Quantum Complex Projective Spaces Fredholm modules, K-theory, spectral triples

Francesco D'Andrea

Université Catholique de Louvain

Chemin du Cyclotron 2, Louvain-La-Neuve, Belgium

September 1, 2009

09GENCO: Noncommutative Geometry and Quantum Physics (Vietri sul Mare)

A case study: the standard Podleś sphere $S_q^2 = SU_q(2)/U(1)$ (here 0 < q < 1).

L. Dąbrowski – A. Sitarz Dirac operator on the standard Podleś quantum sphere Banach Center Publ. 61 (2003), 49–58.

K. Schmüdgen – E. Wagner

Dirac operator and a twisted cyclic cocycle on the standard Podleś quantum sphere J. Reine Angew. M. 574 (2004), 219–235.

A case study: the standard Podleś sphere $S_q^2 = SU_q(2)/U(1)$ (here 0 < q < 1).

L. Dąbrowski – A. Sitarz Dirac operator on the standard Podleś quantum sphere Banach Center Publ. 61 (2003), 49–58.

K. Schmüdgen – E. Wagner

Dirac operator and a twisted cyclic cocycle on the standard Podleś quantum sphere J. Reine Angew. M. 574 (2004), 219–235.

A case study: the standard Podleś sphere $S_q^2 = SU_q(2)/U(1)$ (here 0 < q < 1).

 L. Dąbrowski – A. Sitarz
 Dirac operator on the standard Podleś quantum sphere
 Banach Center Publ. 61 (2003), 49–58.

K. Schmüdgen – E. Wagner

Dirac operator and a twisted cyclic cocycle on the standard Podleś quantum sphere J. Reine Angew. M. 574 (2004), 219–235.

- Prescribed Hilbert space + SU_q(2) equivariance = unique real spectral triple (modulo equivalences).
- Spectrum(D) = $\left\{\pm [n]_q\right\}_{n \ge 1}$ with $[n]_q := \frac{q^n - q^{-n}}{q - q^{-1}}$.
- The spectrum of D diverges exponentially \rightsquigarrow the resolvent $(D^2 + m^2)^{-1}$ of the Laplacian is of trace class.

A case study: the standard Podleś sphere $S_q^2 = SU_q(2)/U(1)$ (here 0 < q < 1).

L. Dąbrowski – A. Sitarz Dirac operator on the standard Podleś quantum sphere Banach Center Publ. 61 (2003), 49–58.

K. Schmüdgen – E. Wagner

Dirac operator and a twisted cyclic cocycle on the standard Podleś quantum sphere J. Reine Angew. M. 574 (2004), 219–235.

- The representation in DS spectral triple is the direct sum of two copies of the left regular representation.
- Generators of U_q(su(2)) are (external) derivations on S²_q.
 With these one constructs D.
- D² is proportional to the Casimir of U_q(su(2)): this explains why eigenv. diverge exponentially.

A case study: the standard Podleś sphere $S_q^2 = SU_q(2)/U(1)$ (here 0 < q < 1).

L. Dąbrowski – A. Sitarz Dirac operator on the standard Podleś quantum sphere Banach Center Publ. 61 (2003), 49–58.

K. Schmüdgen – E. Wagner

Dirac operator and a twisted cyclic cocycle on the standard Podleś quantum sphere J. Reine Angew. M. 574 (2004), 219–235.

- On S²_q the tadpole diagram

 the only basic divergence of φ⁴ theory in 2D becomes finite at q ≠ 1.
- $\rightsquigarrow~$ Reason: the propagator $(D^2+m^2)^{-1} \text{ is of trace class.}$
 - Regularization of QFT with quantum groups symmetries: what about higher dimensional spaces?

Preliminary definitions

The quantum $SU(\ell+1)$ group The QUEA $\mathfrak{U}_q(\mathfrak{su}(\ell+1))$ $S_q^{2\ell+1} \text{ and } \mathbb{CP}_q^\ell$

2 K-theory and K-homology

K-theory K-homology

3 Antiholomorphic forms and real spectral triples

The quantum Grassmann algebra The algebra of forms Vector fields and the Dolbeault operator

From GDAs to spectral triples

Reality and the first order condition A family of spectral triples

Preliminary definitions

 $\begin{array}{l} \mbox{The quantum }SU(\ell+1) \mbox{ group}\\ \mbox{The QUEA } \mathfrak{U}_q(\mathfrak{su}(\ell+1))\\ S_q^{2\ell+1} \mbox{ and } \mathbb{CP}_q^\ell \end{array}$

2 K-theory and K-homology K-theory

K-homology

Antiholomorphic forms and real spectral triples The quantum Grassmann algebra The electric of forms

Vector fields and the Dolbeault operator

From GDAs to spectral triples

Reality and the first order condition A family of spectral triples

Preliminary definitions

 $\begin{array}{l} \mbox{The quantum }SU(\ell+1) \mbox{ group}\\ \mbox{The QUEA } \mathfrak{U}_q(\mathfrak{su}(\ell+1))\\ S_q^{2\ell+1} \mbox{ and } \mathbb{CP}_q^\ell \end{array}$

2 K-theory and K-homology

K-theory K-homology

3 Antiholomorphic forms and real spectral triples

The quantum Grassmann algebra The algebra of forms Vector fields and the Dolbeault operator

From GDAs to spectral triples

Reality and the first order condition A family of spectral triples

Preliminary definitions

The quantum $SU(\ell+1)$ group The QUEA $\mathfrak{U}_q(\mathfrak{su}(\ell+1))$ $S_q^{2\ell+1} \text{ and } \mathbb{CP}_q^\ell$

K-theory and K-homology

K-theory K-homology

3 Antiholomorphic forms and real spectral triples

The quantum Grassmann algebra The algebra of forms Vector fields and the Dolbeault operator

4 From GDAs to spectral triples

Reality and the first order condition

A family of spectral triples

The quantum $SU(\ell + 1)$ group

Let $\ell>1$. For $G:=SU(\ell+1)$, the functions $u^i_j:G\to\mathbb{C}$, $\left\lfloor u^i_j(g):=g^i_j\right\rfloor$, generate a Hopf *-algebra $\mathcal{A}(G)$. As abstract *-algebra it is defined by the relations

(1)
$$u_{j}^{i}u_{l}^{k} = u_{l}^{k}u_{j}^{i}, \qquad \sum_{p \in S_{\ell+1}} (-1)^{||p||} u_{p(1)}^{1}u_{p(2)}^{2} \dots u_{p(\ell+1)}^{\ell+1} = 1 ,$$

where $\|p\| = \text{length of the permutation } p \in S_{\ell+1},$ and with *-structure

(2)
$$(u_{j}^{i})^{*} = (-1)^{j-i} \sum_{p \in S_{\ell}} (-1)^{||p||} u_{p(n_{1})}^{k_{1}} u_{p(n_{2})}^{k_{2}} \dots u_{p(n_{\ell})}^{k_{\ell}}$$

where $\{k_1, \ldots, k_\ell\} = \{1, \ldots, \ell+1\} \smallsetminus \{i\}$ and $\{n_1, \ldots, n_\ell\} = \{1, \ldots, \ell+1\} \smallsetminus \{j\}$ (as ordered sets). Coproduct, counit and antipode are of 'matrix type'

$$\Delta(u^i_j) = \sum\nolimits_k u^i_k \otimes u^k_j \text{ , } \qquad \epsilon(u^i_j) = \delta^i_j \text{ , } \qquad S(u^i_j) = (u^j_i)^*$$

Similarly coproduct, counit and antipode of $\mathcal{A}(G_q)$, $\left\lfloor 0 < q < 1 \right\rfloor$, are given by the same formulas above, while (1) and (2) becomes:

$$\begin{split} R^{ij}_{kl}(q) u^k_m u^l_n &= u^j_l u^i_k R^{kl}_{mn}(q) \;, \qquad \sum_{p \in S_{\ell+1}} (-q)^{||p||} u^1_{p(1)} u^2_{p(2)} \dots u^{\ell+1}_{p(\ell+1)} = 1 \;, \\ (u^i_j)^* &= (-q)^{j-i} \sum_{p \in S_\ell} (-q)^{||p||} u^{k_1}_{p(n_1)} u^{k_2}_{p(n_2)} \dots u^{k_\ell}_{p(n_\ell)} \end{split}$$

The quantum $SU(\ell + 1)$ group

Let $\ell>1$. For $G:=SU(\ell+1)$, the functions $u^i_j:G\to\mathbb{C}$, $\left\lfloor u^i_j(g):=g^i_j\right\rfloor$, generate a Hopf *-algebra $\mathcal{A}(G)$. As abstract *-algebra it is defined by the relations

(1)
$$u_{j}^{i}u_{l}^{k} = u_{l}^{k}u_{j}^{i}, \qquad \sum_{p \in S_{\ell+1}} (-1)^{||p||} u_{p(1)}^{1}u_{p(2)}^{2} \dots u_{p(\ell+1)}^{\ell+1} = 1 ,$$

where $\|p\| = \text{length of the permutation } p \in S_{\ell+1},$ and with *-structure

(2)
$$(u_j^i)^* = (-1)^{j-i} \sum_{p \in S_\ell} (-1)^{||p||} u_{p(n_1)}^{k_1} u_{p(n_2)}^{k_2} \dots u_{p(n_\ell)}^{k_\ell}$$

where $\{k_1, \ldots, k_\ell\} = \{1, \ldots, \ell+1\} \smallsetminus \{i\}$ and $\{n_1, \ldots, n_\ell\} = \{1, \ldots, \ell+1\} \smallsetminus \{j\}$ (as ordered sets). Coproduct, counit and antipode are of 'matrix type'

$$\Delta(u^i_j) = \sum\nolimits_k u^i_k \otimes u^k_j \;, \qquad \epsilon(u^i_j) = \delta^i_j \;, \qquad S(u^i_j) = (u^j_i)^*$$

Similarly coproduct, counit and antipode of $\mathcal{A}(G_q)$, 0 < q < 1, are given by the same formulas above, while (1) and (2) becomes:

$$\begin{split} R^{ij}_{kl}(q) u^k_m u^l_n &= u^j_l u^i_k R^{kl}_{mn}(q) , \qquad \sum_{p \in S_{\ell+1}} (-q)^{||p||} u^1_{p(1)} u^2_{p(2)} \dots u^{\ell+1}_{p(\ell+1)} = 1 , \\ (u^i_j)^* &= (-q)^{j-i} \sum_{p \in S_{\ell}} (-q)^{||p||} u^{k_1}_{p(n_1)} u^{k_2}_{p(n_2)} \dots u^{k_{\ell}}_{p(n_{\ell})} \end{split}$$

The QUEA $\mathcal{U}_q(\mathfrak{su}(\ell+1))$

Symmetries are described by the Hopf *-algebra $U_q(su(\ell+1))$, generated by $\{K_i, K_i^{-1}, E_i, F_i\}_{i=1,\dots,\ell}$, with $K_i = K_i^*$, $F_i = E_i^*$, and relations (a_{ij} = Cartan matrix)

$$[K_i, K_j] = 0 , \qquad K_i E_j K_i^{-1} = q^{a_{ij}/2} E_j , \qquad [E_i, F_j] = \delta_{ij} \frac{K_i^2 - K_i^{-2}}{q - q^{-1}}$$

 $E_{i}E_{j}^{2}-(q+q^{-1})E_{i}E_{j}E_{i}+E_{j}E_{i}^{2}=0 \quad \text{if} \ |i-j|=1 \ , \qquad [E_{i},E_{j}]=0 \quad \text{if} \ |i-j|>1 \ .$

Coproduct, counit and antipode are given by (with i = 1, ..., l)

$$\begin{split} \Delta(K_i) &= K_i \otimes K_i \text{ , } \qquad \Delta(E_i) = E_i \otimes K_i + K_i^{-1} \otimes E_i \text{ ,} \\ \epsilon(K_i) &= 1 \text{ , } \qquad \epsilon(E_i) = 0 \text{ , } \qquad S(K_i) = K_i^{-1} \text{ , } \qquad S(E_i) = -qE_i \end{split}$$

 \rightsquigarrow With $K_i = q^{H_i}$, at the 0-th order in $\hbar := \log q$ one gets Serre's presentation of $\mathcal{U}(\mathfrak{su}(\ell+1))$.

The Hopf *-subalgebra with generators $\{K_i, E_i, F_i\}_{i=1,2,\ldots,\ell-1}$ is $\mathcal{U}_q(\mathfrak{su}(\ell))$; its commutant is generated by $K_1K_2^2\ldots K_\ell^\ell$. We enlarge the algebra with

$$\hat{K}:=(K_1K_2^2\ldots K_\ell^\ell)^{\frac{2}{\ell+1}}$$
 ,

and its inverse, and call ${\mathcal U}_q(\mathfrak{u}(\ell))$ the algebra generated by ${\mathcal U}_q(\mathfrak{su}(\ell)),$ $\hat{\mathsf{K}}$ and $\hat{\mathsf{K}}^{-1}$.

The QUEA $\mathcal{U}_q(\mathfrak{su}(\ell+1))$

Symmetries are described by the Hopf *-algebra $U_q(su(\ell+1))$, generated by $\{K_i, K_i^{-1}, E_i, F_i\}_{i=1,\dots,\ell}$, with $K_i = K_i^*$, $F_i = E_i^*$, and relations (a_{ij} = Cartan matrix)

$$[K_i, K_j] = 0 , \qquad K_i E_j K_i^{-1} = q^{a_{ij}/2} E_j , \qquad [E_i, F_j] = \delta_{ij} \frac{K_i^2 - K_i^{-2}}{q - q^{-1}}$$

 $E_i E_j^2 - (q+q^{-1}) E_i E_j E_i + E_j E_i^2 = 0 \quad \text{if} \ |i-j| = 1 \ , \qquad [E_i,E_j] = 0 \quad \text{if} \ |i-j| > 1 \ .$

Coproduct, counit and antipode are given by (with i = 1, ..., l)

$$\begin{split} \Delta(K_i) &= K_i \otimes K_i \ , \qquad \Delta(E_i) = E_i \otimes K_i + K_i^{-1} \otimes E_i \ , \\ \epsilon(K_i) &= 1 \ , \qquad \epsilon(E_i) = 0 \ , \qquad S(K_i) = K_i^{-1} \ , \qquad S(E_i) = -qE_i \ . \end{split}$$

 $\stackrel{\text{\tiny $\sim $}}{\to} \text{ With } K_i = q^{H_i}, \text{ at the 0-th order in } \hbar := \log q \text{ one gets Serre's presentation of } \mathcal{U}(\mathfrak{su}(\ell+1)).$ The Hopf *-subalgebra with generators $\{K_i, E_i, F_i\}_{i=1,2,\dots,\ell-1}$ is $\mathcal{U}_q(\mathfrak{su}(\ell))$; its commutant is generated by $K_1 K_2^2 \dots K_\ell^\ell$. We enlarge the algebra with

$$\hat{K}:=(K_1K_2^2\ldots K_\ell^\ell)^{\frac{2}{\ell+1}}$$
 ,

and its inverse, and call $\mathcal{U}_q(\mathfrak{u}(\ell))$ the algebra generated by $\mathcal{U}_q(\mathfrak{su}(\ell))$, \hat{K} and \hat{K}^{-1} .

