A(CP2
q ) ⊂ A(SUq(3)) ⊂ A(SUq(3))4

and H ⊂ L2(SUq(3), ϕ)4, the left multiplication being bounded.

By Prop.[gd], [D, a] acts via left multiplication by elements of A(SUq(3)),

[D, a]ω =
(
[∂̄†, a]v, [∂̄, a]b + s[∂̄†, a]c, s[∂̄, a]v

)
, ∀ ω = (b, v, c) ,

and is bounded for any a ∈ A(CP2
q ).

Equivariance: since our A(CP2
q )-modules of forms are equivariant and

the operators ∂̄ and ∂̄† are Uq(su(3))-invariant.

Still need: (essential) self-adjointness and (D − z)−1 ∈ K ?

We'll get both by diagonalizing D. For that



Lemma Fix s =
√

[2]/2, then

D2ω = [2]−1(Cq − 2)Iω .

Pf. Direct veri�cation on each grade.

Lemma[spec] The kerD is the constant 0-forms, while non-zero

eigenvalues, ∀n ≥ 1, are

±
√

2
[2][n][n + 2] with multiplicity (n + 1)3 ,

±
√

[n + 1][n + 2] with multiplicity 1
2n(n + 3)(2n + 3) .

Pf. Use Cq I = Cq. (8), decomposition of Ω(0,0), Ω(0,1), Ω(0,2) into

irreps of Uq(su(3)). + symmetry wrt. 0 (Dγ + γD = 0).



Since the eigenvalues of D grow exponentially, (D+ i)−ε is trace class

∀ε > 0 and the metric dim is 0+, hence (D − z)−1 ∈ K.
This justi�es

Prop.[main] For s =
√

[2]/2 in (13), the datum (A(CP2
q ),H, D, γ) is

a 0+-dimensional Uq(su(3))-equivariant even spectral triple.

Byproduct:

As before Hn = kerD and Hodge decomposition works, and thus

H0
∂̄ (CP2

q ) = C , H1
∂̄ (CP2

q ) = H2
∂̄ (CP2

q ) = 0 .



In [DD09] we have generalized all that to CP`
q: with much more

involved combinatorics of the Grassman algebra (cf. the talk by F.

D'andrea).

The bounded comutators are again assured using special algebraic

properties of D, and the compactness by relatig D to an appropriate

Casimir operator.

The main result is the construction of 0+-dimensional Uq(su(` + 1))-

equivariant even spectral triple.

If ` is odd and N = 1
2(` + 1), the spectral triple is a real with KO-

dimension 2N mod 8.



On the basis of the low dim cases and now the whole series CP`
q, ` ∈ N,

the works of Chakraborty-Pal and the fascinating paper [Neshveyev-

Tuset07] on QG, built on the impressive collection of papers by

Lusztig, Kazhdan and Etingof on analytic generalization of the formal

equivalence by Drinfeld (via the twist and associators) between the

the categories of Uh(g)-modules and Ug[[h]]-modules,

.



On the basis of the low dim cases and now the whole series CP`
q, ` ∈ N,

the works of Chakraborty-Pal and the fascinating paper [Neshveyev-

Tuset07] on QG, built on the impressive collection of papers by

Lusztig, Kazhdan and Etingof on analytic generalization of the formal

equivalence by Drinfeld (via the twist and associators) between the

the categories of Uh(g)-modules and Ug[[h]]-modules,

I can declare NCG and QG as matched

Now starts the party:

should clear the isospectral versus exponential spectrum (or interme-

diate?)

establish such properties of QG representations (without their explicit

form), that assure [D, a] ∈ B(H) and |D|−1 ∈ K(H)

work out the other conditions of Connes.
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