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Introduction
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Introduction

A case study: the standard Podle$ sphere Sﬁ = SUq4(2)/U(1) (here 0 < g < 1).

> L. Dabrowski — A. Sitarz

i < e P i Hil
Dirac operator on the standard Podles feslaEe il SEee 4

SU,(2) equivariance = unique
real spectral triple (modulo
equivalences).

quantum sphere

n —n

K. Schmiidgen — E. Wagner @ Spectrum(D) =
Dirac operator and a twisted cyclic cocycle with [n], == 9
on the standard Podles quantum sphere

{:l: Tl }n>1
—q

q—q—1 -
@ The spectrum of D diverges
exponentially ~~ the resolvent
R. Oeckl (D? + m?2)~! of the Laplacian is

Braided Quantum Field Theory of trace class. J
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Introduction

A case study: the standard Podle$ sphere Sﬁ = SUq4(2)/U(1) (here 0 < g < 1).

L. Dgbrowski — A. Sitarz
Dirac operator on the standard Podles
quantum sphere

@ The representation in DS
spectral triple is the direct sum
of two copies of the left regular

representation.
» K. Schmiidgen — E. Wagner @ Generators of Uq(su(2)) are
Dirac operator and a twisted cyclic cocycle (external) derivations on S2.
on the standard Podles quantum sphere With these one constructs D.

@ D? is proportional to the Casimir
R. Oeckl of Uq(su(2)): this explains why
eigenv. diverge exponentially.

Braided Quantum Field Theory
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Introduction

A case study: the standard Podle$ sphere Sﬁ = SUq4(2)/U(1) (here 0 < g < 1).

L. Dgbrowski — A. Sitarz
Dirac operator on the standard Podles
quantum sphere

@ On S2 the tadpole diagram
— the only basic divergence of
¢®* theory in 2D — becomes

finite at q # 1.
K. Schmidgen — E. Wagner ~ Reason: the propagator
Dirac operator and a twisted cyclic cocycle (D2 + m2)~! is of trace class.

on the standard Podles quantum sphere
quantum sp @ Regularization of QFT with

quantum groups symmetries:
» R. Oeckl what about higher dimensional

Braided Quantum Field Theory spaces?
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The quantum SU({ + 1) group

)
a Hopf x-algebra A(G). As abstract x-algebra it is defined by the relations

Let { > 1. For G:=SU(l+ 1), the functions ul : G — C, |ul(g):= g} |, generate

i,k ki _ el 1 2 0+1 _
(1) Ujuy =uguy, Zpes(“( D™y ug ) - - Upiern =1,

where |[p]| = length of the permutation p € S, 1, and with *-structure
s j—i llpll, K k k
@) ()= (=07 ) D g

where {ki,..., ke ={1,..., ¢+ 1}~ {i} and {nyg, ..., e} ={1, ..., 0+ 1} {j} (as
ordered sets). Coproduct, counit and antipode are of ‘matrix type’

Auj) =) wou, e =8, Su)=(u)".
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The quantum SU(£ + 1) group

Let { > 1. For G:=SU(l+ 1), the functions u!: G — C, , generate
a Hopf x-algebra A(G). As abstract x-algebra it is defined by the relations

i,k _ .k [[pll,,1 2 +1 —
(1) u}ul = ulu} ' Zpes(“(_l] v Upm)Up(2) - - Wpe1) = 1,
where |[p]| = length of the permutation p € S, 1, and with *-structure
e (1)t _1)lIplly k2 k2 k¢
@ (w)" =(-1) Zpese( DUt Ytna) - Uplng)

where {ki,.... kel ={1,... . 0+ 1}~ {i} and {ny,...,ng} ={1,..., 0+ 1} {j} (as
ordered sets). Coproduct, counit and antipode are of ‘matrix type’

iy i k i) _ «i iy j\*
Awh) =Y uleuf, e =8, Sub)=(u)".
Similarly coproduct, counit and antipode of A(G), , are given by the
same formulas above, while (1) and (2) becomes:
RY (@) ukul, = wuiRE (g) ZDESHI(—CI)”"“u;(l)ui(z) b, =1,
k1 k2 ke

iy _ (_)i—t _ )\ lpll
(w)* = (~q) Zpesz( )P W) - Yy
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The QUEA Uq (su( + 1))