The set of linear maps $\mathfrak{U}_q(\mathfrak{su}(\ell+1)) \to \mathbb{C}$ is a Hopf *-algebra with operations dual to those of $\mathfrak{U}_q(\mathfrak{su}(\ell+1))$. For f, g two such linear maps we define the product by

$$(\mathbf{f} \cdot \mathbf{g})(\mathbf{x}) := \mathbf{f}(\mathbf{x}_{(1)})\mathbf{g}(\mathbf{x}_{(2)}) \qquad \forall \mathbf{x} \in \mathcal{U}_{\mathbf{g}}(\mathfrak{su}(\ell+1)) ,$$

the unity is the map $1(x) := \varepsilon(x)$, coproduct, counit, antipode and *-involution are

$$\Delta(f)(x,y) := f(xy) , \qquad \epsilon(f) := f(1) , \qquad S(f)(x) := f(S(x)) , \qquad f^*(x) := \overline{f(S(x)^*)}$$

The Hopf *-subalgebra generated by the matrix elements of type 1 irreps is $\mathcal{A}(SU_q(\ell+1))$. The algebra $\mathcal{A}(SU_q(\ell+1))$ is a $\mathcal{U}_q(\mathfrak{su}(\ell+1))$ -bimodule *-algebra for the actions:

$$(x \triangleright f)(y) := f(yx)$$
 and $(f \triangleleft x)(y) := f(xy)$.

$$\langle \mathbf{f}, \mathbf{g} \rangle := \mathbf{h}(\mathbf{f}^*\mathbf{g})$$
.

The set of linear maps $\mathfrak{U}_q(\mathfrak{su}(\ell+1)) \to \mathbb{C}$ is a Hopf *-algebra with operations dual to those of $\mathfrak{U}_q(\mathfrak{su}(\ell+1))$. For f, g two such linear maps we define the product by

$$(f \cdot g)(x) := f(x_{(1)})g(x_{(2)}) \qquad \forall x \in \mathcal{U}_q(\mathfrak{su}(\ell+1)),$$

the unity is the map $1(x) := \varepsilon(x)$, coproduct, counit, antipode and *-involution are

 $\Delta(f)(x,y) := f(xy) , \qquad \epsilon(f) := f(1) , \qquad S(f)(x) := f(S(x)) , \qquad f^*(x) := \overline{f(S(x)^*)} .$

The Hopf *-subalgebra generated by the matrix elements of type 1 irreps is $\mathcal{A}(SU_q(\ell+1))$. The algebra $\mathcal{A}(SU_q(\ell+1))$ is a $\mathcal{U}_q(\mathfrak{su}(\ell+1))$ -bimodule *-algebra for the actions:

 $(x \triangleright f)(y) := f(yx)$ and $(f \triangleleft x)(y) := f(xy)$.

$$\langle \mathbf{f}, \mathbf{g} \rangle := \mathbf{h}(\mathbf{f}^*\mathbf{g})$$
.

The set of linear maps $\mathfrak{U}_q(\mathfrak{su}(\ell+1)) \to \mathbb{C}$ is a Hopf *-algebra with operations dual to those of $\mathfrak{U}_q(\mathfrak{su}(\ell+1))$. For f, g two such linear maps we define the product by

$$(\mathbf{f} \cdot \mathbf{g})(\mathbf{x}) := \mathbf{f}(\mathbf{x}_{(1)})\mathbf{g}(\mathbf{x}_{(2)}) \qquad \forall \mathbf{x} \in \mathcal{U}_{\mathbf{g}}(\mathfrak{su}(\ell+1)) ,$$

the unity is the map $1(x) := \varepsilon(x)$, coproduct, counit, antipode and *-involution are

$$\Delta(f)(x,y) := f(xy) , \qquad \varepsilon(f) := f(1) , \qquad S(f)(x) := f(S(x)) , \qquad f^*(x) := \overline{f(S(x)^*)}$$

The Hopf *-subalgebra generated by the matrix elements of type 1 irreps is $\mathcal{A}(SU_q(\ell+1))$. The algebra $\mathcal{A}(SU_q(\ell+1))$ is a $\mathfrak{U}_q(\mathfrak{su}(\ell+1))$ -bimodule *-algebra for the actions:

$$(x \triangleright f)(y) := f(yx)$$
 and $(f \triangleleft x)(y) := f(xy)$.

$$\langle f,g \rangle := h(f^*g)$$
.

The set of linear maps $\mathfrak{U}_q(\mathfrak{su}(\ell+1)) \to \mathbb{C}$ is a Hopf *-algebra with operations dual to those of $\mathfrak{U}_q(\mathfrak{su}(\ell+1))$. For f, g two such linear maps we define the product by

$$(f \cdot g)(x) := f(x_{(1)})g(x_{(2)}) \qquad \forall x \in \mathcal{U}_q(\mathfrak{su}(\ell+1)),$$

the unity is the map $1(x) := \varepsilon(x)$, coproduct, counit, antipode and *-involution are

$$\Delta(f)(x,y) := f(xy) , \qquad \varepsilon(f) := f(1) , \qquad S(f)(x) := f(S(x)) , \qquad f^*(x) := \overline{f(S(x)^*)}$$

The Hopf *-subalgebra generated by the matrix elements of type 1 irreps is $\mathcal{A}(SU_q(\ell+1))$. The algebra $\mathcal{A}(SU_q(\ell+1))$ is a $\mathcal{U}_q(\mathfrak{su}(\ell+1))$ -bimodule *-algebra for the actions:

$$(\mathbf{x} \triangleright \mathbf{f})(\mathbf{y}) := \mathbf{f}(\mathbf{y}\mathbf{x})$$
 and $(\mathbf{f} \triangleleft \mathbf{x})(\mathbf{y}) := \mathbf{f}(\mathbf{x}\mathbf{y})$.

$$\langle f, g \rangle := h(f^*g)$$

$S_q^{2\ell+1}$ and \mathbb{CP}_q^ℓ

The algebra of 'functions' on $S_q^{2\ell+1}$ is the left $\mathfrak{U}_q(\mathfrak{su}(\ell+1))\text{-module}*\text{-algebra}$

$$\mathcal{A}(\mathsf{S}_{\mathsf{q}}^{2\ell+1}) \coloneqq \mathcal{A}(\mathsf{SU}_{\mathsf{q}}(\ell+1))^{\mathfrak{U}_{\mathsf{q}}(\mathfrak{su}(\ell))}$$

It is generated by $\left| z_i := \mathfrak{u}_{\ell+1-i}^{\ell+1} \right|$, $i = 0, \dots, \ell$, with relations

$$\begin{split} z_{i}z_{j} &= q^{-1}z_{j}z_{i} & \forall \ 0 \leqslant i < j \leqslant \ell \ , \\ z_{i}^{*}z_{j} &= qz_{j}z_{i}^{*} & \forall \ i \neq j \ , \\ [z_{i}^{*}, z_{i}] &= (1-q^{2}) \sum_{j=i+1}^{\ell} z_{j}z_{j}^{*} & \forall \ i = 0, \dots, n-1 \ , \\ [z_{\ell}^{*}, z_{\ell}] &= 0 \ , \\ z_{0}z_{0}^{*} + z_{1}z_{1}^{*} + \ldots + z_{\ell}z_{\ell}^{*} &= 1 \ . \end{split}$$

The algebra of 'functions' on \mathbb{CP}_{q}^{ℓ} is the left $\mathcal{U}_{q}(\mathfrak{su}(\ell+1))$ -module *-algebra

$$\mathcal{A}(\mathbb{CP}_q^{\ell}) := \mathcal{A}(SU_q(\ell+1))^{\mathcal{U}_q(\mathfrak{u}(\ell))} \equiv \mathcal{A}(S_q^{2\ell+1})^{U(1)}$$

It is generated by the matrix entries $P_{ij} := z_i^* z_j$ of a projection.

$S^{2\ell+1}_q$ and \mathbb{CP}^ℓ_q

The algebra of 'functions' on $S_q^{2\ell+1}$ is the left $\mathcal{U}_q(\mathfrak{su}(\ell+1))$ -module *-algebra

$$\mathcal{A}(\mathsf{S}_{\mathsf{q}}^{2\ell+1}) := \mathcal{A}(\mathsf{SU}_{\mathsf{q}}(\ell+1))^{\mathfrak{U}_{\mathsf{q}}(\mathfrak{su}(\ell))}$$

It is generated by $z_i := u_{\ell+1-i}^{\ell+1}$, $i = 0, ..., \ell$, with relations

$$\begin{split} z_i z_j &= q^{-1} z_j z_i & \forall \; 0 \leqslant i < j \leqslant \ell \; , \\ z_i^* z_j &= q z_j z_i^* & \forall \; i \neq j \; , \\ [z_i^*, z_i] &= (1-q^2) \sum_{j=i+1}^{\ell} z_j z_j^* & \forall \; i=0,\ldots,n-1 \; , \\ [z_\ell^*, z_\ell] &= 0 \; , \\ z_0 z_0^* + z_1 z_1^* + \ldots + z_\ell z_\ell^* &= 1 \; . \end{split}$$

The algebra of 'functions' on \mathbb{CP}_{q}^{ℓ} is the left $\mathcal{U}_{q}(\mathfrak{su}(\ell+1))$ -module *-algebra

$$\mathcal{A}(\mathbb{CP}_q^{\ell}) := \mathcal{A}(SU_q(\ell+1))^{\mathcal{U}_q(\mathfrak{u}(\ell))} \equiv \mathcal{A}(S_q^{2\ell+1})^{U(1)}$$

It is generated by the matrix entries $P_{ij} := z_i^* z_j$ of a projection.

$S^{2\ell+1}_q$ and \mathbb{CP}^ℓ_q

The algebra of 'functions' on $S_q^{2\ell+1}$ is the left $\mathfrak{U}_q(\mathfrak{su}(\ell+1))\text{-module}*\text{-algebra}$

$$\mathcal{A}(\mathsf{S}_{\mathsf{q}}^{2\ell+1}) := \mathcal{A}(\mathsf{SU}_{\mathsf{q}}(\ell+1))^{\mathfrak{U}_{\mathsf{q}}(\mathfrak{su}(\ell))}$$

It is generated by $z_i := u_{\ell+1-i}^{\ell+1}$, $i = 0, ..., \ell$, with relations

$$\begin{split} z_i z_j &= q^{-1} z_j z_i & \forall \; 0 \leqslant i < j \leqslant \ell \; , \\ z_i^* z_j &= q z_j z_i^* & \forall \; i \neq j \; , \\ [z_i^*, z_i] &= (1-q^2) \sum_{j=i+1}^{\ell} z_j z_j^* & \forall \; i = 0, \ldots, n-1 \; , \\ [z_\ell^*, z_\ell] &= 0 \; , \\ z_0 z_0^* + z_1 z_1^* + \ldots + z_\ell z_\ell^* &= 1 \; . \end{split}$$

The algebra of 'functions' on \mathbb{CP}_q^{ℓ} is the left $\mathcal{U}_q(\mathfrak{su}(\ell+1))$ -module *-algebra

$$\mathcal{A}(\mathbb{CP}_q^\ell) := \mathcal{A}(SU_q(\ell+1))^{\mathfrak{U}_q(\mathfrak{u}(\ell))} \equiv \mathcal{A}(S_q^{2\ell+1})^{\mathfrak{U}(1)}$$

It is generated by the matrix entries $|P_{ij} := z_i^* z_j|$ of a projection.

$S^{2\ell+1}_q$ and \mathbb{CP}^ℓ_q

The algebra of 'functions' on $S_q^{2\ell+1}$ is the left $\mathcal{U}_q(\mathfrak{su}(\ell+1))$ -module *-algebra

$$\mathcal{A}(\mathsf{S}_{\mathsf{q}}^{2\ell+1}) := \mathcal{A}(\mathsf{SU}_{\mathsf{q}}(\ell+1))^{\mathfrak{U}_{\mathsf{q}}(\mathfrak{su}(\ell))}$$

It is generated by $\begin{bmatrix} z_i := u_{\ell+1-i}^{\ell+1} \end{bmatrix}$, $i = 0, \dots, \ell$, with relations

$$\begin{split} z_i z_j &= q^{-1} z_j z_i & \forall \; 0 \leqslant i < j \leqslant \ell \; , \\ z_i^* z_j &= q z_j z_i^* & \forall \; i \neq j \; , \\ [z_i^*, z_i] &= (1-q^2) \sum_{j=i+1}^{\ell} z_j z_j^* & \forall \; i = 0, \ldots, n-1 \; , \\ [z_\ell^*, z_\ell] &= 0 \; , \\ z_0 z_0^* + z_1 z_1^* + \ldots + z_\ell z_\ell^* &= 1 \; . \end{split}$$

The algebra of 'functions' on \mathbb{CP}_q^{ℓ} is the left $\mathcal{U}_q(\mathfrak{su}(\ell+1))$ -module *-algebra

$$\mathcal{A}(\mathbb{CP}_q^\ell) := \mathcal{A}(SU_q(\ell+1))^{\mathfrak{U}_q(\mathfrak{u}(\ell))} \equiv \mathcal{A}(S_q^{2\ell+1})^{U(1)}$$

It is generated by the matrix entries $P_{ij} := z_i^* z_j$ of a projection.

Preliminary definitions

The quantum $SU(\ell+1)$ group The QUEA $\mathcal{U}_q(\mathfrak{su}(\ell+1))$ $S_q^{2\ell+1} \text{ and } \mathbb{CP}_q^\ell$

K-theory and K-homology K-theory K-homology

Antiholomorphic forms and real spectral triples

The algebra of forms

From GDAs to spectral triples

Reality and the first order condition A family of spectral triples

Some notations:

$$\begin{split} & [0]_q! := 1 \ , \qquad & [n]_q! := [n]_q \cdot [n-1]_q! \quad \forall \ n \geqslant 1 \ , \\ & [j_0, \ldots, j_n]_q! := \frac{[j_0 + \ldots + j_n]_q!}{[j_0]_q! \ldots [j_n]_q!} \quad \forall \ j_0, \ldots, j_n \geqslant 0 \ . \end{split}$$

For N ≥ 0 let $\Psi_N = (\psi_{j_0,\dots,j_\ell}^N)$ be the vector-valued 'function' on $S_q^{2\ell+1}$ with components

$$\psi_{j_0,\ldots,j_{\ell}}^{-N} := [j_0,\ldots,j_{\ell}]_q !^{\frac{1}{2}} q^{\frac{1}{2}\sum_{r < s} j_r j_s + \sum_{r=0}^{\ell} r j_r} z_0^{j_0} \ldots z_{\ell}^{j_{\ell}} , \quad \forall j_0 + \ldots + j_{\ell} = N .$$

Proposition

For all $N \in \mathbb{Z}, \Psi_N^{\dagger} \Psi_N = 1$. Thus, $P_N := \Psi_N \Psi_N^{\dagger}$ are projections with entries in $\mathcal{A}(\mathbb{CP}_q^{\ell})$.

We know that $K_0(\mathbb{CP}_q^{\ell}) \simeq \mathbb{Z}^{\ell+1}$ and $K_1(\mathbb{CP}_q^{\ell}) = 0$. We'll see that $\{[P_0], [P_{-1}], \ldots, [P_{-\ell}]\}$ are generators of K_0 . In fact, $\{P_N\}_{N \in \mathbb{Z}}$ are representatives of the equivariant K_0 group.

Some notations:

$$\begin{split} & [0]_q! := 1 \ , \qquad [n]_q! := [n]_q \cdot [n-1]_q! \quad \forall \ n \geqslant 1 \ , \\ & [j_0, \ldots, j_n]_q! := \frac{[j_0 + \ldots + j_n]_q!}{[j_0]_q! \ldots [j_n]_q!} \quad \forall \ j_0, \ldots, j_n \geqslant 0 \ . \end{split}$$

For $N \ge 0$ let $\Psi_N = (\psi_{j_0,\dots,j_\ell}^N)$ be the vector-valued 'function' on $S_q^{2\ell+1}$ with components

$$\begin{split} \psi^N_{j_0,\ldots,j_\ell} &:= [j_0,\ldots,j_\ell]_q !^{\frac{1}{2}} q^{-\frac{1}{2}\sum_{r < s} j_r j_s} (z_\ell^{j_\ell}\ldots z_0^{j_0})^* \;, \qquad \forall \; j_0 + \ldots + j_\ell = N \;, \\ \psi^{-N}_{j_0,\ldots,j_\ell} &:= [j_0,\ldots,j_\ell]_q !^{\frac{1}{2}} q^{\frac{1}{2}\sum_{r < s} j_r j_s + \sum_{r = 0}^\ell r j_r} z_0^{j_0}\ldots z_\ell^{j_\ell} \;, \qquad \forall \; j_0 + \ldots + j_\ell = N \;. \end{split}$$

Proposition

For all $N \in \mathbb{Z}$, $\Psi_N^{\dagger} \Psi_N = 1$. Thus, $P_N := \Psi_N \Psi_N^{\dagger}$ are projections with entries in $\mathcal{A}(\mathbb{CP}_q^{\ell})$.

