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L. Dąbrowski – A. Sitarz
Dirac operator on the standard Podleś
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Prescribed Hilbert space +

SUq(2) equivariance = unique
real spectral triple (modulo
equivalences).

Spectrum(D) =
{
±[n]q

}
n>1

with [n]q := qn−q−n

q−q−1 .

The spectrum of D diverges
exponentially the resolvent
(D2 +m2)−1 of the Laplacian is
of trace class.
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The representation in DS
spectral triple is the direct sum
of two copies of the left regular
representation.

Generators of Uq(su(2)) are
(external) derivations on S2q.
With these one constructs D.

D2 is proportional to the Casimir
of Uq(su(2)): this explains why
eigenv. diverge exponentially.
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On S2q the tadpole diagram
– the only basic divergence of
φ4 theory in 2D – becomes
finite at q 6= 1.

 Reason: the propagator
(D2 +m2)−1 is of trace class.

Regularization of QFT with
quantum groups symmetries:
what about higher dimensional
spaces?
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The quantum SU(`+ 1) group

Let ` > 1 . For G := SU(`+ 1) , the functions uij : G→ C , uij(g) := gij , generate

a Hopf ∗-algebra A(G). As abstract ∗-algebra it is defined by the relations

(1) uiju
k
l = ukl u

i
j ,

∑
p∈S`+1

(−1)||p||u1
p(1)u

2
p(2) . . .u

`+1
p(`+1) = 1 ,

where ||p|| = length of the permutation p ∈ S`+1, and with ∗-structure

(2) (uij)
∗ = (−1)j−i

∑
p∈S`

(−1)||p||uk1p(n1)u
k2
p(n2) . . .u

k`
p(n`)

where {k1, . . . ,k`} = {1, . . . , `+ 1} r {i} and {n1, . . . ,n`} = {1, . . . , `+ 1} r {j} (as
ordered sets). Coproduct, counit and antipode are of ‘matrix type’

∆(uij) =
∑

k
uik ⊗ ukj , ε(uij) = δij , S(uij) = (uji)

∗ .

Similarly coproduct, counit and antipode of A(Gq), 0 < q < 1 , are given by the
same formulas above, while (1) and (2) becomes:

R
ij
kl(q)ukmu

l
n = u

j
lu
i
kR
kl
mn(q) ,

∑
p∈S`+1

(−q)||p||u1
p(1)u

2
p(2) . . .u

`+1
p(`+1) = 1 ,

(uij)
∗ = (−q)j−i

∑
p∈S`

(−q)||p||uk1p(n1)u
k2
p(n2) . . .u

k`
p(n`)

Francesco D’Andrea (UCL) Geometry of quantum CP` September 1, 2009 4 / 23



The quantum SU(`+ 1) group

Let ` > 1 . For G := SU(`+ 1) , the functions uij : G→ C , uij(g) := gij , generate

a Hopf ∗-algebra A(G). As abstract ∗-algebra it is defined by the relations

(1) uiju
k
l = ukl u

i
j ,

∑
p∈S`+1

(−1)||p||u1
p(1)u

2
p(2) . . .u

`+1
p(`+1) = 1 ,

where ||p|| = length of the permutation p ∈ S`+1, and with ∗-structure

(2) (uij)
∗ = (−1)j−i

∑
p∈S`

(−1)||p||uk1p(n1)u
k2
p(n2) . . .u

k`
p(n`)

where {k1, . . . ,k`} = {1, . . . , `+ 1} r {i} and {n1, . . . ,n`} = {1, . . . , `+ 1} r {j} (as
ordered sets). Coproduct, counit and antipode are of ‘matrix type’

∆(uij) =
∑

k
uik ⊗ ukj , ε(uij) = δij , S(uij) = (uji)

∗ .