Symmetries are described by the Hopf x-algebra U, (su({ + 1)), generated by
¢, with Ky = K7, F; = E, and relations ( a;; = Cartan matrix )

{Ki, K4 B Fidion,
KiKl=0, KEK*=q/2E, [ Fl=8,5 50
EE—(q+q YEEE +EE2=0 ifli-jl=1, [E,El=0 ifli—jl>1.
Coproduct, counit and antipode are given by (withi=1,...,{)
A(Ki) =Ki ® Ky, A(E) =E ®Ki+K '@ E;,
S(Ki) =K', S(Ei) = —qE; .

e(Ki)=1, ¢(E) =0,
~+ With K; = gqHt, at the 0-th order in h := log q one gets Serre’s presentation of U (su(£+1))
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The QUEA U (su(f + 1))

Symmetries are described by the Hopf x-algebra U, (su({ + 1)), generated by
¢, with Ky = K7, F; = Ef, and relations ( a;; = Cartan matrix )

{Ki, K4 B Fidion,
KiKl=0, KEK*=q/2E, [ Fl=8,5 50
EE—(q+q YEEE +EE2=0 ifli-jl=1, [E,El=0 ifli—jl>1.
Coproduct, counit and antipode are given by (withi=1,...,{)
A(Ki) =Ki ® Ky, A(E) =E ®Ki+K '@ E;,
S(Ki) =K', S(Ei) = —qE; .

e(Ky) =1, e(Ey) =0,

~+ With K; = q'i, at the 0-th order in h := log q one gets Serre’s presentation of U (su(£+1)).
-1 18 Uq (su(L));

The Hopf x-subalgebra with generators {Ki, Ei, Fi}i—12
its commutant is generated by K; K2 ... K{. We enlarge the algebra with

K= (KiK3. Kg)%“ '

and its inverse, and call U, (u(£)) the algebra generated by U, (su(f)), K and K—1.
5/23
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A(SUq4(L + 1)) as a function algebra

The set of linear maps U, (su(f + 1)) — C is a Hopf *-algebra with operations dual to
those of U4 (su(f + 1)). For f, g two such linear maps we define the product by

(f-g)(x) =1f(x))alx@z) VxeUqg(su(l+1)),

the unity is the map 1(x) := ¢(x), coproduct, counit, antipode and x-involution are

Alf)xy)="flxy),  e(f):==1(1),  SH)x)=1F(S(K)),  x):=1(S(x)*).
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A(SUq4(L + 1)) as a function algebra

The set of linear maps U, (su(f + 1)) — C is a Hopf *-algebra with operations dual to
those of U4 (su(f + 1)). For f, g two such linear maps we define the product by

(f-g)(x) =1f(x))alx@z) VxeUqg(su(l+1)),

the unity is the map 1(x) := ¢(x), coproduct, counit, antipode and x-involution are

A(f)(x,y) = f(xy) , e(f) :==1(1), S(f)(x) == 1(S(x)), *(x) == f(S(x)*) .

The Hopf x-subalgebra generated by the matrix elements of type 1 irreps is A(SUq (£ + 1)).
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A(SUq4(L + 1)) as a function algebra

The set of linear maps U, (su(f + 1)) — C is a Hopf *-algebra with operations dual to
those of U4 (su(f + 1)). For f, g two such linear maps we define the product by

(f-g)(x) =1f(x))alx@z) VxeUqg(su(l+1)),

the unity is the map 1(x) := ¢(x), coproduct, counit, antipode and x-involution are

Alf)xy)="flxy),  e(f):==1(1),  SH)x)=1F(S(K)),  x):=1(S(x)*).