We know that $K_0(\mathbb{CP}_q^{\ell}) \simeq \mathbb{Z}^{\ell+1}$ and $K_1(\mathbb{CP}_q^{\ell}) = 0$. We'll see that $\{[P_0], [P_{-1}], \dots, [P_{-\ell}]\}$ are generators of K_0 . In fact, $\{P_N\}_{N \in \mathbb{Z}}$ are representatives of the equivariant K_0 group.

Some notations:

$$\begin{split} & [0]_q! := 1 \ , \qquad [n]_q! := [n]_q \cdot [n-1]_q! \quad \forall \ n \geqslant 1 \ , \\ & [j_0, \ldots, j_n]_q! := \frac{[j_0 + \ldots + j_n]_q!}{[j_0]_q! \ldots [j_n]_q!} \quad \forall \ j_0, \ldots, j_n \geqslant 0 \ . \end{split}$$

For $N \ge 0$ let $\Psi_N = (\psi_{j_0,\dots,j_\ell}^N)$ be the vector-valued 'function' on $S_q^{2\ell+1}$ with components

$$\begin{split} \psi^N_{j_0,\ldots,j_\ell} &:= [j_0,\ldots,j_\ell]_q !^{\frac{1}{2}} q^{-\frac{1}{2}\sum_{r < s} j_r j_s} (z_\ell^{j_\ell}\ldots z_0^{j_0})^* \;, \qquad \forall \; j_0 + \ldots + j_\ell = N \;, \\ \psi^{-N}_{j_0,\ldots,j_\ell} &:= [j_0,\ldots,j_\ell]_q !^{\frac{1}{2}} q^{\frac{1}{2}\sum_{r < s} j_r j_s + \sum_{r = 0}^\ell r j_r} z_0^{j_0}\ldots z_\ell^{j_\ell} \;, \qquad \forall \; j_0 + \ldots + j_\ell = N \;. \end{split}$$

Proposition

For all $N \in \mathbb{Z}$, $\Psi_N^{\dagger} \Psi_N = 1$. Thus, $P_N := \Psi_N \Psi_N^{\dagger}$ are projections with entries in $\mathcal{A}(\mathbb{CP}_q^{\ell})$.

We know that $K_0(\mathbb{CP}_q^{\ell}) \simeq \mathbb{Z}^{\ell+1}$ and $K_1(\mathbb{CP}_q^{\ell}) = 0$. We'll see that $\{[P_0], [P_{-1}], \dots, [P_{-\ell}]\}$ are generators of K_0 . In fact, $\{P_N\}_{N \in \mathbb{Z}}$ are representatives of the equivariant K_0 group.

Some notations:

$$\begin{split} & [0]_q! := 1 \ , \qquad & [n]_q! := [n]_q \cdot [n-1]_q! \quad \forall \ n \geqslant 1 \ , \\ & [j_0, \ldots, j_n]_q! := \frac{[j_0 + \ldots + j_n]_q!}{[j_0]_q! \ldots [j_n]_q!} \quad \forall \ j_0, \ldots, j_n \geqslant 0 \ . \end{split}$$

For $N \ge 0$ let $\Psi_N = (\psi_{j_0,\dots,j_\ell}^N)$ be the vector-valued 'function' on $S_q^{2\ell+1}$ with components

$$\begin{split} \psi^N_{j_0,\ldots,j_\ell} &:= [j_0,\ldots,j_\ell]_q !^{\frac{1}{2}} q^{-\frac{1}{2}\sum_{r < s} j_r j_s} (z_\ell^{j_\ell}\ldots z_0^{j_0})^* \;, \qquad \forall \; j_0 + \ldots + j_\ell = N \;, \\ \psi^{-N}_{j_0,\ldots,j_\ell} &:= [j_0,\ldots,j_\ell]_q !^{\frac{1}{2}} q^{\frac{1}{2}\sum_{r < s} j_r j_s + \sum_{r = 0}^{\ell} r j_r z_0^{j_0}\ldots z_\ell^{j_\ell} \;, \qquad \forall \; j_0 + \ldots + j_\ell = N \;. \end{split}$$

Proposition

For all $N \in \mathbb{Z}$, $\Psi_N^{\dagger} \Psi_N = 1$. Thus, $P_N := \Psi_N \Psi_N^{\dagger}$ are projections with entries in $\mathcal{A}(\mathbb{CP}_q^{\ell})$.

We know that $K_0(\mathbb{CP}_q^\ell) \simeq \mathbb{Z}^{\ell+1}$ and $K_1(\mathbb{CP}_q^\ell) = 0$. We'll see that $\{[P_0], [P_{-1}], \dots, [P_{-\ell}]\}$ are generators of K_0 . In fact, $\{P_N\}_{N \in \mathbb{Z}}$ are representatives of the equivariant K_0 group.

K-homology I: representations

Here $1 \leqslant n \leqslant l$. Let $\underline{m} = (m_1, \dots, m_n) \in \mathbb{N}^n$ and, for $0 \leqslant i < k \leqslant n$, let

$$\underline{\varepsilon}_{\underline{i}}^{k} := (\underbrace{\overline{0, 0, \ldots, 0}}_{i, 1, 1, \ldots, 0}, \underbrace{\underline{k-i times}}_{i, 1, 1, \ldots, 1}, \underbrace{\overline{0, 0, \ldots, 0}}_{i, 0, 0, \ldots, 0}).$$

Let $\mathcal{H}_n := \ell^2(\mathbb{N}^n)$, with orth. basis $|\underline{m}\rangle$.

For any $0 \leq k \leq n$, a *-rep. $\pi_k^{(n)} : \mathcal{A}(S_q^{2n+1}) \to \mathcal{B}(\mathcal{H}_n)$ is defined as follows: $\pi_k^{(n)}(z_i) = 0$ for all $i > k \ge 1$, while for the remaining generators (with notation $\mathfrak{m}_0 := 0$)

$$\begin{split} \pi_k^{(n)}(z_i) \left|\underline{m}\right\rangle &= q^{m_i} \sqrt{1 - q^{2(m_{i+1} - m_i + 1)}} \left|\underline{m} + \underline{\epsilon}_i^k\right\rangle \text{ , } \qquad \forall \ 0 \leqslant i \leqslant k - 1 \text{ ,} \\ \pi_k^{(n)}(z_k) \left|\underline{m}\right\rangle &= q^{m_k} \left|\underline{m}\right\rangle \text{ ,} \end{split}$$

on the subspace linear span of basis vectors $\ket{\mathrm{m}}$ satisfying the restrictions

 $0\leqslant \mathfrak{m}_1\leqslant \mathfrak{m}_2\leqslant \ldots \leqslant \mathfrak{m}_k$, $\mathfrak{m}_{k+1}>\mathfrak{m}_{k+2}>\ldots>\mathfrak{m}_n\geqslant 0$

and they are zero on the orthogonal subspace.

K-homology I: representations

Here $1 \leqslant n \leqslant l$. Let $\underline{m} = (m_1, \dots, m_n) \in \mathbb{N}^n$ and, for $0 \leqslant i < k \leqslant n$, let

$$\underline{\varepsilon}_{\underline{i}}^{k} := (\underbrace{\overline{0, 0, \ldots, 0}}_{i, 1, 1, \ldots, 0}, \underbrace{\underline{k-i times}}_{i, 1, 1, \ldots, 1}, \underbrace{\overline{0, 0, \ldots, 0}}_{i, 0, 0, \ldots, 0}).$$

Let $\mathcal{H}_n := \ell^2(\mathbb{N}^n)$, with orth. basis $|\underline{m}\rangle$.

For any $0 \leq k \leq n$, a *-rep. $\pi_k^{(n)} : \mathcal{A}(S_q^{2n+1}) \to \mathcal{B}(\mathcal{H}_n)$ is defined as follows: $\pi_k^{(n)}(z_i) = 0$ for all $i > k \ge 1$, while for the remaining generators (with notation $m_0 := 0$)

$$\begin{split} \pi_k^{(n)}(z_i) \left|\underline{m}\right\rangle &= q^{\mathfrak{m}_i} \sqrt{1 - q^{2(\mathfrak{m}_i + \mathfrak{1} - \mathfrak{m}_i + 1)}} \left|\underline{m} + \underline{\epsilon}_i^k\right\rangle \text{ , } \qquad \forall \ 0 \leqslant i \leqslant k - 1 \text{ ,} \\ \pi_k^{(n)}(z_k) \left|\underline{m}\right\rangle &= q^{\mathfrak{m}_k} \left|\underline{m}\right\rangle \text{ ,} \end{split}$$

on the subspace linear span of basis vectors $|\underline{m}\rangle$ satisfying the restrictions

$$0\leqslant \mathfrak{m}_1\leqslant \mathfrak{m}_2\leqslant \ldots \leqslant \mathfrak{m}_k$$
 , $\mathfrak{m}_{k+1}>\mathfrak{m}_{k+2}>\ldots>\mathfrak{m}_n\geqslant 0$

and they are zero on the orthogonal subspace.

Since $K^0(\mathbb{CP}_q^\ell) \simeq \mathbb{Z}^{\ell+1}$ (and $K^1(\mathbb{CP}_q^\ell) = 0$) we look for $\ell + 1$ even Fredholm modules.

1st = pull-back of the unique non-trivial even Fred. mod. of \mathbb{C} , via the only char. of $\mathcal{A}(\mathbb{CP}_{a}^{\ell})$.

Lemma For |j-k| > 1, and for all $a, b \in \mathcal{A}(S_q^{2n+1})$, we have $\pi_i^{(n)}(a) \pi_k^{(n)}(b) = 0$.

As a corollary, we have two *-reps $\pi^{(n)}_{\pm}:\mathcal{A}(S^{2n+1}_q) \to \mathcal{B}(\mathcal{H}_n)$

$$\pi^{(n)}_+(\mathfrak{a}) := \sum_{\substack{\mathfrak{0} \leqslant k \leqslant \mathfrak{n} \\ k \text{ even}}} \pi^{(n)}_k(\mathfrak{a}) \;, \qquad \pi^{(n)}_-(\mathfrak{a}) := \sum_{\substack{\mathfrak{0} \leqslant k \leqslant \mathfrak{n} \\ k \text{ odd}}} \pi^{(n)}_k(\mathfrak{a}) \;.$$

Proposition

 $\pi^{(n)}_+(\mathfrak{a}) - \pi^{(n)}_-(\mathfrak{a}) \in \mathcal{L}^1(\mathcal{H}_n)$ for all $\mathfrak{a} \in \mathcal{A}(\mathbb{CP}_q^{\ell})$.

Since $K^0(\mathbb{CP}_q^\ell) \simeq \mathbb{Z}^{\ell+1}$ (and $K^1(\mathbb{CP}_q^\ell) = 0$) we look for $\ell + 1$ even Fredholm modules.

1st = pull-back of the unique non-trivial even Fred. mod. of \mathbb{C} , via the only char. of $\mathcal{A}(\mathbb{CP}_{\mathfrak{q}}^{\ell})$.

Lemma For $|\mathfrak{j}-\mathsf{k}|>1$, and for all $\mathfrak{a},\mathfrak{b}\in\mathcal{A}(\mathsf{S}^{2\mathfrak{n}+1}_{\mathfrak{q}})$, we have $\pi^{(\mathfrak{n})}_{\mathfrak{j}}(\mathfrak{a})\pi^{(\mathfrak{n})}_{\mathsf{k}}(\mathfrak{b})=0$.

As a corollary, we have two *-reps $\pi^{(n)}_{\pm}:\mathcal{A}(S^{2n+1}_q) \to \mathcal{B}(\mathcal{H}_n)$

$$\pi^{(n)}_+(\mathfrak{a}) := \sum_{\substack{\mathfrak{0} \leqslant k \leqslant n \\ k \text{ even}}} \pi^{(n)}_k(\mathfrak{a}) \;, \qquad \pi^{(n)}_-(\mathfrak{a}) := \sum_{\substack{\mathfrak{0} \leqslant k \leqslant n \\ k \text{ odd}}} \pi^{(n)}_k(\mathfrak{a}) \;.$$

Proposition

 $\pi^{(n)}_+(\mathfrak{a}) - \pi^{(n)}_-(\mathfrak{a}) \in \mathcal{L}^1(\mathcal{H}_n)$ for all $\mathfrak{a} \in \mathcal{A}(\mathbb{CP}_q^{\ell})$.

Since $K^0(\mathbb{CP}_q^\ell) \simeq \mathbb{Z}^{\ell+1}$ (and $K^1(\mathbb{CP}_q^\ell) = 0$) we look for $\ell + 1$ even Fredholm modules.

1st = pull-back of the unique non-trivial even Fred. mod. of \mathbb{C} , via the only char. of $\mathcal{A}(\mathbb{CP}_a^{\ell})$.

Lemma For |j-k| > 1, and for all $a, b \in \mathcal{A}(S_a^{2n+1})$, we have $\pi_i^{(n)}(a) \pi_k^{(n)}(b) = 0$.

As a corollary, we have two *-reps $\pi^{(n)}_{\pm}:\mathcal{A}(S^{2n+1}_q)\to \mathcal{B}(\mathcal{H}_n)$

$$\pi^{(n)}_+(\mathfrak{a}) := \sum_{\substack{0 \leqslant k \leqslant n \\ k \text{ even}}} \pi^{(n)}_k(\mathfrak{a}) \,, \qquad \pi^{(n)}_-(\mathfrak{a}) := \sum_{\substack{0 \leqslant k \leqslant n \\ k \text{ odd}}} \pi^{(n)}_k(\mathfrak{a}) \,.$$

Proposition

 $\pi^{(n)}_+(\mathfrak{a}) - \pi^{(n)}_-(\mathfrak{a}) \in \mathcal{L}^1(\mathcal{H}_n)$ for all $\mathfrak{a} \in \mathcal{A}(\mathbb{CP}^{\ell}_q)$.

Since $K^0(\mathbb{CP}_q^\ell) \simeq \mathbb{Z}^{\ell+1}$ (and $K^1(\mathbb{CP}_q^\ell) = 0$) we look for $\ell + 1$ even Fredholm modules.

1st = pull-back of the unique non-trivial even Fred. mod. of \mathbb{C} , via the only char. of $\mathcal{A}(\mathbb{CP}_{\mathfrak{a}}^{\ell})$.

Lemma For |j-k| > 1, and for all $a, b \in \mathcal{A}(S_a^{2n+1})$, we have $\pi_i^{(n)}(a) \pi_k^{(n)}(b) = 0$.

As a corollary, we have two *-reps $\pi_{\pm}^{(n)}:\mathcal{A}(S_q^{2n+1})\to \mathcal{B}(\mathcal{H}_n)$

$$\pi^{(n)}_+(\mathfrak{a}) := \sum_{\substack{\mathfrak{0} \leqslant k \leqslant \mathfrak{n} \\ k \text{ even}}} \pi^{(n)}_k(\mathfrak{a}) \ , \qquad \pi^{(n)}_-(\mathfrak{a}) := \sum_{\substack{\mathfrak{0} \leqslant k \leqslant \mathfrak{n} \\ k \text{ odd}}} \pi^{(n)}_k(\mathfrak{a}) \ .$$

Proposition

$$\pi^{(n)}_{+}(\mathfrak{a}) - \pi^{(n)}_{-}(\mathfrak{a}) \in \mathcal{L}^{1}(\mathcal{H}_{n})$$
 for all $\mathfrak{a} \in \mathcal{A}(\mathbb{CP}_{q}^{\ell})$.