Similarly coproduct, counit and antipode of A(Gq), 0 < q < 1 , are given by the
same formulas above, while (1) and (2) becomes:

R
ij
kl(q)ukmu

l
n = u

j
lu
i
kR
kl
mn(q) ,

∑
p∈S`+1

(−q)||p||u1
p(1)u

2
p(2) . . .u

`+1
p(`+1) = 1 ,

(uij)
∗ = (−q)j−i

∑
p∈S`

(−q)||p||uk1p(n1)u
k2
p(n2) . . .u

k`
p(n`)

Francesco D’Andrea (UCL) Geometry of quantum CP` September 1, 2009 4 / 23



The QUEA Uq(su(`+ 1))

Symmetries are described by the Hopf ∗-algebra Uq(su(`+ 1)) , generated by
{Ki,K

−1
i ,Ei, Fi}i=1,...,`, with Ki = K∗i , Fi = E∗i , and relations (aij = Cartan matrix )

[Ki,Kj] = 0 , KiEjK
−1
i = qaij/2Ej , [Ei, Fj] = δij

K2i−K
−2
i

q−q−1

EiE
2
j − (q+ q−1)EiEjEi + EjE

2
i = 0 if |i− j| = 1 , [Ei,Ej] = 0 if |i− j| > 1 .

Coproduct, counit and antipode are given by (with i = 1, . . . , `)

∆(Ki) = Ki ⊗ Ki , ∆(Ei) = Ei ⊗ Ki + K−1
i ⊗ Ei ,

ε(Ki) = 1 , ε(Ei) = 0 , S(Ki) = K−1
i , S(Ei) = −qEi .

 With Ki = qHi , at the 0-th order in  h := logq one gets Serre’s presentation of U(su(`+1)).

The Hopf ∗-subalgebra with generators {Ki,Ei, Fi}i=1,2,...,`−1 is Uq(su(`));
its commutant is generated by K1K

2
2 . . .K

`
`. We enlarge the algebra with

�K := (K1K
2
2 . . .K

`
`)

2
`+1 ,

and its inverse, and call Uq(u(`)) the algebra generated by Uq(su(`)), �K and �K−1.
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A(SUq(`+ 1)) as a function algebra

The set of linear maps Uq(su(`+ 1))→ C is a Hopf ∗-algebra with operations dual to
those of Uq(su(`+ 1)). For f,g two such linear maps we define the product by

(f · g)(x) := f(x(1))g(x(2)) ∀ x ∈ Uq(su(`+ 1)) ,

the unity is the map 1(x) := ε(x), coproduct, counit, antipode and ∗-involution are

∆(f)(x,y) := f(xy) , ε(f) := f(1) , S(f)(x) := f(S(x)) , f∗(x) := f(S(x)∗) .

The Hopf ∗-subalgebra generated by the matrix elements of type 1 irreps is A(SUq(`+ 1)).

The algebra A(SUq(`+ 1)) is a Uq(su(`+ 1))-bimodule ∗-algebra for the actions:

(x . f)(y) := f(yx) and (f / x)(y) := f(xy) .

If Lxf := f / S−1(x) , the two left actions . and L are unitary w.r.t. the inner product 〈 , 〉
associated to the Haar state h : A(SUq(`+ 1))→ C:

〈f,g〉 := h(f∗g) .
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S2`+1
q and CP`q

The algebra of ‘functions’ on S2`+1
q is the left Uq(su(`+ 1))-module ∗-algebra

A(S2`+1
q ) := A(SUq(`+ 1))Uq(su(`)) .

It is generated by zi := u`+1
`+1−i , i = 0, . . . , `, with relations

zizj = q−1zjzi ∀ 0 6 i < j 6 ` ,

z∗izj = qzjz
∗
i ∀ i 6= j ,

[z∗i , zi] = (1 − q2)
∑`

j=i+1
zjz
∗
j ∀ i = 0, . . . ,n− 1 ,

[z∗` , z`] = 0 ,

z0z
∗
0 + z1z

∗
1 + . . . + z`z

∗
` = 1 .

The algebra of ‘functions’ on CP`q is the left Uq(su(`+ 1))-module ∗-algebra

A(CP`q) := A(SUq(`+ 1))Uq(u(`)) ≡ A(S2`+1
q )U(1) .