The Hopf x-subalgebra generated by the matrix elements of type 1 irreps is A(SUq (£ + 1)).
The algebra A(SUq (£ + 1)) is a U (su(f 4 1))-bimodule *x-algebra for the actions:

(x> f)(y) = f(yx) and (f<ax)(y) = f(xy) .
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A(SUq4(L + 1)) as a function algebra

The set of linear maps U, (su(f + 1)) — C is a Hopf *-algebra with operations dual to
those of U4 (su(f + 1)). For f, g two such linear maps we define the product by

(f-g)(x) =1f(x))alx@z) VxeUqg(su(l+1)),

the unity is the map 1(x) := ¢(x), coproduct, counit, antipode and x-involution are

Alf)xy)="flxy),  e(f):==1(1),  SH)x)=1F(S(K)),  x):=1(S(x)*).

The Hopf x-subalgebra generated by the matrix elements of type 1 irreps is A(SUq (£ + 1)).
The algebra A(SUq (£ + 1)) is a U (su(f 4 1))-bimodule *x-algebra for the actions:

(x> f)(y) = f(yx) and (f<ax)(y) = f(xy) .

If L,f:=f<S71(x), the two left actions > and L are unitary w.r.t. the inner product (, )
associated to the Haar state h : A(SU4 (¢ + 1)) — C:

(f.g):==h(f"g).
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$241 and CP,
The algebra of ‘functions’ on Sff“ is the left U (su(€ 4 1))-module *-algebra

A(S2H41) 1= A(SUq (€ + 1)) aleu®)
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$241 and CP,
The algebra of ‘functions’ on $2** is the left U, (su(£ + 1))-module *-algebra

A(S2H41) 1= A(SUq (€ + 1)) aleu®)

It is generated by ,i=0,...,¢ with relations

ZiZj:qilljZi V0<1<)<€,
zizj = qzjz{ Vi#i,
¢
* _ 2 * s —
[zi,zi]—(lfq)zj:iﬂzjzj vi=0,...,n—1,
(27,2 =0,

zozg+ 2127+ ...+ zezf = 1.
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S+ and (CIP’ﬁl
The algebra of ‘functions’ on $2** is the left U, (su(£ + 1))-module *-algebra

A(S28) = A(SUq (€ + 1)) aleu®)

It is generated by m ,i=0,...,¢ with relations

ZiZj:qilljZi V0<1<)<€,
zizj = qzjz{ Vi#i,
¢
* _ 2 * s —
[zi,zi]—(lfq)zj:iﬂzjzj vi=0,...,n—1,
(27,2 =0,

zozg+ 2127+ ...+ zezf = 1.
The algebra of ‘functions’ on (CIPﬁ is the left Uq (su(€ + 1))-module x-algebra
A(CPY) = A(SUq (L+ 1)) = A(S20H)H0)
Francesco D’Andrea (UCL)
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S+ and (CIP’ﬁl
The algebra of ‘functions’ on $2** is the left U, (su(£ + 1))-module *-algebra

.A(Sf]eJrl) = _A(Suq (s 1))uq(5u(()] .

It is generated by m ,i=0,...,¢ with relations

ZiZj:qilljZi V0<1<)<€,
zizj = qzjz{ Vi#i,
¢
* _ 2 * s —
[zi,zi]—(lfq)zj:iﬂzjzj vi=0,...,n—1,
(27,2 =0,

Zozg + 212y + ... Fzezp =1
The algebra of ‘functions’ on (CIPﬁ is the left Uq (su(€ + 1))-module x-algebra
A(CPY) = A(SUq (L+ 1)) = A(S20H)H0)

It is generated by the matrix entries of a projection.
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Outline

@® K-theory and K-homology
K-theory
K-homology
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K-theory

Some notations:

[O]qlzly [n]qlz [Tl]q[n—l]ql Vn}l,

) . Go+.- +inlgd . )
= ——=——"""—+ Vijo,....in 20.
lio )n]q [)o]q!---[]n]q! Jo In
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K-theory