Since $K^0(\mathbb{CP}_q^\ell) \simeq \mathbb{Z}^{\ell+1}$ (and $K^1(\mathbb{CP}_q^\ell) = 0$) we look for $\ell + 1$ even Fredholm modules.

1st = pull-back of the unique non-trivial even Fred. mod. of \mathbb{C} , via the only char. of $\mathcal{A}(\mathbb{CP}_{\mathfrak{a}}^{\ell})$.

Lemma For |j-k| > 1, and for all $a, b \in \mathcal{A}(S_a^{2n+1})$, we have $\pi_i^{(n)}(a) \pi_k^{(n)}(b) = 0$.

As a corollary, we have two *-reps $\pi_{\pm}^{(n)}:\mathcal{A}(S_q^{2n+1})\to \mathcal{B}(\mathcal{H}_n)$

$$\pi^{(n)}_+(\mathfrak{a}) := \sum_{\substack{\mathfrak{0} \leqslant k \leqslant \mathfrak{n} \\ k \text{ even}}} \pi^{(n)}_k(\mathfrak{a}) \,, \qquad \pi^{(n)}_-(\mathfrak{a}) := \sum_{\substack{\mathfrak{0} \leqslant k \leqslant \mathfrak{n} \\ k \text{ odd}}} \pi^{(n)}_k(\mathfrak{a})$$

Proposition

$$\pi^{(n)}_{+}(\mathfrak{a}) - \pi^{(n)}_{-}(\mathfrak{a}) \in \mathcal{L}^{1}(\mathcal{H}_{n}) \text{ for all } \mathfrak{a} \in \mathcal{A}(\mathbb{CP}^{\ell}_{q}).$$

Since $K^0(\mathbb{CP}_q^\ell) \simeq \mathbb{Z}^{\ell+1}$ (and $K^1(\mathbb{CP}_q^\ell) = 0$) we look for $\ell + 1$ even Fredholm modules.

1st = pull-back of the unique non-trivial even Fred. mod. of \mathbb{C} , via the only char. of $\mathcal{A}(\mathbb{CP}^{\ell}_{\mathfrak{a}})$.

 $\mbox{Lemma For } |j-k|>1, \mbox{ and for all } a,b\in \mathcal{A}(S^{2n+1}_q), \mbox{ we have } \pi^{(n)}_i(a)\,\pi^{(n)}_k(b)=0.$

As a corollary, we have two *-reps $\pi^{(n)}_\pm:\mathcal{A}(S^{2n+1}_q)\to \mathcal{B}(\mathcal{H}_n)$

$$\pi^{(n)}_+(\mathfrak{a}) \coloneqq \sum_{\substack{\mathfrak{0} \leqslant k \leqslant \mathfrak{n} \\ k \text{ even}}} \pi^{(n)}_k(\mathfrak{a}) \text{ , } \qquad \pi^{(n)}_-(\mathfrak{a}) \coloneqq \sum_{\substack{\mathfrak{0} \leqslant k \leqslant \mathfrak{n} \\ k \text{ odd}}} \pi^{(n)}_k(\mathfrak{a})$$

Proposition

$$\pi^{(n)}_{+}(\mathfrak{a}) - \pi^{(n)}_{-}(\mathfrak{a}) \in \mathcal{L}^{1}(\mathcal{H}_{n}) \text{ for all } \mathfrak{a} \in \mathcal{A}(\mathbb{CP}_{q}^{\ell}).$$

Pairing between K-theory and K-homology

Proposition

If $\mu_k, 0 \leqslant n \leqslant \ell,$ denotes the n-th Fredholm module previously introduced, we have

$$\langle [\mu_n], [\mathsf{P}_{-\mathsf{N}}] \rangle := \mathsf{Tr}_{\mathcal{H}_n} (\pi^{(n)}_+ - \pi^{(n)}_-) (\mathsf{Tr} \ \mathsf{P}_{-\mathsf{N}}) = {N \choose n}$$

for all $N \in \mathbb{N}$, where $\binom{N}{n} := 0$ when n > N.

Proof.

In 3 steps:

- 1st) the pairing $\langle [\mu_n], [P_{-N}] \rangle$ as a function of q is continuous (it is given by a series that is absolutely convergent for $0 \leq q < 1$);
- 2nd) the pairing is integer being the index of a Fredholm operator, and a continuous function $[0,1) \rightarrow \mathbb{Z}$ is constant;
- 3rd) compute it in the limit $q \rightarrow 0^+$.
Proposition

If $\mu_k, 0 \leqslant n \leqslant \ell,$ denotes the n-th Fredholm module previously introduced, we have

$$\langle [\mu_n], [P_{-N}] \rangle := \mathsf{Tr}_{\mathcal{H}_n} (\pi^{(n)}_+ - \pi^{(n)}_-) (\mathsf{Tr} \ P_{-N}) = {N \choose n}$$
 ,

for all $N \in \mathbb{N}$, where $\binom{N}{n} := 0$ when n > N.

Proof.

In 3 steps:

- 1st) the pairing $\langle [\mu_n], [P_{-N}] \rangle$ as a function of q is continuous (it is given by a series that is absolutely convergent for $0 \leq q < 1$);
- 2nd) the pairing is integer being the index of a Fredholm operator, and a continuous function $[0,1) \to \mathbb{Z}$ is constant;
- 3rd) compute it in the limit $q \rightarrow 0^+$.

Proposition

The elements $[\mu_0], \ldots, [\mu_\ell]$ are generators of $K^0(\mathcal{A}(\mathbb{CP}^\ell_q))$, and the elements $[P_0], \ldots, [P_{-\ell}]$ are generators of $K_0(\mathcal{A}(\mathbb{CP}^\ell_q))$.

Proof.

The matrix M with entries $M_{ij} := \langle [\mu_i], [P_{-j}] \rangle$ is in $GL_{\ell+1}(\mathbb{Z})$, the inverse being

$$(\mathcal{M}^{-1})_{ij} = (-1)^{i+j} \binom{j}{i}$$

Thus, the elements above are a basis of \mathbb{Z}^{n+1} as a \mathbb{Z} -module, i.e. they generate \mathbb{Z}^{n+1} as abelian group.

Remark: the Fredholm module μ_{ℓ} can be realized as 'conformal class' of a regular spectral triple $(\mathcal{A}(\mathbb{CP}_q^{\ell}), \mathcal{H}_n \oplus \mathcal{H}_n, D)$ — i.e. $F_n := D|D|^{-1}$ — of any summability $d \in \mathbb{R}^+$.

Next: a 'geometric' Dirac operator (0⁺-summable and real) is discussed in the following.

Proposition

The elements $[\mu_0], \ldots, [\mu_\ell]$ are generators of $K^0(\mathcal{A}(\mathbb{CP}^\ell_q))$, and the elements $[P_0], \ldots, [P_{-\ell}]$ are generators of $K_0(\mathcal{A}(\mathbb{CP}^\ell_q))$.

Proof.

The matrix M with entries $M_{ij} := \langle [\mu_i], [P_{-j}] \rangle$ is in $GL_{\ell+1}(\mathbb{Z})$, the inverse being

$$(\mathsf{M}^{-1})_{ij} = (-1)^{i+j} \binom{j}{i}$$

Thus, the elements above are a basis of \mathbb{Z}^{n+1} as a \mathbb{Z} -module, i.e. they generate \mathbb{Z}^{n+1} as abelian group.

Remark: the Fredholm module μ_{ℓ} can be realized as 'conformal class' of a regular spectral triple $(\mathcal{A}(\mathbb{CP}_q^{\ell}), \mathcal{H}_n \oplus \mathcal{H}_n, D)$ — i.e. $F_n := D|D|^{-1}$ — of any summability $d \in \mathbb{R}^+$.

Next: a 'geometric' Dirac operator (0⁺-summable and real) is discussed in the following.

Proposition

The elements $[\mu_0], \ldots, [\mu_\ell]$ are generators of $K^0(\mathcal{A}(\mathbb{CP}^\ell_q))$, and the elements $[P_0], \ldots, [P_{-\ell}]$ are generators of $K_0(\mathcal{A}(\mathbb{CP}^\ell_q))$.

Proof.

The matrix M with entries $M_{ij} := \langle [\mu_i], [P_{-j}] \rangle$ is in $GL_{\ell+1}(\mathbb{Z})$, the inverse being

$$(\mathsf{M}^{-1})_{ij} = (-1)^{i+j} \binom{j}{i}$$

Thus, the elements above are a basis of \mathbb{Z}^{n+1} as a \mathbb{Z} -module, i.e. they generate \mathbb{Z}^{n+1} as abelian group.

Remark: the Fredholm module μ_{ℓ} can be realized as 'conformal class' of a regular spectral triple $(\mathcal{A}(\mathbb{CP}_q^{\ell}), \mathcal{H}_n \oplus \mathcal{H}_n, D)$ — i.e. $F_n := D|D|^{-1}$ — of any summability $d \in \mathbb{R}^+$.

Next: a 'geometric' Dirac operator (0^+ -summable and real) is discussed in the following.

Outline

Preliminary definitions

The quantum SU($\ell + 1$) group The QUEA $\mathcal{U}_q(\mathfrak{su}(\ell + 1))$ $S_q^{2\ell+1}$ and \mathbb{CP}_q^ℓ

K-theory and K-homology K-theory

K-homology

3 Antiholomorphic forms and real spectral triples

The quantum Grassmann algebra The algebra of forms Vector fields and the Dolbeault operator

From GDAs to spectral triples

Reality and the first order condition A family of spectral triples

Let $\sigma: \mathfrak{U}_{\mathfrak{q}}(\mathfrak{u}(\ell)) \to \mathsf{End}(\mathbb{C}^n)$ be a *-representation. The set

$$\begin{split} \mathfrak{M}(\sigma) &= \mathcal{A}(SU_q(\ell+1)) \boxtimes_{\sigma} \mathbb{C}^n \\ &:= \left\{ \nu \in \mathcal{A}(SU_q(\ell+1))^n \, \big| \, \{\mathcal{L}_{x_{(1)}} \otimes \sigma(x_{(2)})\} \nu = \varepsilon(x) \nu \ \forall \, x \in \mathfrak{U}_q(\mathfrak{u}(\ell)) \right\}, \end{split}$$

is an $\mathcal{A}(\mathbb{CP}_q^{\ell})$ -bimodule and a left $\mathcal{A}(\mathbb{CP}_q^{\ell}) \rtimes \mathcal{U}_q(\mathfrak{su}(\ell+1))$ -module. It is the analogue of (sections of) an **homogeneous vector bundle** of rank n over \mathbb{CP}_q^{ℓ} .

A non-degenerate inner product is induced by the canonical one on $\mathcal{A}(\mathbb{CP}^{\ell}_{q})^{n}$:

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{i=1}^{n} \mathbf{h}(\mathbf{v}_{i}^{*}\mathbf{w}_{i})$$

Which σ gives the bimodule of antiholomorphic forms?

 $\mathcal{U}_q(\mathfrak{u}(\ell))$ is a central extension of $\mathcal{U}_q(\mathfrak{su}(\ell))$ by \hat{K} and \hat{K}^{-1} . Any irrep of $\mathcal{U}_q(\mathfrak{u}(\ell))$ is obtained from an irrep σ of $\mathcal{U}_q(\mathfrak{su}(\ell))$ by defining $\sigma(\hat{K})$ as a (non-zero) multiple of the identity transformation.

Let $\sigma: \mathfrak{U}_{\mathfrak{q}}(\mathfrak{u}(\ell)) \to \mathsf{End}(\mathbb{C}^n)$ be a *-representation. The set

$$\begin{split} \mathbb{M}(\sigma) &= \mathcal{A}(SU_q(\ell+1)) \boxtimes_{\sigma} \mathbb{C}^n \\ &:= \left\{ \nu \in \mathcal{A}(SU_q(\ell+1))^n \, \big| \, \{\mathcal{L}_{x_{(1)}} \otimes \sigma(x_{(2)})\} \nu = \varepsilon(x) \nu \ \forall \ x \in \mathfrak{U}_q(\mathfrak{u}(\ell)) \right\} \end{split}$$

is an $\mathcal{A}(\mathbb{CP}_q^{\ell})$ -bimodule and a left $\mathcal{A}(\mathbb{CP}_q^{\ell}) \rtimes \mathcal{U}_q(\mathfrak{su}(\ell+1))$ -module. It is the analogue of (sections of) an **homogeneous vector bundle** of rank n over \mathbb{CP}_q^{ℓ} .

A non-degenerate inner product is induced by the canonical one on $\mathcal{A}(\mathbb{CP}_{a}^{\ell})^{n}$:

$$\langle v, w \rangle = \sum_{i=1}^{n} h(v_i^* w_i)$$

Which σ gives the bimodule of antiholomorphic forms?

 $\mathcal{U}_q(\mathfrak{u}(\ell))$ is a central extension of $\mathcal{U}_q(\mathfrak{su}(\ell))$ by \hat{K} and \hat{K}^{-1} . Any irrep of $\mathcal{U}_q(\mathfrak{u}(\ell))$ is obtained from an irrep σ of $\mathcal{U}_q(\mathfrak{su}(\ell))$ by defining $\sigma(\hat{K})$ as a (non-zero) multiple of the identity transformation.

Let $\sigma: \mathfrak{U}_{\mathfrak{q}}(\mathfrak{u}(\ell)) \to \mathsf{End}(\mathbb{C}^n)$ be a *-representation. The set

$$\begin{split} \mathbb{M}(\sigma) &= \mathcal{A}(SU_q(\ell+1)) \boxtimes_{\sigma} \mathbb{C}^n \\ &:= \left\{ \nu \in \mathcal{A}(SU_q(\ell+1))^n \, \big| \, \{\mathcal{L}_{x_{(1)}} \otimes \sigma(x_{(2)})\} \nu = \varepsilon(x) \nu \ \forall \ x \in \mathfrak{U}_q(\mathfrak{u}(\ell)) \right\} \end{split}$$

is an $\mathcal{A}(\mathbb{CP}_q^{\ell})$ -bimodule and a left $\mathcal{A}(\mathbb{CP}_q^{\ell}) \rtimes \mathcal{U}_q(\mathfrak{su}(\ell+1))$ -module. It is the analogue of (sections of) an **homogeneous vector bundle** of rank n over \mathbb{CP}_q^{ℓ} .

A non-degenerate inner product is induced by the canonical one on $\mathcal{A}(\mathbb{CP}_{a}^{\ell})^{n}$:

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{i=1}^{n} \mathbf{h}(\mathbf{v}_{i}^{*}\mathbf{w}_{i})$$

Which σ gives the bimodule of antiholomorphic forms?

 $\mathcal{U}_q(\mathfrak{u}(\ell))$ is a central extension of $\mathcal{U}_q(\mathfrak{su}(\ell))$ by \hat{K} and \hat{K}^{-1} . Any irrep of $\mathcal{U}_q(\mathfrak{u}(\ell))$ is obtained from an irrep σ of $\mathcal{U}_q(\mathfrak{su}(\ell))$ by defining $\sigma(\hat{K})$ as a (non-zero) multiple of the identity transformation.

Let $\sigma: \mathfrak{U}_{\mathfrak{q}}(\mathfrak{u}(\ell)) \to \mathsf{End}(\mathbb{C}^n)$ be a *-representation. The set

$$\begin{split} \mathbb{M}(\sigma) &= \mathcal{A}(SU_q(\ell+1)) \boxtimes_{\sigma} \mathbb{C}^n \\ &:= \left\{ \nu \in \mathcal{A}(SU_q(\ell+1))^n \, \big| \, \{\mathcal{L}_{x_{(1)}} \otimes \sigma(x_{(2)})\} \nu = \varepsilon(x) \nu \ \forall \ x \in \mathfrak{U}_q(\mathfrak{u}(\ell)) \right\} \end{split}$$

is an $\mathcal{A}(\mathbb{CP}_q^{\ell})$ -bimodule and a left $\mathcal{A}(\mathbb{CP}_q^{\ell}) \rtimes \mathcal{U}_q(\mathfrak{su}(\ell+1))$ -module. It is the analogue of (sections of) an **homogeneous vector bundle** of rank n over \mathbb{CP}_q^{ℓ} .