It is generated by the matrix entries Pij := z∗izj of a projection.
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K-theory

Some notations:

[0]q! := 1 , [n]q! := [n]q · [n− 1]q! ∀ n > 1 ,

[j0, . . . , jn]q! :=
[j0 + . . . + jn]q!

[j0]q! . . . [jn]q!
∀ j0, . . . , jn > 0 .

For N > 0 let ΨN = (ψNj0,...,j`) be the vector-valued ‘function’ on S2`+1
q with components

ψNj0,...,j` := [j0, . . . , j`]q!
1
2 q− 1

2

∑
r<s jrjs(z

j`
` . . . z

j0
0 )∗ , ∀ j0 + . . . + j` = N ,

ψ−N
j0,...,j`

:= [j0, . . . , j`]q!
1
2 q

1
2

∑
r<s jrjs+

∑`
r=0 rjrz

j0
0 . . . z

j`
` , ∀ j0 + . . . + j` = N .

Proposition
For all N ∈ Z, Ψ†NΨN = 1. Thus, PN := ΨNΨ

†
N are projections with entries in A(CP`q).

We know that K0(CP`q) ' Z`+1 and K1(CP`q) = 0. We’ll see that {[P0], [P−1], . . . , [P−`]}

are generators of K0. In fact, {PN}N∈Z are representatives of the equivariant K0 group.
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K-homology I: representations

Here 1 6 n 6 `. Let m = (m1, . . . ,mn) ∈ Nn and, for 0 6 i < k 6 n, let

εki := (

i times︷ ︸︸ ︷
0, 0, . . . , 0 ,

k−i times︷ ︸︸ ︷
1, 1, . . . , 1 ,

n−k times︷ ︸︸ ︷
0, 0, . . . , 0) .

Let Hn := `2(Nn), with orth. basis |m〉.

For any 0 6 k 6 n, a ∗-rep. π(n)
k : A(S2n+1

q )→ B(Hn) is defined as follows: π(n)
k (zi) = 0

for all i > k > 1, while for the remaining generators (with notation m0 := 0)

π
(n)
k (zi) |m〉 = qmi

√
1 − q2(mi+1−mi+1)

∣∣m+ εki
〉
, ∀ 0 6 i 6 k− 1 ,

π
(n)
k (zk) |m〉 = qmk |m〉 ,

on the subspace linear span of basis vectors |m〉 satisfying the restrictions

0 6 m1 6 m2 6 . . . 6 mk , mk+1 > mk+2 > . . . > mn > 0 ,

and they are zero on the orthogonal subspace.
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K-homology II: Fredholm modules

Since K0(CP`q) ' Z`+1 (and K1(CP`q) = 0) we look for `+ 1 even Fredholm modules.

1st = pull-back of the unique non-trivial even Fred. mod. of C, via the only char. of A(CP`q).

Lemma For |j− k| > 1, and for all a,b ∈ A(S2n+1
q ), we have π(n)

j (a)π
(n)
k (b) = 0.

As a corollary, we have two ∗-reps π(n)
± : A(S2n+1

q )→ B(Hn)

π
(n)
+ (a) :=

∑
06k6n
k even

π
(n)
k (a) , π

(n)
− (a) :=

∑
06k6n
k odd

π
(n)
k (a) .

Proposition

π
(n)
+ (a) − π

(n)
− (a) ∈ L1(Hn) for all a ∈ A(CP`q).

For n = 1, . . . , ` a 1-summable Fredholm module is given on Hn ⊕Hn by the (restriction
of) the rep. π+ ⊕ π−, grading γn = 1⊕−1, and Fn(v⊕w) := w⊕ v.
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Pairing between K-theory and K-homology

Proposition
If µk, 0 6 n 6 `, denotes the n-th Fredholm module previously introduced, we have

〈[µn], [P−N]〉 := TrHn(π
(n)
+ − π

(n)
− )(Tr P−N) =

(
N
n

)
,

for all N ∈ N, where
(
N
n

)
:= 0 when n > N.