Some notations:

0l4!:=1, Mgli=Mmlg-m—14! vn>1,

veeednlgl = S Vg, dn 2 0.
o inlq Bolal- Gulq! jo j

For N >0 let Wy = (PN je) be the vector-valued ‘function’ on S?f“ with components

JOseens
. . 11 S S\ % . .
fovie = lore o ddgt2qm 2 ZrasIis (it z0)" Vio+...+je=N,
. . 1 1 s ¢ i j . .
1];];’?_1__'].5 = []0'___’Je]q!"l’qzl’Zr<s]rls+Zr=oT‘)ng)0”.Zy , v]0+---+)€ - N.
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K-theory

Some notations:

0l4!:=1, Mgli=Mmlg-m—14! vn>1,
o+ ... +inlq!

. 3 V= o —
os -+ inla! : Gola! .- Gnlq!

Vo, ..jn 2 0.

For N > 0let Wn = (V) ;,) be the vector-valued ‘function’ on S2t+ with components

. . 11 i 5o iy . .

Jornje = Dov- s jelglZq 2 Zr=s T (20 z0)" Viot+...+ie=N,
. 411 S PO ; . .

Ip;oN L= []0'___’]e]q!"l’q;Zr<s]sz+Zr=o‘r‘)ng)0___ZJZZ’ Vie+...+je=N.

Proposition
ForallN € Z, ‘PL‘PN = 1. Thus, PN = ‘PN‘PL are projections with entries in A((CIP’f] ). J
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K-theory

Some notations:

0l4!:=1, Mgli=Mmlg-m—14! vn>1,
. . o+ - +inlg! . .
[,..., ]I::.iq V R >0
Jo Inlq []O]ql[]n]ql Jo In 2
ForN > 0letWn = (1]);‘(‘) ..... je) be the vector-valued ‘function’ on S?f“ with components
Mg =lio gt ERe=s s ()0 20y Viot...+je=N,

. S 1 i s [ j . .
d)j’oN 5, = []0,...,]@]q!2q2Zf<$’”s+Zr=°”ng,°...z’/ , Vijo+.-.+je=N.

Proposition
ForallN € Z, ‘PL‘PN = 1. Thus, PN = ‘PN‘PL are projections with entries in A((CIP’f] ). J

We know that KO(CIP’f]) ~ 7Z'*! and Kl((CIP’g) = 0. We'll see that {[Pol, [P_1], ..., [P_¢]}
are generators of Kq. In fact, {Pn}nez are representatives of the equivariant Ko group.
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K-homology |: representations

Herel<n<{ Letm=(my,...,m,) €N"and, for0 <i<k < n,let

itimes k—1 times n—k times

” —— Y
& =(0,0,...,0,1,1,...,1,0,0,...,0) .

Let 3, := (3(N"), with orth. basis |m).
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K-homology |: representations

Herel<n<{ Letm=(my,...,m,) €N"and, for0 <i<k < n,let
1times k—1i times n—k times
" ——— ——
& :=(0,0,...,0,1,1,...,1,0,0,...,0).
Let 3, := (3(N"), with orth. basis |m).

Forany 0 < k < n, a *-rep. nf‘) D A(S2M) — B(H, ) is defined as follows: n‘f‘) (zi) =0
for alli > k > 1, while for the remaining generators (with notation mq := 0)

Y (zi) lm) = g™ /1 — @M met D | m gl | VO<i<k-—1,

M (z) Im) = q™* [m)

on the subspace linear span of basis vectors |m) satisfying the restrictions
O<m <my <. <y, M1 > Miyz > ... > My 20,

and they are zero on the orthogonal subspace.
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K-homology Il: Fredholm modules

Since K°(CP) ~ Z**+! (and K*(CP",) = 0) we look for £ + 1 even Fredholm modules.
q q
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K-homology Il: Fredholm modules

Since K°((CIP’€) ~ Z** (and Kl((C]P’g) = 0) we look for £ + 1 even Fredholm modules.