A non-degenerate inner product is induced by the canonical one on $\mathcal{A}(\mathbb{CP}_{a}^{\ell})^{n}$:

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{i=1}^{n} \mathbf{h}(\mathbf{v}_{i}^{*}\mathbf{w}_{i})$$

Which σ gives the bimodule of antiholomorphic forms?

 $\mathfrak{U}_q(\mathfrak{u}(\ell))$ is a central extension of $\mathfrak{U}_q(\mathfrak{su}(\ell))$ by \hat{K} and \hat{K}^{-1} . Any irrep of $\mathfrak{U}_q(\mathfrak{u}(\ell))$ is obtained from an irrep σ of $\mathfrak{U}_q(\mathfrak{su}(\ell))$ by defining $\sigma(\hat{K})$ as a (non-zero) multiple of the identity transformation.

Fundamental representations of $\mathcal{U}_q(\mathfrak{su}(\ell))$

Let $k = 1, \ldots, \ell - 1$,

$$\Lambda_k := \left\{ \, \underline{i} = (i_1, i_2, \dots, i_k) \in \mathbb{Z}^k \, \big| \, 1 \leqslant i_1 < i_2 < \ldots < i_k \leqslant \ell \, \right\},$$

and $W_k \simeq \mathbb{C}^{\binom{\ell}{k}}$ be the vector space with basis vectors labelled by elements in Λ_k , represented pictorially by **Young tableaux** (YT).

Generators of $\mathcal{U}_q(\mathfrak{su}(\ell))$ are represented by insertion/deletion operators:

- K_j(YT) = q^{1/2 N_j}YT where N_j = number of rows of length j in the Young tableau minus the number of rows of length j + 1 (either 0 or ±1);
- F_j add a slot to the row of length j, if any, otherwise it gives 0; E_j is the adjoint of F_j.

Fundamental representations of $\mathcal{U}_q(\mathfrak{su}(\ell))$

Let $k = 1, \ldots, \ell - 1$,

$$\Lambda_k := \left\{ \, \underline{i} = (i_1, i_2, \dots, i_k) \in \mathbb{Z}^k \, \big| \, 1 \leqslant i_1 < i_2 < \ldots < i_k \leqslant \ell \, \right\},$$

and $W_k \simeq \mathbb{C}^{\binom{\ell}{k}}$ be the vector space with basis vectors labelled by elements in Λ_k , represented pictorially by **Young tableaux** (YT).

Generators of $\mathfrak{U}_q(\mathfrak{su}(\ell))$ are represented by insertion/deletion operators:

- K_j(YT) = q^{1/2 N_j}YT where N_j = number of rows of length j in the Young tableau minus the number of rows of length j + 1 (either 0 or ±1);
- F_j add a slot to the row of length j, if any, otherwise it gives 0; E_j is the adjoint of F_j.

Fundamental representations of $\mathcal{U}_q(\mathfrak{su}(\ell))$

Let $k = 1, \ldots, \ell - 1$,

$$\Lambda_k := \left\{ \, \underline{i} = (i_1, i_2, \dots, i_k) \in \mathbb{Z}^k \, \big| \, 1 \leqslant i_1 < i_2 < \ldots < i_k \leqslant \ell \, \right\},$$

and $W_k \simeq \mathbb{C}^{\binom{\ell}{k}}$ be the vector space with basis vectors labelled by elements in Λ_k , represented pictorially by **Young tableaux** (YT).

Generators of $\mathfrak{U}_q(\mathfrak{su}(\ell))$ are represented by insertion/deletion operators:

- K_j(YT) = q^{1/2 N_j}YT where N_j = number of rows of length j in the Young tableau minus the number of rows of length j + 1 (either 0 or ±1);
- F_j add a slot to the row of length j, if any, otherwise it gives 0; E_j is the adjoint of F_j.

Fundamental representations of $\mathcal{U}_{a}(\mathfrak{su}(\ell))$

Let $k = 1, ..., \ell - 1$.

$$\Lambda_k := \left\{ \, \underline{i} = (i_1, i_2, \ldots, i_k) \in \mathbb{Z}^k \, \big| \, 1 \leqslant i_1 < i_2 < \ldots < i_k \leqslant \ell \, \right\} \, ,$$

and $W_{\nu} \simeq \mathbb{C}^{\binom{\ell}{k}}$ be the vector space with basis vectors labelled by elements in Λ_k , represented pictorially by Young tableaux (YT).

Generators of $\mathcal{U}_{\mathfrak{a}}(\mathfrak{su}(\ell))$ are represented by insertion/deletion operators:

- $K_i(YT) = q^{\frac{1}{2}N_j}YT$ where N_i = number of rows of length j in the Young tableau minus the number of rows of length j + 1 (either 0 or ± 1);
- \triangleright F_i add a slot to the row of length j, if any, otherwise it gives 0; E_i is the adjoint of F_i.

Facts:

- k-1 times $\ell-k-1$ times • W^k is the irrep with highest weight $\delta^k = (\overbrace{0, \dots, 0}^{k}, 1, \overbrace{0, \dots, 0}^{k})$:
- for q = 1, $W_k \simeq \wedge^k W_1 \forall 0 \leq k \leq \ell$ where $W_0 = W_\ell = \mathbb{C}$ is the rep. given by ε . Next point: to define an intertwiner $\Lambda_a: W_i \otimes W_k \to W_{i+k}$ deformation of the wedge product, for all $i + k \leq \ell$.

Elements of $S_{k,n-k} := (S_k \times S_{n-k}) \setminus S_n$ are called (k, n-k)-shuffles.

The map $p \mapsto p^{-1}$ sends $S_{k,n-k}$ into $S_n^{(k)} := S_n/(S_k \times S_{n-k})$, explicitly given by

 $S_n^{(k)} = \left\{ p \in S_n \, | \, p(1) < p(2) < \ldots < p(k) \text{ and } p(k+1) < p(k+2) < \ldots < p(n) \right\}.$

Any $p \in S_n$ can be uniquely factorized as p = p'p'' with $p' \in S_n^{(k)}$, $p'' \in S_k \times S_{n-k}$, and ||p|| = ||p'|| + ||p''||.

Def./Prop.

A map $\wedge_q: W_h \otimes W_k \to W_{h+k}$ is given by the formula

$$(\nu \wedge_q w)_{\underline{i}} = \sum\nolimits_{p \in S_{h+k}^{(h)}} (-q^{-1})^{||p||} \, \nu_{i_p(1), \dots, i_p(h)} \, w_{i_p(h+1), \dots, i_p(h+k)}$$

for all $\nu = (\nu_{\underline{i}'}) \in W_h$, $w = (w_{\underline{i}''}) \in W_k$, $h + k \leq \ell$. We set $\nu \wedge_q w := 0$ if $h + k > \ell$.

The product \wedge_q is surjective, associative, and a left $\mathfrak{U}_q(\mathfrak{su}(\ell))$ -module map.

Crucial to prove associativity is the factorization property above

Francesco D'Andrea (UCL)

Geometry of quantum CP⁴

Elements of $S_{k,n-k} := (S_k \times S_{n-k}) \setminus S_n$ are called (k, n-k)-shuffles.

The map $p\mapsto p^{-1}$ sends $S_{k,n-k}$ into $S_n^{(k)}:=S_n/(S_k\times S_{n-k}),$ explicitly given by

 $S_n^{(k)} = \left\{ p \in S_n \, | \, p(1) < p(2) < \ldots < p(k) \text{ and } p(k+1) < p(k+2) < \ldots < p(n) \right\}.$

Any $p \in S_n$ can be uniquely factorized as p = p'p'' with $p' \in S_n^{(k)}$, $p'' \in S_k \times S_{n-k}$, and ||p|| = ||p'|| + ||p''||.

Def./Prop.

A map $\wedge_q: W_h \otimes W_k \to W_{h+k}$ is given by the formula

$$(\nu \wedge_q w)_{\underline{i}} = \sum\nolimits_{p \in S_{h+k}^{(h)}} (-q^{-1})^{||p||} \, \nu_{i_p(1), \cdots, i_p(h)} \, w_{i_p(h+1), \cdots, i_p(h+k)}$$

for all $v = (v_{i'}) \in W_h$, $w = (w_{i''}) \in W_k$, $h + k \leq \ell$. We set $v \wedge_q w := 0$ if $h + k > \ell$.

The product \wedge_q is surjective, associative, and a left $\mathfrak{U}_q(\mathfrak{su}(\ell))$ -module map.

Crucial to prove associativity is the factorization property above

Francesco D'Andrea (UCL)

Geometry of quantum CP

Elements of $S_{k,n-k} := (S_k \times S_{n-k}) \setminus S_n$ are called (k, n-k)-shuffles.

The map $p\mapsto p^{-1}$ sends $S_{k,n-k}$ into $S_n^{(k)}:=S_n/(S_k\times S_{n-k}),$ explicitly given by

 $S_n^{(k)} = \left\{ p \in S_n \, | \, p(1) < p(2) < \ldots < p(k) \text{ and } p(k+1) < p(k+2) < \ldots < p(n) \right\}.$

Any $p \in S_n$ can be uniquely factorized as p = p'p'' with $p' \in S_n^{(k)}$, $p'' \in S_k \times S_{n-k}$, and $\|p\| = \|p'\| + \|p''\|.$

Def./Prop.

A map $\wedge_q: W_h \otimes W_k \to W_{h+k}$ is given by the formula

$$(\nu \wedge_{\mathfrak{q}} w)_{\underline{i}} = \sum\nolimits_{\mathfrak{p} \in S_{h+k}^{(h)}} (-\mathfrak{q}^{-1})^{||\mathfrak{p}||} \, \nu_{\mathfrak{i}_{\mathfrak{p}}(1), \cdots, \mathfrak{i}_{\mathfrak{p}}(h)} \, w_{\mathfrak{i}_{\mathfrak{p}}(h+1), \cdots, \mathfrak{i}_{\mathfrak{p}}(h+k)}$$

for all $v = (v_{i'}) \in W_h$, $w = (w_{i''}) \in W_k$, $h + k \leq \ell$. We set $v \wedge_q w := 0$ if $h + k > \ell$.

The product \wedge_q is surjective, associative, and a left $\mathfrak{U}_q(\mathfrak{su}(\ell))$ -module map.

Crucial to prove associativity is the factorization property above

Francesco D'Andrea (UCL)

Geometry of quantum CP

Elements of $S_{k,n-k} := (S_k \times S_{n-k}) \setminus S_n$ are called (k, n-k)-shuffles.

The map $p \mapsto p^{-1}$ sends $S_{k,n-k}$ into $S_n^{(k)} := S_n/(S_k \times S_{n-k})$, explicitly given by

 $S_n^{(k)} = \left\{ p \in S_n \, | \, p(1) < p(2) < \ldots < p(k) \text{ and } p(k+1) < p(k+2) < \ldots < p(n) \right\}.$

Any $p \in S_n$ can be uniquely factorized as p = p'p'' with $p' \in S_n^{(k)}$, $p'' \in S_k \times S_{n-k}$, and ||p|| = ||p'|| + ||p''||.

Def./Prop.

A map ${\wedge_q}: W_h \otimes W_k \to W_{h+k}$ is given by the formula

$$(v \wedge_{\mathfrak{q}} w)_{\underline{i}} = \sum_{\mathfrak{p} \in S_{h+k}^{(h)}} (-\mathfrak{q}^{-1})^{||\mathfrak{p}||} v_{\mathfrak{i}_{\mathfrak{p}(1)}, \dots, \mathfrak{i}_{\mathfrak{p}(h)}} w_{\mathfrak{i}_{\mathfrak{p}(h+1)}, \dots, \mathfrak{i}_{\mathfrak{p}(h+k)}}$$

 $\textit{for all } \nu = (\nu_{\underline{i}'}) \in W_h, w = (w_{\underline{i}''}) \in W_k, h+k \leqslant \ell. \textit{ We set } \nu \wedge_q w := 0 \textit{ if } h+k > \ell.$

The product \wedge_q is surjective, associative, and a left $\mathfrak{U}_q(\mathfrak{su}(\ell))$ -module map.

Crucial to prove associativity is the factorization property above.

Elements of $S_{k,n-k} := (S_k \times S_{n-k}) \setminus S_n$ are called (k, n-k)-shuffles.

The map $p \mapsto p^{-1}$ sends $S_{k,n-k}$ into $S_n^{(k)} := S_n/(S_k \times S_{n-k})$, explicitly given by

 $S_n^{(k)} = \left\{ p \in S_n \, | \, p(1) < p(2) < \ldots < p(k) \text{ and } p(k+1) < p(k+2) < \ldots < p(n) \right\}.$

Any $p \in S_n$ can be uniquely factorized as p = p'p'' with $p' \in S_n^{(k)}$, $p'' \in S_k \times S_{n-k}$, and $\|p\| = \|p'\| + \|p''\|.$

Def./Prop.

A map ${\wedge_q}: W_h \otimes W_k \to W_{h+k}$ is given by the formula

$$(v \wedge_{\mathfrak{q}} w)_{\underline{i}} = \sum_{\mathfrak{p} \in S_{h+k}^{(h)}} (-\mathfrak{q}^{-1})^{||\mathfrak{p}||} v_{\mathfrak{i}_{\mathfrak{p}(1)}, \dots, \mathfrak{i}_{\mathfrak{p}(h)}} w_{\mathfrak{i}_{\mathfrak{p}(h+1)}, \dots, \mathfrak{i}_{\mathfrak{p}(h+k)}}$$

 $\textit{for all } \nu = (\nu_{\underline{i}'}) \in W_h, w = (w_{\underline{i}''}) \in W_k, h+k \leqslant \ell. \textit{ We set } \nu \wedge_q w := 0 \textit{ if } h+k > \ell.$

The product \wedge_q is surjective, associative, and a left $\mathfrak{U}_q(\mathfrak{su}(\ell))$ -module map.

Crucial to prove associativity is the factorization property above.

Francesco D'Andrea (UCL)

Geometry of quantum CP⁴

Elements of $S_{k,n-k} := (S_k \times S_{n-k}) \setminus S_n$ are called (k, n-k)-shuffles.

The map $p \mapsto p^{-1}$ sends $S_{k,n-k}$ into $S_n^{(k)} := S_n/(S_k \times S_{n-k})$, explicitly given by

 $S_n^{(k)} = \left\{ p \in S_n \, | \, p(1) < p(2) < \ldots < p(k) \text{ and } p(k+1) < p(k+2) < \ldots < p(n) \right\}.$

Any $p \in S_n$ can be uniquely factorized as p = p'p'' with $p' \in S_n^{(k)}$, $p'' \in S_k \times S_{n-k}$, and $\|p\| = \|p'\| + \|p''\|.$

Def./Prop.

A map ${\Lambda_q}: W_h \otimes W_k \to W_{h+k}$ is given by the formula

$$(\nu \wedge_{\mathfrak{q}} w)_{\underline{i}} = \sum_{\mathfrak{p} \in S_{h+k}^{(h)}} (-\mathfrak{q}^{-1})^{||\mathfrak{p}||} \nu_{\mathfrak{i}_{\mathfrak{p}(1)}, \dots, \mathfrak{i}_{\mathfrak{p}(h)}} w_{\mathfrak{i}_{\mathfrak{p}(h+1)}, \dots, \mathfrak{i}_{\mathfrak{p}(h+k)}}$$

 $\textit{for all } \nu = (\nu_{\underline{i}^{\,\prime}}) \in W_h, w = (w_{\underline{i}^{\,\prime\prime}}) \in W_k, h+k \leqslant \ell. \textit{ We set } \nu \wedge_q w := 0 \textit{ if } h+k > \ell.$

 $\stackrel{\longrightarrow}{\to} Let \ W_{\bullet} := \oplus_{k=0}^{\ell} W_k. \ \ \operatorname{Gr}_q^{\ell} := (W_{\bullet}, \wedge_q) \ is \ a \ graded \ associative \ algebra - generated \\ by \ W_1 - and \ a \ left \ \ \mathfrak{U}_q(\mathfrak{su}(\ell)) - module \ algebra. \ \dim_{\mathbb{C}} \operatorname{Gr}_q^{\ell} = 2^{\ell}.$

Crucial to prove associativity is the factorization property above.