Proof.
In 3 steps:

1st) the pairing 〈[µn], [P−N]〉 as a function of q is continuous (it is given by a series that is
absolutely convergent for 0 6 q < 1);

2nd) the pairing is integer being the index of a Fredholm operator, and a continuous
function [0, 1)→ Z is constant;

3rd) compute it in the limit q→ 0+.
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Pairing between K-theory and K-homology

Proposition
The elements [µ0], . . . , [µ`] are generators of K0(A(CP`q)), and the elements
[P0], . . . , [P−`] are generators of K0(A(CP`q)).

Proof.
The matrix M with entries Mij := 〈[µi], [P−j]〉 is in GL`+1(Z), the inverse being

(M−1)ij = (−1)i+j
(
j
i

)
.

Thus, the elements above are a basis of Zn+1 as a Z-module, i.e. they generate Zn+1 as
abelian group.

Remark: the Fredholm module µ` can be realized as ‘conformal class’ of a regular spectral
triple (A(CP`q),Hn ⊕Hn,D) — i.e. Fn := D|D|−1 — of any summability d ∈ R+.

Next: a ‘geometric’ Dirac operator (0+-summable and real) is discussed in the following.
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Homogeneous vector bundles over CP`q

Let σ : Uq(u(`))→ End(Cn) be a ∗-representation. The set

M(σ) = A(SUq(`+ 1))�σ Cn

:=
{
v ∈ A(SUq(`+ 1))n

∣∣ {Lx(1)
⊗ σ(x(2))}v = ε(x)v ∀ x ∈ Uq(u(`))

}
,

is an A(CP`q)-bimodule and a left A(CP`q) o Uq(su(`+ 1))-module.
It is the analogue of (sections of) an homogeneous vector bundle of rank n over CP`q.

A non-degenerate inner product is induced by the canonical one on A(CP`q)n:

〈v,w〉 =
∑n

i=1
h(v∗iwi)

Which σ gives the bimodule of antiholomorphic forms?

Uq(u(`)) is a central extension of Uq(su(`)) by �K and �K−1. Any irrep of Uq(u(`)) is
obtained from an irrep σ of Uq(su(`)) by defining σ(�K) as a (non-zero) multiple of the
identity transformation.
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Fundamental representations of Uq(su(`))

Let k = 1, . . . , `− 1,

Λk :=
{
i = (i1, i2, . . . , ik) ∈ Zk

∣∣ 1 6 i1 < i2 < . . . < ik 6 `
}
,

and Wk ' C(`k) be the vector space with basis vectors labelled by elements in Λk,
represented pictorially by Young tableaux (YT).

Generators of Uq(su(`)) are represented by insertion/deletion operators:

I Kj(YT) = q
1
2
NjYT where Nj = number of rows of length j in the Young

tableau minus the number of rows of length j+ 1 (either 0 or ±1);

I Fj add a slot to the row of length j, if any, otherwise it gives 0; Ej is the adjoint of Fj.

Example: ` = 3 and k = 2.

F1

( )
= 0 F1

( )
= • F1

( )
= 0

F2

( )
=

•
F2

( )
= 0 F2

( )
= 0
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Example: ` = 3 and k = 2.

F1

( )
= 0 F1

( )
= • F1

( )
= 0

F2

( )
=

•
F2

( )
= 0 F2

( )
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Fundamental representations of Uq(su(`))

Let k = 1, . . . , `− 1,

Λk :=
{
i = (i1, i2, . . . , ik) ∈ Zk

∣∣ 1 6 i1 < i2 < . . . < ik 6 `
}
,

and Wk ' C(`k) be the vector space with basis vectors labelled by elements in Λk,
represented pictorially by Young tableaux (YT).

Generators of Uq(su(`)) are represented by insertion/deletion operators:

I Kj(YT) = q
1
2
NjYT where Nj = number of rows of length j in the Young

tableau minus the number of rows of length j+ 1 (either 0 or ±1);

I Fj add a slot to the row of length j, if any, otherwise it gives 0; Ej is the adjoint of Fj.