1st = pull-back of the unique non-trivial even Fred. mod. of C, via the only char. of A(CIPQ ).
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K-homology Il: Fredholm modules

Since K°((CIP’€) ~ Z** (and Kl((C]P’g) = 0) we look for £ + 1 even Fredholm modules.

1st = pull-back of the unique non-trivial even Fred. mod. of C, via the only char. of A(CIPQ ).

Lemma For[j —k| > 1, and for all a, b € A(S2"**), we have n§“)(a) ™ (b) = 0. J
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K-homology Il: Fredholm modules

Since K°((CIP’f1) ~ Z** (and Kl((CIP’g) = 0) we look for £ + 1 even Fredholm modules.

1st = pull-back of the unique non-trivial even Fred. mod. of C, via the only char. of A(CIPQ ).

Lemma For[j —k| > 1, and for all a, b € A(S2"**), we have n§“)(a) ™ (b) = 0. J

As a corollary, we have two x-reps n(i“] :A(Sﬁ““) — B(H,)

n(f)(a) = Z nL“)(a), 7™ (a) = Z ni“](a).

o<k<n o<k<n
k even k odd
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K-homology Il: Fredholm modules

Since K°((CIP’f1) ~ Z** (and Kl((CIP’g) = 0) we look for £ + 1 even Fredholm modules.

1st = pull-back of the unique non-trivial even Fred. mod. of C, via the only char. of A(CIPQ ).

Lemma For[j —k| > 1, and forall a,b € A(S2**!), we have n§“)(a) ™ (b) = 0.

J

As a corollary, we have two x-reps n(i“] :A(Sﬁ““) — B(H,)

n(f)(a) = Z nL“)(a), 7™ (a) = Z ni(“](a).

o<k<n o<k<n
k even k odd

Proposition

7™ (a) =™ (a) € L1(HK,) forall a € A(CPY).
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K-homology Il: Fredholm modules

Since K°((CIP’f1) ~ Z** (and Kl((CIP’g) = 0) we look for £ + 1 even Fredholm modules.

1st = pull-back of the unique non-trivial even Fred. mod. of C, via the only char. of A(CIPQ ).

Lemma For[j —k| > 1, and for all a, b € A(S2"**), we have n§“)(a) ™ (b) = 0. J

As a corollary, we have two x-reps n(i“] :A(Sf]““) — B(H,)

n(f)(a) = Z n,((“)(a), 7™ (a) = Z HL“](a).

o<k<n o<k<n
k even k odd

Proposition
™ (a) — ™ (a) € LY () forall a € A(CPY). J

For n =1,...,{ al-summable Fredholm module is given on H,, & H,, by the (restriction
of) the rep. m, @&, grading vy, =1® —1,and F,(v®w):=wdv.
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Pairing between K-theory and K-homology

Proposition

If i, 0 < n < ¢, denotes the n-th Fredholm module previously introduced, we have

([n], [P_N]) = Trge, () — ™) (TrP_n) = (V) ,

n

for allN € N, where (%) := 0 whenn > N.
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Pairing between K-theory and K-homology

Proposition

If i, 0 < n < ¢, denotes the n-th Fredholm module previously introduced, we have

([tn], [P_N]) i= Trg, (™ — ™) (TrPn) = (V)

n

for allN € N, where (%) := 0 whenn > N.

Proof.
In 3 steps:

1st) the pairing ([t.], [P_n]) as a function of g is continuous (it is given by a series that is
absolutely convergent for 0 < q < 1);

2nd) the pairing is integer being the index of a Fredholm operator, and a continuous
function [0, 1) — Z is constant;

3rd) compute it in the limit ¢ — 0.

O

v
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Pairing between K-theory and K-homology

Proposition

The elements [uel, - . ., [u] are generators of K° (A((CIP‘f1 )), and the elements
[Pol, ..., [P_,] are generators of K, (A(CIPﬁ)).
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Pairing between K-theory and K-homology

Proposition

The elements [uel, - . ., [u] are generators of K° (/l(CIF"f1 )), and the elements
[Pol, ..., [P_¢] are generators of Ko(A(CP})).