Francesco D'Andrea (UCL)

Geometry of quantum CP

For $x \in W_1$, we define left/right 'exterior product' $\mathfrak{e}_x^{L,R} : W_k \to W_{k+1}$ as

$$\mathfrak{e}^L_x\, w = x \wedge_q w$$
 , $\qquad \mathfrak{e}^R_x\, w = (-q)^k\, w \wedge_q x$,

and left/right 'contraction' as the adjoint $i_x^{L,R}$ of $e_x^{L,R}$ w.r.t. the canonical inner product on W_{\bullet} . An antilinear map $J: W_k \to W_{\ell-k}$ is given by

$$(Jw)_{\underline{i}} = (-q^{-1})^{|\underline{i}|} q^{\frac{1}{4}\ell(\ell+1)} \overline{w_{\underline{i}^c}} \ ,$$

where $|\underline{i}| := i_1 + \ldots + i_{\ell-k}, \, \underline{i}^c = (1, \ldots, \ell) \smallsetminus \underline{i}$, and \overline{z} is the complex conjugate of $z \in \mathbb{C}$.

Proposition

The map J is equivariant (i.e. $x^*J = JS(x)$ for all $x \in U_q(\mathfrak{su}(\ell))$), and has square

 $\mathsf{J}^2 = (-1)^{\lfloor \frac{\ell+1}{2} \rfloor} \; .$

Conjugating with J transforms the left exterior product into the right contraction:

$$J\mathfrak{e}_x^L J^{-1} = -\mathfrak{q}\mathfrak{i}_x^R \; .$$

Francesco D'Andrea (UCL)

For $x\in W_1,$ we define left/right 'exterior product' $\mathfrak{e}_x^{L,R}:W_k\to W_{k+1}$ as

$$\mathfrak{e}^L_x\, w = x \wedge_q w$$
 , $\qquad \mathfrak{e}^R_x\, w = (-q)^k\, w \wedge_q x$,

and left/right 'contraction' as the adjoint $i_x^{L,R}$ of $e_x^{L,R}$ w.r.t. the canonical inner product on W_{\bullet} . An antilinear map $J: W_k \to W_{\ell-k}$ is given by

$$(Jw)_{\underline{i}} = (-q^{-1})^{|\underline{i}|} q^{\frac{1}{4}\ell(\ell+1)} \overline{w_{\underline{i}^c}}$$
 ,

where $|\underline{i}| := i_1 + \ldots + i_{\ell-k}, \underline{i}^c = (1, \ldots, \ell) \smallsetminus \underline{i}$, and \overline{z} is the complex conjugate of $z \in \mathbb{C}$.

Proposition

The map J is equivariant (i.e. $x^*J = JS(x)$ for all $x \in U_q(\mathfrak{su}(\ell))$), and has square

$$\mathbf{J}^2 = (-1)^{\lfloor rac{\ell+1}{2}
floor}$$
 .

Conjugating with J transforms the left exterior product into the right contraction:

$$J\mathfrak{e}_{\mathrm{x}}^{L}J^{-1}=-\mathfrak{q}\mathfrak{i}_{\mathrm{x}}^{R}$$
 .

Francesco D'Andrea (UCL)

For $x \in W_1$, we define left/right 'exterior product' $\mathfrak{e}_x^{L,R} : W_k \to W_{k+1}$ as

$$\mathfrak{e}^L_x\, w = x \wedge_q w$$
 , $\qquad \mathfrak{e}^R_x\, w = (-q)^k\, w \wedge_q x$,

and left/right 'contraction' as the adjoint $i_x^{L,R}$ of $e_x^{L,R}$ w.r.t. the canonical inner product on W_{\bullet} . An antilinear map $J: W_k \to W_{\ell-k}$ is given by

$$(Jw)_{\underline{i}} = (-q^{-1})^{|\underline{i}|} q^{\frac{1}{4}\ell(\ell+1)} \overline{w_{\underline{i}^c}}$$
 ,

where $|\underline{i}| := i_1 + \ldots + i_{\ell-k}, \underline{i}^c = (1, \ldots, \ell) \smallsetminus \underline{i}$, and \overline{z} is the complex conjugate of $z \in \mathbb{C}$.

Proposition

The map J is equivariant (i.e. $x^*J = J S(x)$ for all $x \in U_q(\mathfrak{su}(\ell))$), and has square

$$\mathsf{J}^{\mathbf{2}} = (-1)^{\lfloor \frac{\ell+1}{2} \rfloor}$$

Conjugating with J transforms the left exterior product into the right contraction:

$$J\mathfrak{e}_x^L J^{-1} = -\mathfrak{q}\mathfrak{i}_x^R \; .$$

For $x\in W_1,$ we define left/right 'exterior product' $\mathfrak{e}_x^{L,R}:W_k\to W_{k+1}$ as

$$\mathfrak{e}^L_x\, w = x \wedge_q w$$
 , $\qquad \mathfrak{e}^R_x\, w = (-q)^k\, w \wedge_q x$,

and left/right 'contraction' as the adjoint $i_x^{L,R}$ of $e_x^{L,R}$ w.r.t. the canonical inner product on W_{\bullet} . An antilinear map $J: W_k \to W_{\ell-k}$ is given by

$$(Jw)_{\underline{i}} = (-q^{-1})^{|\underline{i}|} q^{\frac{1}{4}\ell(\ell+1)} \overline{w_{\underline{i}^c}}$$
 ,

where $|\underline{i}| := i_1 + \ldots + i_{\ell-k}, \underline{i}^c = (1, \ldots, \ell) \smallsetminus \underline{i}$, and \overline{z} is the complex conjugate of $z \in \mathbb{C}$.

Proposition

The map J is equivariant (i.e. $x^*J=J\,S(x)$ for all $x\in \mathfrak{U}_q(\mathfrak{su}(\ell))$), and has square

$$\mathsf{J}^{\mathbf{2}} = (-1)^{\lfloor \frac{\ell+1}{2} \rfloor}$$

Conjugating with J transforms the left exterior product into the right contraction:

$$J\mathfrak{e}_x^L J^{-1} = -q\mathfrak{i}_x^R$$
.

Francesco D'Andrea (UCL)

For $N \in \mathbb{Z}$, the irrep. of $\mathcal{U}_q(\mathfrak{su}(\ell))$ with h.w. δ^k is lifted to a $\sigma_k^N : \mathcal{U}_q(\mathfrak{u}(\ell)) \to \mathsf{End}(W_k)$ by

$$\sigma_k^N(\hat{K}) = \mathfrak{q}^{k - \frac{\ell}{\ell+1}N} \cdot id_{W_k}$$
 .

Since $\sigma_k^N \simeq \sigma_k^0 \otimes \sigma_0^N$,

$$\Omega^k_N := \mathcal{M}(\sigma^N_k) \simeq \Omega^k_0 \otimes_{\mathcal{A}(\mathbb{CP}^\ell_q)} \Omega^0_N \; .$$

 Ω_0^k = antiholomorphic k-forms. Ω_N^0 = 'sections of line bundles'.

If ℓ is odd: $\Omega^0_{\frac{1}{2}(\ell+1)} =$ square root of the canonical bundle, $\Omega^k_{\frac{1}{2}(\ell+1)} =$ chiral spinors. An associative product $\wedge_q : \Omega^k_N \times \Omega^{k'}_{N'} \to \Omega^{k+k'}_{N+N'}$ is given by

$$\omega \wedge_q \omega' \coloneqq a \cdot a' (\nu \wedge_q \nu')$$
 ,

where $\omega = a\nu \in \Omega_N^k$ and $\omega' = a'\nu' \in \Omega_{N'}^{k'}$, $a, a' \in \mathcal{A}(SU_q(\ell + 1)), \nu \in W_k, \nu' \in W_{k'}$. $\Omega_0^{\bullet} := \bigoplus_{k=0}^{\ell} \Omega_0^k$ is a graded associative algebra.

For $N \in \mathbb{Z}$, the irrep. of $\mathcal{U}_q(\mathfrak{su}(\ell))$ with h.w. δ^k is lifted to a $\sigma_k^N : \mathcal{U}_q(\mathfrak{u}(\ell)) \to \text{End}(W_k)$ by

$$\sigma_k^N(\hat{K}) = \mathfrak{q}^{k - \frac{\ell}{\ell+1}N} \cdot id_{W_k}$$
 .

Since $\sigma_k^N \simeq \sigma_k^0 \otimes \sigma_0^N$,

$$\Omega^k_N := \mathfrak{M}(\sigma^N_k) \simeq \Omega^k_0 \otimes_{\mathcal{A}(\mathbb{CP}^\ell_q)} \Omega^0_N \; .$$

 Ω_0^k = antiholomorphic k-forms. Ω_N^0 = 'sections of line bundles'.

If ℓ is odd: $\Omega^0_{\frac{1}{2}(\ell+1)} =$ square root of the canonical bundle, $\Omega^k_{\frac{1}{2}(\ell+1)} =$ chiral spinors. An associative product $\wedge_q : \Omega^k_N \times \Omega^{k'}_{N'} \to \Omega^{k+k'}_{N+N'}$ is given by

$$\omega \wedge_q \omega' := a \cdot a' (\nu \wedge_q \nu')$$
 ,

where $\omega = a\nu \in \Omega_N^k$ and $\omega' = a'\nu' \in \Omega_{N'}^{k'}$, $a, a' \in \mathcal{A}(SU_q(\ell+1)), \nu \in W_k, \nu' \in W_{k'}$. $\Omega_0^{\bullet} := \bigoplus_{k=0}^{\ell} \Omega_0^k$ is a graded associative algebra.

For $N \in \mathbb{Z}$, the irrep. of $\mathcal{U}_q(\mathfrak{su}(\ell))$ with h.w. δ^k is lifted to a $\sigma_k^N : \mathcal{U}_q(\mathfrak{u}(\ell)) \to \text{End}(W_k)$ by

$$\sigma_k^N(\hat{K}) = q^{k - \frac{\ell}{\ell+1}N} \cdot id_{W_k}$$
.

Since $\sigma_k^N\simeq\sigma_k^{\textbf{0}}\otimes\sigma_{\textbf{0}}^N$,

$$\Omega^k_N := \mathfrak{M}(\sigma^N_k) \simeq \Omega^k_0 \otimes_{\mathcal{A}(\mathbb{CP}^\ell_q)} \Omega^0_N \; .$$

 Ω_0^k = antiholomorphic k-forms. Ω_N^0 = 'sections of line bundles'.

If ℓ is odd: $\Omega^0_{\frac{1}{2}(\ell+1)} =$ square root of the canonical bundle, $\Omega^k_{\frac{1}{2}(\ell+1)} =$ chiral spinors. An associative product $\wedge_q : \Omega^k_N \times \Omega^{k'}_N \to \Omega^{k+k'}_{N+N'}$ is given by

$$\omega \wedge_q \omega' := a \cdot a' (\nu \wedge_q \nu')$$
 ,

where $\omega = a\nu \in \Omega_N^k$ and $\omega' = a'\nu' \in \Omega_{N'}^{k'}$, $a, a' \in \mathcal{A}(SU_q(\ell+1)), \nu \in W_k, \nu' \in W_{k'}$. $\Omega_0^{\bullet} := \bigoplus_{k=0}^{\ell} \Omega_0^k$ is a graded associative algebra.

For $N \in \mathbb{Z}$, the irrep. of $\mathcal{U}_q(\mathfrak{su}(\ell))$ with h.w. δ^k is lifted to a $\sigma_k^N : \mathcal{U}_q(\mathfrak{u}(\ell)) \to \mathsf{End}(W_k)$ by

$$\sigma_k^N(\hat{K}) = q^{k - \frac{\ell}{\ell+1}N} \cdot id_{W_k}$$
.

Since $\sigma_k^N \simeq \sigma_k^0 \otimes \sigma_0^N$,

$$\Omega^k_{\mathsf{N}} \coloneqq \mathfrak{M}(\sigma^{\mathsf{N}}_k) \simeq \Omega^k_{\boldsymbol{0}} \otimes_{\mathcal{A}(\mathbb{CP}_q^\ell)} \Omega^{\boldsymbol{0}}_{\mathsf{N}} \; .$$

 Ω_0^k = antiholomorphic k-forms. Ω_N^0 = 'sections of line bundles'.

If ℓ is odd: $\Omega^0_{\frac{1}{2}(\ell+1)} =$ square root of the canonical bundle, $\Omega^k_{\frac{1}{2}(\ell+1)} =$ chiral spinors. An associative product $\wedge_q : \Omega^k_N \times \Omega^{k'}_{N'} \to \Omega^{k+k'}_{N+N'}$ is given by

$$\omega \wedge_q \omega' \coloneqq a \cdot a' (\nu \wedge_q \nu')$$
 ,

where $\omega = a\nu \in \Omega_N^k$ and $\omega' = a'\nu' \in \Omega_{N'}^{k'}$, $a,a' \in \mathcal{A}(SU_q(\ell+1)), \nu \in W_k, \nu' \in W_{k'}$.

 $\Omega^{ullet}_{0}:=igoplus_{k=0}^{\ell}\Omega^{k}_{0}$ is a graded associative algebra

For $N \in \mathbb{Z}$, the irrep. of $\mathcal{U}_q(\mathfrak{su}(\ell))$ with h.w. δ^k is lifted to a $\sigma_k^N : \mathcal{U}_q(\mathfrak{u}(\ell)) \to \mathsf{End}(W_k)$ by

$$\sigma_k^N(\hat{K}) = q^{k - \frac{\ell}{\ell+1}N} \cdot id_{W_k}$$
.

Since $\sigma_k^{\mathsf{N}}\simeq\sigma_k^{\mathsf{0}}\otimes\sigma_{\mathsf{0}}^{\mathsf{N}}$,

$$\Omega^k_{\mathsf{N}} \coloneqq \mathfrak{M}(\sigma^{\mathsf{N}}_k) \simeq \Omega^k_{\boldsymbol{0}} \otimes_{\mathcal{A}(\mathbb{CP}_q^\ell)} \Omega^{\boldsymbol{0}}_{\mathsf{N}} \; .$$

 Ω_0^k = antiholomorphic k-forms. Ω_N^0 = 'sections of line bundles'.

If ℓ is odd: $\Omega^0_{\frac{1}{2}(\ell+1)} =$ square root of the canonical bundle, $\Omega^k_{\frac{1}{2}(\ell+1)} =$ chiral spinors. An associative product $\wedge_q : \Omega^k_N \times \Omega^{k'}_{N'} \to \Omega^{k+k'}_{N+N'}$ is given by

$$\omega \wedge_q \omega' \coloneqq a \cdot a' (\nu \wedge_q \nu')$$
 ,

where $\omega = a\nu \in \Omega_N^k$ and $\omega' = a'\nu' \in \Omega_{N'}^{k'}$, $a, a' \in \mathcal{A}(SU_q(\ell+1)), \nu \in W_k, \nu' \in W_{k'}$. $\Omega_0^{\bullet} := \bigoplus_{k=0}^{\ell} \Omega_0^k$ is a graded associative algebra.