Facts:
I Wk is the irrep with highest weight δk = (

k−1 times︷ ︸︸ ︷
0, . . . , 0, 1,

`−k−1 times︷ ︸︸ ︷
0, . . . , 0 ) ;

I for q = 1, Wk ' ∧kW1 ∀ 0 6 k 6 ` where W0 = W` = C is the rep. given by ε.
Next point: to define an intertwiner ∧q : Wj ⊗Wk →Wj+k deformation of the
wedge product, for all j+ k 6 `.
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The quantum Grassmann algebra, I
Elements of Sk,n−k := (Sk × Sn−k)\Sn are called (k,n− k)-shuffles.

The map p 7→ p−1 sends Sk,n−k into S(k)
n := Sn/(Sk × Sn−k), explicitly given by

S(k)
n = {p ∈ Sn |p(1) < p(2) < . . . < p(k) and p(k+ 1) < p(k+ 2) < . . . < p(n)} .

Any p ∈ Sn can be uniquely factorized as p = p ′p ′′ with p ′ ∈ S(k)
n , p ′′ ∈ Sk × Sn−k, and

||p|| = ||p ′|| + ||p ′′||.

Def./Prop.
A map ∧q : Wh ⊗Wk →Wh+k is given by the formula

(v∧qw)i =
∑

p∈S(h)
h+k

(−q−1)||p|| vip(1),...,ip(h)
wip(h+1),...,ip(h+k)

for all v = (vi′) ∈Wh, w = (wi′′) ∈Wk, h+ k 6 `. We set v∧qw := 0 if h+ k > `.

The product ∧q is surjective, associative, and a left Uq(su(`))-module map.

Crucial to prove associativity is the factorization property above.
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The quantum Grassmann algebra, II
For x ∈W1, we define left/right ‘exterior product’ eL,Rx : Wk →Wk+1 as

eLx w = x∧qw , eRx w = (−q)kw∧q x ,

and left/right ‘contraction’ as the adjoint iL,Rx of eL,Rx w.r.t. the canonical inner product onW• .
An antilinear map J : Wk →W`−k is given by

(Jw)i = (−q−1)|i|q
1
4
`(`+1)w ic ,

where |i| := i1 + . . . + i`−k, ic = (1, . . . , `) r i, and 	z is the complex conjugate of z ∈ C.

Proposition
The map J is equivariant (i.e. x∗J = J S(x) for all x ∈ Uq(su(`))), and has square

J2 = (−1)b
`+1
2
c .

Conjugating with J transforms the left exterior product into the right contraction:

JeLxJ
−1 = −qiRx .
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Antiholomorphic forms on CP`q

For N ∈ Z, the irrep. of Uq(su(`)) with h.w. δk is lifted to a σNk : Uq(u(`))→ End(Wk) by

σNk (�K) = qk− `
`+1

N · idWk .

Since σNk ' σ0k ⊗ σN0 ,

ΩkN := M(σNk ) ' Ωk0 ⊗A(CP`q) Ω
0
N .

Ωk0 = antiholomorphic k-forms. Ω0
N = ‘sections of line bundles’.

If ` is odd: Ω0
1
2

(`+1)
= square root of the canonical bundle, Ωk1

2
(`+1)

= chiral spinors.

An associative product ∧q : ΩkN ×Ωk
′
N′ → Ωk+k′

N+N′ is given by

ω∧qω
′ := a · a ′(v∧q v

′) ,

where ω = av ∈ ΩkN and ω ′ = a ′v ′ ∈ Ωk′N′ , a,a ′ ∈ A(SUq(`+ 1)), v ∈Wk, v ′ ∈Wk′ .