Proof.
The matrix M with entries My; := ([uil, [P—;]) is in GL¢41(Z), the inverse being

(M Dy =(=D"(0).

ys

Thus, the elements above are a basis of Z™ ! as a Z-module, i.e. they generate Z™ ! as
abelian group. O

v
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Pairing between K-theory and K-homology

Proposition

The elements [1], . . -, [1e] are generators of K° (A((CIP’g )), and the elements
[Pol, ..., [P_] are generators of Ko(A(CPY,)).

Proof.

The matrix M with entries My; := ([uil, [P—;]) is in GL¢41(Z), the inverse being

(M Dy =(=D"(0).

ys

Thus, the elements above are a basis of Z™ ! as a Z-module, i.e. they generate Z™ ! as
abelian group. O

v

Remark: the Fredholm module w, can be realized as ‘conformal class’ of a regular spectral
triple (A(CIP’ﬁ), H,, ®H,,D) —ie. Fp:=D|D|"! — of any summability d € R™.

Next: a ‘geometric’ Dirac operator (0" -summable and real) is discussed in the following.
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@® Antiholomorphic forms and real spectral triples
The quantum Grassmann algebra
The algebra of forms
Vector fields and the Dolbeault operator
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Homogeneous vector bundles over (CIP’g

Let o: Uq(u(€)) — End(C™) be a *-representation. The set

M(o) =A(SUq(¢+1)) K, C™
= {v e A(SU (L +1)" ’{Lxm ® o(x2))v=€e(x)v Vx € uq(u(f))} ,

is an A(CPy, )-bimodule and a left A(CP) x Uq (su(f + 1))-module.
It is the analogue of (sections of) an homogeneous vector bundle of rank n over (C]P’fl.
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Homogeneous vector bundles over (CIP"ﬁI

Let o: Uq(u(€)) — End(C™) be a *-representation. The set

M(o) =A(SUq(¢+1)) K, C™
= {v e A(SU (L +1)" ’{Lxm ® o(x2))v=€e(x)v Vx € uq(u(f])} ,

is an A(CPy, )-bimodule and a left A(CP) x Uq (su(f + 1))-module.
It is the analogue of (sections of) an homogeneous vector bundle of rank n over (C]P’fl.

A non-degenerate inner product is induced by the canonical one on A((CIP’f] "

(v, w) = l h(viw;)
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Homogeneous vector bundles over CP

Let o: Uq(u(€)) — End(C™) be a *-representation. The set

M(o) =A(SUq(¢+1)) K, C™
= {v e A(SU (L +1)" ’{Lxm ® o(x2))v=€e(x)v Vx € uq(u(f])} ,

is an A(CPy, )-bimodule and a left A(CP) x Uq (su(f + 1))-module.
It is the analogue of (sections of) an homogeneous vector bundle of rank n over (C]P’fl.

A non-degenerate inner product is induced by the canonical one on A((CIP’f] "

(v, w) = l h(viw;)

Which o gives the bimodule of antiholomorphic forms?
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Homogeneous vector bundles over CP

Let o: Uq(u(€)) — End(C™) be a *-representation. The set
M(o) = A(SU4(L+1)) X, C™
={veASUg+1)" }{Lxm ® o(x(2)) v =€e(x)v Vx € Uq(u(t))},

is an A((C]P"é)-bimodule and a left A((CIF";) x Ugq (su(€ + 1))-module.
It is the analogue of (sections of) an homogeneous vector bundle of rank n over (C]P’g.

A non-degenerate inner product is induced by the canonical one on A((C]P’f] "

(v, w) = ?:1 h(viw;)

Which o gives the bimodule of antiholomorphic forms?