Let $\{e^i\}_{i=1,\dots,\ell}$ be the canonical basis of $W_1\simeq \mathbb{C}^\ell$ and

$$X_i := K_i K_{i+1} \dots K_\ell \hat{K}^{-1} [E_i, [E_{i+1}, \dots [E_{\ell-1}, E_\ell]_q]_q]_q , \qquad i = 1, \dots, \ell ,$$

where $[a, b]_q := ab - q^{-1}ba$. Then

$$X = \sum_{i} e^{i} X_{i} \in \mathcal{U}_{q}(\mathfrak{su}(\ell+1)) \boxtimes_{\sigma} W_{1}$$

(on the first leg we use the right adjoint action composed with S^{-1} .) By invariance of X,

$$\bar{\partial} := \sum_{i=1}^{\ell} \mathcal{L}_{\hat{K}X_i} \otimes \mathfrak{e}_{e^i}^{L}$$

maps Ω_N^k in Ω_N^{k+1} . The X_i's satisfy some useful commutation rules, for example

$$(X\wedge_q X)_{i_1,i_2}=X_{i_1}X_{i_2}-q^{-1}X_{i_2}X_{i_1}=0\;,\qquad\text{for all }1\leqslant i_1< i_2\leqslant\ell\;,$$

together with associativity of \wedge_q implies $\bar{\partial}^2 = \sum_{i_1 < i_2} \mathcal{L}_{q\hat{K}^2(X \wedge_q X)}{}_{i_1,i_2} \otimes \mathfrak{e}_{e^{i_1}}^L \mathfrak{e}_{e^{i_2}}^L = 0$. Facts:

- $(\Omega^{\bullet}_{N}, \partial)$ is a left covariant cohomology complex;
- (Ω₀[•], ∂) is a left covariant differential calculus;
- for all $\mathfrak{a} \in \mathcal{A}(\mathbb{CP}^{\ell}_{\mathfrak{a}})$ and $\omega \in \Omega^{k}_{\mathsf{N}}: \overline{\mathfrak{d}}(\mathfrak{a}\omega) = \mathfrak{a}(\overline{\mathfrak{d}}\omega) + (\overline{\mathfrak{d}}\mathfrak{a}) \wedge_{\mathfrak{q}} \omega$

Let $\{e^i\}_{i=1,\ldots,\ell}$ be the canonical basis of $W_1\simeq \mathbb{C}^\ell$ and

$$X_i := K_i K_{i+1} \dots K_\ell \hat{K}^{-1} [E_i, [E_{i+1}, \dots [E_{\ell-1}, E_\ell]_q]_q]_q \text{ , } \qquad i = 1, \dots, \ell \text{ ,}$$

where $[a, b]_q := ab - q^{-1}ba$. Then

$$X = \sum_{i} e^{i} X_{i} \in \mathcal{U}_{q}(\mathfrak{su}(\ell+1)) \boxtimes_{\sigma} W_{1}$$

(on the first leg we use the right adjoint action composed with S^{-1} .) By invariance of X,

$$\overline{\mathfrak{d}} := \sum_{\mathfrak{i}=1}^{\ell} \mathcal{L}_{\hat{\mathsf{K}}\mathsf{X}_{\mathfrak{i}}} \otimes \mathfrak{e}_{e^{\mathfrak{i}}}^{\mathsf{L}}$$

maps Ω_N^k in Ω_N^{k+1} . The X_i 's satisfy some useful commutation rules, for example

$$(X\wedge_q X)_{i_1,i_2}=X_{i_1}X_{i_2}-q^{-1}X_{i_2}X_{i_1}=0\;,\qquad\text{for all }1\leqslant i_1< i_2\leqslant \ell\;,$$

together with associativity of \wedge_q implies $\bar{\partial}^2 = \sum_{i_1 < i_2} \mathcal{L}_{q \hat{\mathcal{K}}^2(X \wedge_q X)}{}_{i_1, i_2} \otimes \mathfrak{e}_{e^{i_1}}^L \mathfrak{e}_{e^{i_2}}^L = 0$. Facts:

- $(\Omega^{\bullet}_{N}, \partial)$ is a left covariant cohomology complex;
- (Ω₀[•], ∂) is a left covariant differential calculus;
- for all $\mathfrak{a} \in \mathcal{A}(\mathbb{CP}^{\ell}_{\mathfrak{a}})$ and $\omega \in \Omega^{k}_{\mathsf{N}}: \ \bar{\mathfrak{d}}(\mathfrak{a}\omega) = \mathfrak{a}(\bar{\mathfrak{d}}\omega) + (\bar{\mathfrak{d}}\mathfrak{a}) \wedge_{\mathfrak{q}} \omega$

Let $\{e^i\}_{i=1,\ldots,\ell}$ be the canonical basis of $W_1\simeq \mathbb{C}^\ell$ and

$$X_i := K_i K_{i+1} \dots K_\ell \hat{K}^{-1} [E_i, [E_{i+1}, \dots [E_{\ell-1}, E_\ell]_q]_q]_q \text{ , } \qquad i = 1, \dots, \ell \text{ ,}$$

where $[a, b]_q := ab - q^{-1}ba$. Then

$$X = \sum_{i} e^{i} X_{i} \in \mathcal{U}_{q}(\mathfrak{su}(\ell+1)) \boxtimes_{\sigma} W_{1}$$

(on the first leg we use the right adjoint action composed with S^{-1} .) By invariance of X,

$$\overline{\mathfrak{d}} := \sum_{\mathfrak{i}=1}^{\ell} \mathcal{L}_{\hat{\mathsf{K}}\mathsf{X}_{\mathfrak{i}}} \otimes \mathfrak{e}_{e^{\mathfrak{i}}}^{\mathsf{L}}$$

maps Ω_N^k in Ω_N^{k+1} . The X_i's satisfy some useful commutation rules, for example

$$(X \wedge_q X)_{i_1,i_2} = X_{i_1}X_{i_2} - q^{-1}X_{i_2}X_{i_1} = 0$$
 , for all $1 \leqslant i_1 < i_2 \leqslant \ell$,

together with associativity of \wedge_q implies $\bar{\partial}^2 = \sum_{i_1 < i_2} \mathcal{L}_{q\hat{K}^2(X \wedge_q X)}{}_{i_1,i_2} \otimes \mathfrak{e}_{e^{i_1}}^L \mathfrak{e}_{e^{i_2}}^L = 0$. Facts:

- (Ω[•]_N, ∂) is a left covariant cohomology complex;
- (Ω₀[•], ∂) is a left covariant differential calculus;
- for all $\mathfrak{a} \in \mathcal{A}(\mathbb{CP}^{\ell}_{\mathfrak{a}})$ and $\omega \in \Omega^{k}_{\mathsf{N}}: \ \overline{\mathfrak{d}}(\mathfrak{a}\omega) = \mathfrak{a}(\overline{\mathfrak{d}}\omega) + (\overline{\mathfrak{d}}\mathfrak{a}) \wedge_{\mathfrak{q}} \omega$

Let $\{e^i\}_{i=1,\ldots,\ell}$ be the canonical basis of $W_1\simeq \mathbb{C}^\ell$ and

$$X_i := K_i K_{i+1} \dots K_\ell \hat{K}^{-1} [E_i, [E_{i+1}, \dots [E_{\ell-1}, E_\ell]_q]_q]_q \text{ , } \qquad i = 1, \dots, \ell \text{ ,}$$

where $[a, b]_q := ab - q^{-1}ba$. Then

$$X = \sum_{i} e^{i} X_{i} \in \mathcal{U}_{q}(\mathfrak{su}(\ell+1)) \boxtimes_{\sigma} W_{1}$$

(on the first leg we use the right adjoint action composed with S^{-1} .) By invariance of X,

$$\overline{\mathfrak{d}} := \sum_{\mathfrak{i}=1}^{\ell} \mathcal{L}_{\hat{\mathsf{K}}\mathsf{X}_{\mathfrak{i}}} \otimes \mathfrak{e}_{e^{\mathfrak{i}}}^{\mathsf{L}}$$

maps Ω_N^k in Ω_N^{k+1} . The X_i's satisfy some useful commutation rules, for example

$$(X\wedge_q X)_{i_1,i_2}=X_{i_1}X_{i_2}-q^{-1}X_{i_2}X_{i_1}=0\;,\qquad\text{for all }1\leqslant i_1< i_2\leqslant\ell\;,$$

together with associativity of \wedge_q implies $\bar{\partial}^2 = \sum_{i_1 < i_2} \mathcal{L}_{q\hat{K}^2(X \wedge_q X)}{}_{i_1,i_2} \otimes \mathfrak{e}_{e^{i_1}}^L \mathfrak{e}_{e^{i_2}}^L = 0$. Facts:

- $(\Omega^{\bullet}_{N}, \overline{\partial})$ is a left covariant cohomology complex;
- $(\Omega_0^{\bullet}, \bar{\partial})$ is a left covariant differential calculus;
- ▶ for all $a \in \mathcal{A}(\mathbb{CP}_q^{\ell})$ and $\omega \in \Omega_N^k$: $\overline{\vartheta}(a\omega) = a(\overline{\vartheta}\omega) + (\overline{\vartheta}a) \wedge_q \omega$.

Let $\{e^i\}_{i=1,\ldots,\ell}$ be the canonical basis of $W_1\simeq \mathbb{C}^\ell$ and

$$X_i := K_i K_{i+1} \dots K_\ell \hat{K}^{-1} [E_i, [E_{i+1}, \dots [E_{\ell-1}, E_\ell]_q]_q]_q \text{ , } \qquad i = 1, \dots, \ell \text{ ,}$$

where $[a, b]_q := ab - q^{-1}ba$. Then

$$X = \sum_{i} e^{i} X_{i} \in \mathcal{U}_{q}(\mathfrak{su}(\ell+1)) \boxtimes_{\sigma} W_{1}$$

(on the first leg we use the right adjoint action composed with S^{-1} .) By invariance of X,

$$\overline{\mathfrak{d}} := \sum_{\mathfrak{i}=1}^{\ell} \mathcal{L}_{\hat{\mathsf{K}}\mathsf{X}_{\mathfrak{i}}} \otimes \mathfrak{e}_{e^{\mathfrak{i}}}^{\mathsf{L}}$$

maps Ω_N^k in Ω_N^{k+1} . The X_i's satisfy some useful commutation rules, for example

$$(X \wedge_q X)_{i_1,i_2} = X_{i_1}X_{i_2} - q^{-1}X_{i_2}X_{i_1} = 0$$
 , for all $1 \leqslant i_1 < i_2 \leqslant \ell$,

together with associativity of \wedge_q implies $\bar{\partial}^2 = \sum_{i_1 < i_2} \mathcal{L}_{q\hat{K}^2(X \wedge_q X)_{i_1,i_2}} \otimes \mathfrak{e}_{e^{i_1}}^L \mathfrak{e}_{e^{i_2}}^L = 0$. Facts:

- $(\Omega^{\bullet}_{N}, \overline{\partial})$ is a left covariant cohomology complex;
- $(\Omega_0^{\bullet}, \overline{\partial})$ is a left covariant differential calculus;
- for all $a \in \mathcal{A}(\mathbb{CP}_q^{\ell})$ and $\omega \in \Omega_N^k$: $\overline{\vartheta}(a\omega) = a(\overline{\vartheta}\omega) + (\overline{\vartheta}a) \wedge_q \omega$.

Let $\{e^i\}_{i=1,\ldots,\ell}$ be the canonical basis of $W_1\simeq \mathbb{C}^\ell$ and

$$X_i := K_i K_{i+1} \dots K_\ell \hat{K}^{-1} [E_i, [E_{i+1}, \dots [E_{\ell-1}, E_\ell]_q]_q]_q \text{ , } \qquad i = 1, \dots, \ell \text{ ,}$$

where $[a, b]_q := ab - q^{-1}ba$. Then

$$X = \sum_{i} e^{i} X_{i} \in \mathcal{U}_{q}(\mathfrak{su}(\ell+1)) \boxtimes_{\sigma} W_{1}$$

(on the first leg we use the right adjoint action composed with S^{-1} .) By invariance of X,

$$\overline{\mathfrak{d}} := \sum_{\mathfrak{i}=1}^{\ell} \mathcal{L}_{\hat{\mathsf{K}}\mathsf{X}_{\mathfrak{i}}} \otimes \mathfrak{e}_{e^{\mathfrak{i}}}^{\mathsf{L}}$$

maps Ω_N^k in Ω_N^{k+1} . The X_i's satisfy some useful commutation rules, for example

$$(X\wedge_q X)_{i_1,i_2}=X_{i_1}X_{i_2}-q^{-1}X_{i_2}X_{i_1}=0\;,\qquad\text{for all }1\leqslant i_1< i_2\leqslant\ell\;,$$

together with associativity of \wedge_q implies $\bar{\partial}^2 = \sum_{i_1 < i_2} \mathcal{L}_{q\hat{K}^2(X \wedge_q X)_{i_1,i_2}} \otimes \mathfrak{e}_{e^{i_1}}^L \mathfrak{e}_{e^{i_2}}^L = 0$. Facts:

- $(\Omega_N^{\bullet}, \overline{\partial})$ is a left covariant cohomology complex;
- $(\Omega_0^{\bullet}, \overline{\partial})$ is a left covariant differential calculus;
- $\blacktriangleright \ \text{ for all } a \in \mathcal{A}(\mathbb{CP}_q^\ell) \text{ and } \omega \in \Omega_N^k \colon \ \bar{\eth}(a\omega) = a(\bar{\eth}\omega) + (\bar{\eth}a) \wedge_q \omega \,.$

Outline

Preliminary definitions

The quantum SU($\ell + 1$) group The QUEA $\mathcal{U}_q(\mathfrak{su}(\ell + 1))$ $S_q^{2\ell+1}$ and \mathbb{CP}_q^ℓ

2 K-theory and K-homology

K-theory K-homology

3 Antiholomorphic forms and real spectral triples

The quantum Grassmann algebra The algebra of forms Vector fields and the Dolbeault operator

4 From GDAs to spectral triples

Reality and the first order condition A family of spectral triples

Reality and the first order condition

The adjoint of $\overline{\partial}$ is

$$\begin{split} \bar{\mathfrak{d}}^{\dagger} &= \sum_{i=1}^{\ell} \mathcal{L}_{\mathbf{X}_{i}^{*}\hat{\mathbf{K}}} \otimes \mathfrak{i}_{e^{i}}^{L} \\ &\equiv -q^{N-k+1} \sum_{i=1}^{\ell} q^{-2i} \mathcal{L}_{S(\mathbf{X}_{i}^{*}\hat{\mathbf{K}})} \otimes \mathfrak{i}_{e^{i}}^{R} \, . \end{split}$$

An equivariant antilinear map $\mathcal{J}_0:\Omega_N^k\to\Omega_{\ell+1-N}^{\ell-k}$ is given by

 ${\mathcal J}_0:=(*\otimes J)({\mathcal L}_{K_{2\rho}^{-1}}\otimes id)$,

where $K_{2\rho} = (K_1^{\ell} K_2^{2(\ell-1)} \dots K_j^{j(\ell-j+1)} \dots K_{\ell}^{\ell})^2$.

Proposition

The antiunitary part \mathcal{J} of \mathcal{J}_0 satisfies

$$\begin{split} \text{(i)} \quad & \mathcal{J}^2 = (-1)^{\lfloor \frac{\ell+1}{2} \rfloor}; \\ \text{(ii)} \quad & \mathcal{J} a^* \mathcal{J}^{-1} \omega = \omega \cdot (K_{2\rho}^{\frac{1}{2}} \triangleright a) \text{ for all } \omega \in \Omega_N^k \text{ and } a \in \mathcal{A}(\mathbb{CP}_q^\ell) \\ \text{(iii)} \quad & \mathcal{J} \bar{\partial} \mathcal{J}^{-1}|_{\Omega_{2\rho}^k} = q^{k-N} \bar{\partial}^{\dagger}. \end{split}$$
Reality and the first order condition

The adjoint of $\overline{\partial}$ is

$$\begin{split} \bar{\mathfrak{d}}^{\dagger} &= \sum_{i=1}^{\ell} \mathcal{L}_{X_{i}^{*}\hat{K}} \otimes \mathfrak{i}_{e^{i}}^{L} \\ &\equiv -q^{N-k+1} \sum_{i=1}^{\ell} q^{-2i} \mathcal{L}_{S(X_{i}^{*}\hat{K})} \otimes \mathfrak{i}_{e^{i}}^{R} \, . \end{split}$$

An equivariant antilinear map $\mathcal{J}_0:\Omega_N^k\to\Omega_{\ell+1-N}^{\ell-k}$ is given by

 ${\mathcal J}_0:=(*\otimes J)({\mathcal L}_{K_{2\rho}^{-1}}\otimes id)$,

where $K_{2\rho} = (K_1^{\ell} K_2^{2(\ell-1)} \dots K_j^{j(\ell-j+1)} \dots K_{\ell}^{\ell})^2$.