Ω•0 :=
⊕`
k=0Ω

k
0 is a graded associative algebra.
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Vector fields and the Dolbeault operator
Let {ei}i=1,...,` be the canonical basis of W1 ' C` and

Xi := KiKi+1 . . .K`�K
−1 [Ei, [Ei+1, . . . [E`−1,E`]q]q]q , i = 1, . . . , ` ,

where [a,b]q := ab− q−1ba. Then

X =
∑
ie
iXi ∈ Uq(su(`+ 1))�σW1

(on the first leg we use the right adjoint action composed with S−1.) By invariance of X,

	∂ :=
∑`
i=1 L�KXi

⊗ eL
ei

maps ΩkN in Ωk+1
N . The Xi’s satisfy some useful commutation rules, for example

(X∧q X)i1,i2 = Xi1Xi2 − q−1Xi2Xi1 = 0 , for all 1 6 i1 < i2 6 ` ,

together with associativity of ∧q implies 	∂2 =
∑
i1<i2

Lq�K2(X∧qX)i1,i2
⊗ eL

ei1
eL
ei2

= 0 .

Facts:

I (Ω•N,
	∂) is a left covariant cohomology complex;

I (Ω•0,
	∂) is a left covariant differential calculus;

I for all a ∈ A(CP`q) and ω ∈ ΩkN: 	∂(aω) = a(	∂ω) + (	∂a) ∧qω .
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−1 [Ei, [Ei+1, . . . [E`−1,E`]q]q]q , i = 1, . . . , ` ,

where [a,b]q := ab− q−1ba. Then

X =
∑
ie
iXi ∈ Uq(su(`+ 1))�σW1

(on the first leg we use the right adjoint action composed with S−1.) By invariance of X,

	∂ :=
∑`
i=1 L�KXi

⊗ eL
ei

maps ΩkN in Ωk+1
N . The Xi’s satisfy some useful commutation rules, for example

(X∧q X)i1,i2 = Xi1Xi2 − q−1Xi2Xi1 = 0 , for all 1 6 i1 < i2 6 ` ,

together with associativity of ∧q implies 	∂2 =
∑
i1<i2

Lq�K2(X∧qX)i1,i2
⊗ eL

ei1
eL
ei2

= 0 .

Facts:

I (Ω•N,
	∂) is a left covariant cohomology complex;

I (Ω•0,
	∂) is a left covariant differential calculus;

I for all a ∈ A(CP`q) and ω ∈ ΩkN: 	∂(aω) = a(	∂ω) + (	∂a) ∧qω .
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Reality and the first order condition

The adjoint of 	∂ is

	∂† =
∑`
i=1 LX∗i �K

⊗ iL
ei

≡ −qN−k+1
∑`
i=1 q

−2iLS(X∗i
�K) ⊗ iR

ei
.

An equivariant antilinear map J0 : ΩkN → Ω`−k`+1−N is given by

J0 := (∗ ⊗ J)(LK−1
2ρ
⊗ id) ,

where K2ρ = (K`1K
2(`−1)
2 . . .K

j(`−j+1)
j . . .K``)

2.

Proposition
The antiunitary part J of J0 satisfies

(i) J2 = (−1)b
`+1
2
c;

(ii) Ja∗J−1ω = ω · (K
1
2

2ρ . a) for all ω ∈ ΩkN and a ∈ A(CP`q);

(iii) J	∂J−1|ΩkN
= qk−N	∂†.
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A family of spectral triples
Data:

HN := Hilbert space completion of Ω•N;

γN := +1 on even forms and −1 on odd forms;

A(CP`q) acts by left multiplication on Ω•N (completed to bounded operators);

J extends to an (antilinear) isometry HN → H`+1−N;

an unbounded densely defined symmetric operator DN on HN is

DN := q
1

2
(k−N)	∂+ q

1

2
(k−N−1)	∂† ,

and satisfies JDN = D`+1−NJ on Ω•N. For q = 1:
I D0 = Dolbeault-Dirac operator,
I DN = twist of D0 with the Grassmannian connection Ω0

N,
I D 1

2
(`+1) = Dirac operator of the Fubini-Study metric (for odd `).

Theorem
(A(CP`q),HN,DN,γN) is a 0+-dimensional equivariant even spectral triple. If ` is
odd and N = 1

2
(`+ 1), the spectral triple is real with KO-dimension 2` mod 8.
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