U, (u(0)) is a central extension of U (su({)) by K and K. Any irrep of U, (u({)) is
obtained from an irrep o of U (su(£)) by defining o(K) as a (non-zero) multiple of the
identity transformation.
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Fundamental representations of U, (su({))

Avi={i= (i d2....0) €Z" |1 <y <2 <... <l <(},

and Wy, ~ () be the vector space with basis vectors labelled by elements in Ay,
represented pictorially by Young tableaux (YT).
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Fundamental representations of U, (su({))
Letk=1,...,0—1,
Avi={i= (i d2....0) €Z" |1 <y <2 <... <l <(},

and Wy, ~ () be the vector space with basis vectors labelled by elements in Ay,
represented pictorially by Young tableaux (YT).
Generators of U, (su(f)) are represented by insertion/deletion operators:

> K;(YT) = q%Ni YT where N; = number of rows of length j in the Young
tableau minus the number of rows of length j + 1 (either 0 or £1);

> TF; add a slot to the row of length j, if any, otherwise it gives 0; E; is the adjoint of F;.
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Fundamental representations of U, (su({))
Letk=1,...,0—1,
Avi={i= (i d2....0) €Z" |1 <y <2 <... <l <(},

and Wy, ~ () be the vector space with basis vectors labelled by elements in Ay,
represented pictorially by Young tableaux (YT).
Generators of U, (su(f)) are represented by insertion/deletion operators:

> K;(YT) = q%Ni YT where N; = number of rows of length j in the Young
tableau minus the number of rows of length j + 1 (either 0 or £1);

> TF; add a slot to the row of length j, if any, otherwise it gives 0; E; is the adjoint of F;.

R
()T e(FT)e
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Fundamental representations of U, (su({))
Letk=1,...,0—1,

Avi={i=(1ia....0) €Z" 1< <la<...<ik <(},
and Wy ~ () be the vector space with basis vectors labelled by elements in Ay,
represented pictorially by Young tableaux (YT).

Generators of U4 (su({)) are represented by insertion/deletion operators:

> K;(YT) = qzNi YT where N; = number of rows of length j in the Young
tableau minus the number of rows of length j + 1 (either 0 or £1);

> TF; add a slot to the row of length j, if any, otherwise it gives 0; E; is the adjoint of F;.
Facts: k—1times {—k—1 times
> Wk is the irrep with highest weight 8 = (0,...,0,1,0,...,0);

> forq =1, W, ~ A*W; V0 < k < { where Wy = W, = C is the rep. given by e.
Next point: to define an intertwiner A\, : W ® Wy, — W, deformation of the
wedge product, for all j +k < (.

Francesco D’Andrea (UCL) Geometry of quantum cpt September 1, 2009 15/23



The quantum Grassmann algebra, |

Elements of Sy n—k := (Skx X Sn—x)\Sn are called (k, n — k)-shuffles.
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The quantum Grassmann algebra, |

Elements of Sy n—x := (Sx x Sn—x)\Sn are called (k, n — k)-shuffles.

The map p — p~! sends Sy _y into Silk] = S,/(Sx x Sn_v), explicitly given by

S = eSS, p(l)<p2)<...<pkandpk+1) <pk+2)<...<pMn)}.
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The quantum Grassmann algebra, |
Elements of Sy n—k := (Sk X Sn—x)\Sn are called (k, n — k)-shuffles.
The map p — p~! sends Sy i into Silk] = S,/(Sx x Sn_v), explicitly given by
S = eSS, p(l)<p2)<...<pkandpk+1) <pk+2)<...<pMn)}.

Any p € S,, can be uniquely factorized as p = p'p” withp’ € S, p” €Sy x Sn_x,and
Ipll = llp’ll + lIp”Il.
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The quantum Grassmann algebra, |

Elements of Sy n—x := (Sx x Sn—x)\Sn are called (k, n — k)-shuffles.

The map p — p~! sends Sy i into sl

Sn/(Sk x Si_y), explicitly given by
S = eSS, p(l)<p2)<...<pkandpk+1) <pk+2)<...<pMn)}.