Proposition

The antiunitary part \mathcal{J} of \mathcal{J}_0 satisfies

$$\begin{split} \text{(i)} \quad & \mathcal{J}^2 = (-1)^{\lfloor \frac{\ell+1}{2} \rfloor}; \\ \text{(ii)} \quad & \mathcal{J} a^* \mathcal{J}^{-1} \omega = \omega \cdot (K_{2\rho}^{\frac{1}{2}} \triangleright a) \text{ for all } \omega \in \Omega_N^k \text{ and } a \in \mathcal{A}(\mathbb{CP}_q^\ell \\ \text{(iii)} \quad & \mathcal{J} \bar{\partial} \mathcal{J}^{-1}|_{\Omega_{2\rho}^k} = q^{k-N} \bar{\partial}^{\dagger}. \end{split}$$

Reality and the first order condition

The adjoint of $\overline{\eth}$ is

$$\begin{split} \bar{\eth}^{\dagger} &= \sum_{i=1}^{\ell} \mathcal{L}_{X_i^* \hat{K}} \otimes i_{e^i}^L \\ &\equiv -q^{N-k+1} \sum_{i=1}^{\ell} q^{-2i} \mathcal{L}_{S(X_i^* \hat{K})} \otimes i_{e^i}^R \, . \end{split}$$

An equivariant antilinear map $\mathcal{J}_0:\Omega_N^k\to\Omega_{\ell+1-N}^{\ell-k}$ is given by

$$\mathcal{J}_{0} := (* \otimes J)(\mathcal{L}_{K_{2\rho}^{-1}} \otimes id)$$
 ,

where
$$K_{2\rho}=(K_1^\ell K_2^{2(\ell-1)}\ldots K_j^{j(\ell-j+1)}\ldots K_\ell^\ell)^2.$$

Proposition

The antiunitary part \mathcal{J} of \mathcal{J}_0 satisfies

$$\begin{split} \text{(i)} \quad & \mathcal{J}^2 = (-1)^{\lfloor \frac{\ell+1}{2} \rfloor}; \\ \text{(ii)} \quad & \mathcal{J} \alpha^* \mathcal{J}^{-1} \omega = \omega \cdot (K_{2\rho}^{\frac{1}{2}} \triangleright \alpha) \text{ for all } \omega \in \Omega_N^k \text{ and } \alpha \in \mathcal{A}(\mathbb{C}) \\ \text{(iii)} \quad & \mathcal{J} \overline{\partial} \mathcal{J}^{-1}|_{\Omega_{\mathcal{K}}^k} = q^{k-N} \overline{\partial}^{\dagger}. \end{split}$$

Reality and the first order condition

The adjoint of $\overline{\eth}$ is

$$\begin{split} \bar{\eth}^{\dagger} &= \sum_{i=1}^{\ell} \mathcal{L}_{X_i^* \hat{K}} \otimes i_{e^i}^L \\ &\equiv -q^{N-k+1} \sum_{i=1}^{\ell} q^{-2i} \mathcal{L}_{S(X_i^* \hat{K})} \otimes i_{e^i}^R \, . \end{split}$$

An equivariant antilinear map $\mathcal{J}_0:\Omega_N^k\to \Omega_{\ell+1-N}^{\ell-k}$ is given by

$${\mathcal J}_0:=(*\otimes J)({\mathcal L}_{K_{2\rho}^{-1}}\otimes id)$$
 ,

where $K_{2\rho}=(K_1^\ell K_2^{2(\ell-1)}\ldots K_j^{j(\ell-j+1)}\ldots K_\ell^\ell)^2.$

Proposition

The antiunitary part \mathcal{J} of \mathcal{J}_0 satisfies

$$\begin{split} \text{(i)} \quad & \mathcal{J}^2 = (-1)^{\lfloor \frac{\ell+1}{2} \rfloor}; \\ \text{(ii)} \quad & \mathcal{J} \alpha^* \mathcal{J}^{-1} \omega = \omega \cdot (K_{2\rho}^{\frac{1}{2}} \triangleright \alpha) \text{ for all } \omega \in \Omega_N^k \text{ and } \alpha \in \mathcal{A}(\mathbb{CP}_q^\ell) \\ \text{(iii)} \quad & \mathcal{J} \bar{\partial} \mathcal{J}^{-1}|_{\Omega_N^k} = q^{k-N} \bar{\partial}^{\dagger}. \end{split}$$

Data:

- $\gamma_N := +1$ on even forms and -1 on odd forms;
- $\mathcal{A}(\mathbb{CP}_q^{\ell})$ acts by left multiplication on Ω_N^{\bullet} (completed to bounded operators);
- \mathcal{J} extends to an (antilinear) isometry $\mathcal{H}_N \to \mathcal{H}_{\ell+1-N}$;
- $\bullet\,$ an unbounded densely defined symmetric operator D_N on \mathcal{H}_N is

$$D_N := q^{\frac{1}{2}(k-N)}\bar{\eth} + q^{\frac{1}{2}(k-N-1)}\bar{\eth}^{\dagger}$$

and satisfies $\mathcal{J}D_N = D_{\ell+1-N}\mathcal{J}$ on Ω^{\bullet}_N . For q = 1:

- $D_0 = Dolbeault-Dirac operator,$
- $D_N =$ twist of D_0 with the Grassmannian connection Ω_N^0 ,
- $D_{\frac{1}{2}(\ell+1)} = Dirac$ operator of the Fubini-Study metric (for odd ℓ).

Theorem

Data:

- $\gamma_N := +1$ on even forms and -1 on odd forms;
- $\mathcal{A}(\mathbb{CP}_q^{\ell})$ acts by left multiplication on Ω_N^{\bullet} (completed to bounded operators);
- \mathcal{J} extends to an (antilinear) isometry $\mathcal{H}_N \to \mathcal{H}_{\ell+1-N}$;
- $\bullet\,$ an unbounded densely defined symmetric operator D_N on \mathcal{H}_N is

$$D_N := q^{\frac{1}{2}(k-N)}\bar{\vartheta} + q^{\frac{1}{2}(k-N-1)}\bar{\vartheta}^{\dagger}$$

and satisfies $\mathcal{J}D_N = D_{\ell+1-N}\mathcal{J}$ on Ω^{\bullet}_N . For q = 1:

- $D_0 = Dolbeault-Dirac operator,$
- $D_N =$ twist of D_0 with the Grassmannian connection Ω_N^0
- $D_{\frac{1}{2}(\ell+1)} = Dirac$ operator of the Fubini-Study metric (for odd ℓ).

Theorem

Data:

- $\gamma_N := +1$ on even forms and -1 on odd forms;
- $\mathcal{A}(\mathbb{CP}_q^{\ell})$ acts by left multiplication on Ω_N^{\bullet} (completed to bounded operators);
- \mathcal{J} extends to an (antilinear) isometry $\mathcal{H}_N \to \mathcal{H}_{\ell+1-N}$;
- $\bullet\,$ an unbounded densely defined symmetric operator D_N on \mathcal{H}_N is

$$\mathsf{D}_\mathsf{N} := q^{\frac{1}{2}(k-\mathsf{N})}\bar{\eth} + q^{\frac{1}{2}(k-\mathsf{N}-1)}\bar{\eth}^\dagger$$

and satisfies $\mathcal{J}D_N = D_{\ell+1-N}\mathcal{J}$ on Ω^{\bullet}_N . For q = 1:

- $D_0 = Dolbeault-Dirac operator,$
- $D_N =$ twist of D_0 with the Grassmannian connection Ω_N^0
- $D_{\frac{1}{2}(\ell+1)} = Dirac$ operator of the Fubini-Study metric (for odd ℓ).

Theorem

Data:

- $\gamma_N := +1$ on even forms and -1 on odd forms;
- $\mathcal{A}(\mathbb{CP}_q^{\ell})$ acts by left multiplication on Ω_N^{\bullet} (completed to bounded operators);
- \mathcal{J} extends to an (antilinear) isometry $\mathcal{H}_N \to \mathcal{H}_{\ell+1-N}$;
- $\bullet\,$ an unbounded densely defined symmetric operator D_N on \mathcal{H}_N is

 $\mathsf{D}_\mathsf{N} := \mathsf{q}^{\frac{1}{2}(k-\mathsf{N})}\bar{\partial} + \mathsf{q}^{\frac{1}{2}(k-\mathsf{N}-1)}\bar{\partial}^{\dagger}$

and satisfies $\mathcal{J}D_N = D_{\ell+1-N}\mathcal{J}$ on Ω^{\bullet}_N . For q = 1:

- $D_0 = Dolbeault-Dirac operator,$
- $D_N =$ twist of D_0 with the Grassmannian connection Ω_N^0
- $D_{\frac{1}{2}(\ell+1)} = Dirac$ operator of the Fubini-Study metric (for odd ℓ).

Theorem

Data:

- $\gamma_N := +1$ on even forms and -1 on odd forms;
- $\mathcal{A}(\mathbb{CP}_q^{\ell})$ acts by left multiplication on Ω_N^{\bullet} (completed to bounded operators);
- \mathcal{J} extends to an (antilinear) isometry $\mathcal{H}_N \to \mathcal{H}_{\ell+1-N}$;
- $\bullet\,$ an unbounded densely defined symmetric operator D_N on ${\mathcal H}_N$ is

$$\mathsf{D}_\mathsf{N} := \mathsf{q}^{\frac{1}{2}(k-\mathsf{N})}\bar{\eth} + \mathsf{q}^{\frac{1}{2}(k-\mathsf{N}-1)}\bar{\eth}^\dagger$$

and satisfies $\mathcal{J}D_N = D_{\ell+1-N}\mathcal{J}$ on Ω^{ullet}_N . For q = 1:

- $\blacktriangleright D_0 = Dolbeault-Dirac operator,$
- $D_N =$ twist of D_0 with the Grassmannian connection Ω_N^0 ,
- ▶ $D_{\frac{1}{2}(\ell+1)} = Dirac$ operator of the Fubini-Study metric (for odd ℓ).

Theorem

Data:

- $\gamma_N := +1$ on even forms and -1 on odd forms;
- $\mathcal{A}(\mathbb{CP}_q^{\ell})$ acts by left multiplication on Ω_N^{\bullet} (completed to bounded operators);
- \mathcal{J} extends to an (antilinear) isometry $\mathcal{H}_N \to \mathcal{H}_{\ell+1-N}$;
- $\bullet\,$ an unbounded densely defined symmetric operator D_N on ${\mathcal H}_N$ is

$$\mathsf{D}_\mathsf{N} \coloneqq \mathsf{q}^{\frac{1}{2}(k-\mathsf{N})}\bar{\eth} + \mathsf{q}^{\frac{1}{2}(k-\mathsf{N}-1)}\bar{\eth}^\dagger$$

and satisfies $\mathcal{J}D_N = D_{\ell+1-N}\mathcal{J}$ on Ω^{ullet}_N . For q = 1:

- D₀ = Dolbeault-Dirac operator,
- $D_N =$ twist of D_0 with the Grassmannian connection Ω_N^0 ,
- ▶ $D_{\frac{1}{2}(\ell+1)}$ = Dirac operator of the Fubini-Study metric (for odd ℓ).

Theorem

Data:

- $\gamma_N := +1$ on even forms and -1 on odd forms;
- $\mathcal{A}(\mathbb{CP}_q^{\ell})$ acts by left multiplication on Ω_N^{\bullet} (completed to bounded operators);
- \mathcal{J} extends to an (antilinear) isometry $\mathcal{H}_N \to \mathcal{H}_{\ell+1-N}$;
- $\bullet\,$ an unbounded densely defined symmetric operator D_N on ${\mathcal H}_N$ is

$$\mathsf{D}_\mathsf{N} \coloneqq \mathsf{q}^{\frac{1}{2}(k-\mathsf{N})}\bar{\eth} + \mathsf{q}^{\frac{1}{2}(k-\mathsf{N}-1)}\bar{\eth}^\dagger$$

and satisfies $\mathcal{J}D_N = D_{\ell+1-N}\mathcal{J}$ on Ω^{ullet}_N . For q = 1:

- ► D₀ = Dolbeault-Dirac operator,
- D_N = twist of D_0 with the Grassmannian connection Ω_N^0 ,

▶ $D_{\frac{1}{2}(\ell+1)}$ = Dirac operator of the Fubini-Study metric (for odd ℓ).

Theorem

Data:

- $\gamma_N := +1$ on even forms and -1 on odd forms;
- $\mathcal{A}(\mathbb{CP}_q^{\ell})$ acts by left multiplication on Ω_N^{\bullet} (completed to bounded operators);
- \mathcal{J} extends to an (antilinear) isometry $\mathcal{H}_N \to \mathcal{H}_{\ell+1-N}$;
- $\bullet\,$ an unbounded densely defined symmetric operator D_N on ${\mathcal H}_N$ is

$$\mathsf{D}_\mathsf{N} \coloneqq \mathsf{q}^{\frac{1}{2}(k-\mathsf{N})}\bar{\eth} + \mathsf{q}^{\frac{1}{2}(k-\mathsf{N}-1)}\bar{\eth}^\dagger$$

and satisfies $\mathcal{J}D_N = D_{\ell+1-N}\mathcal{J}$ on $\Omega^{ullet}_N.$ For q = 1:

- ► D₀ = Dolbeault-Dirac operator,
- D_N = twist of D_0 with the Grassmannian connection Ω_N^0 ,
- ▶ $D_{\frac{1}{2}(\ell+1)} = Dirac$ operator of the Fubini-Study metric (for odd ℓ).

Theorem

Data:

- $\gamma_N := +1$ on even forms and -1 on odd forms;
- $\mathcal{A}(\mathbb{CP}_q^{\ell})$ acts by left multiplication on Ω_N^{\bullet} (completed to bounded operators);
- \mathcal{J} extends to an (antilinear) isometry $\mathcal{H}_N \to \mathcal{H}_{\ell+1-N}$;
- $\bullet\,$ an unbounded densely defined symmetric operator D_N on ${\mathcal H}_N$ is

$$\mathsf{D}_\mathsf{N} \coloneqq \mathsf{q}^{\frac{1}{2}(k-\mathsf{N})}\bar{\eth} + \mathsf{q}^{\frac{1}{2}(k-\mathsf{N}-1)}\bar{\eth}^\dagger$$

and satisfies $\mathcal{J}D_N = D_{\ell+1-N}\mathcal{J}$ on $\Omega^{ullet}_N.$ For q = 1:

- ► D₀ = Dolbeault-Dirac operator,
- D_N = twist of D_0 with the Grassmannian connection Ω_N^0 ,
- ▶ $D_{\frac{1}{2}(\ell+1)} = Dirac$ operator of the Fubini-Study metric (for odd ℓ).

Theorem

 $(\mathcal{A}(\mathbb{CP}_q^\ell),\mathfrak{H}_N,D_N,\gamma_N) \text{ is a } 0^+ \text{-dimensional equivariant even spectral triple. If } \ell \text{ is odd and } N = \frac{1}{2}(\ell+1), \text{ the spectral triple is real with KO-dimension } 2\ell \mod 8.$

References

F. D'A. and L. Dąbrowski,

Dirac operators on quantum projective spaces,

preprint [arXiv:0901.4735].

F. D'A. and G. Landi,

Bounded and unbounded Fredholm modules for quantum projective spaces, preprint [arXiv:0903.3553], to appear on Journal of K-theory.