Any p € S,, can be uniquely factorized as p = p'p” withp’ € S, p” €Sy x Sn_x,and
Ipll = llp’ll + lIp”Il.

Def./Prop.
Amap N\q: Wp @ Wy — Wy is given by the formula

(v/\qw)i:Z oy (—q Pl

pesih p(1)rip(n) Wi

p(h+1)bp (htk)
forall v = (vi/) € Wp, w = (win) e Wi, h+k <L Weset vAw:=0if h+k>L

The product /\ is surjective, associative, and a left U (su(£))-module map.
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The quantum Grassmann algebra, |
Elements of Sy n—x := (Sx x Sn—x)\Sn are called (k, n — k)-shuffles.
The map p — p~! sends Sy i into Silk] = S,/(Sx x Sn_v), explicitly given by
S = eSS, p(l)<p2)<...<pkandpk+1) <pk+2)<...<pMn)}.

Any p € S,, can be uniquely factorized as p = p'p” withp’ € S, p” €Sy x Sn_x,and
Ipll = llp’ll + lIp”Il.

Def./Prop.
Amap N\q: Wp @ Wy — Wy is given by the formula

AW =3 (=P

h+k

Wip(h+1) ---- o (h+k)

forall v = (vi/) € Wp, w = (win) e Wi, h+k <L Weset vAw:=0if h+k>L

The product /\ is surjective, associative, and a left U (su(£))-module map.

Crucial to prove associativity is the factorization property above.
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The quantum Grassmann algebra, |
Elements of Sy n—x := (Sx x Sn—x)\Sn are called (k, n — k)-shuffles.

The map p — p~! sends Sy ., « into Silk) = S,/(Sx x Su_v), explicitly given by
S = eSS, p(l)<p2)<...<pkandp(k+1) <pk+2)<...<pn)}.

Any p € S,, can be uniquely factorized as p = p'p” withp’ € S p” €Sy xSy x,and
Ipll = llp’ll + lIp”Il.

Def./Prop.
Amap Nq: Wp @ Wy — Wy is given by the formula

_ —1)lIpll
v Aq w)i_zpesgﬂk(_q VP Vip ()it ) Wi (nb) et (i
forall v = (vir) € Wh, w= (wir) e Wi, h+k <l Weset vA;w:=0if h+%k> L.
~ Let W, i= @ _oWi. Grf] = (W,,/\q) is a graded associative algebra — generated
by Wy —and a left U, (su(())-module algebra. dim¢ Grf, = 2°.

Crucial to prove associativity is the factorization property above.
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The quantum Grassmann algebra, Il

For x € W, we define left/right ‘exterior product’ eL'® : Wy, — Wy, as

L

e w=xA\qw, e,'fw:(fq)kw/\qx,

and left/right ‘contraction’ as the adjoint i-'® of ¢L'® w.r.t. the canonical inner product on W, .
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The quantum Grassmann algebra, Il

For x € W, we define left/right ‘exterior product’ eL'® : Wy, — Wy, as

L R, _ 3
e w=xA\qw, eew=(—q)"WwAgx,

and left/right ‘contraction’ as the adjoint i-'® of ¢L'® w.r.t. the canonical inner product on W, .
An antilinear map J : Wy, — W,_y is given by

(Wi = (—q 1)U gdUt D e

where [i| :=1; +... + 11,1 = (1,...,{) i, and z is the complex conjugate of z € C.
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The quantum Grassmann algebra, Il

For x € W, we define left/right ‘exterior product’ eL'® : Wy, — Wy, as

L R, _ 3
e w=xA\qw, eew=(—q)"WwAgx,

and left/right ‘contraction’ as the adjoint i-'® of ¢L'® w.r.t. the canonical inner product on W, .
An antilinear map J : Wy, — W,_y is given by

(Wi = (—q 1)U gdUt D e

where [i| :=1; +... + 11,1 = (1,...,{) i, and z is the complex conjugate of z € C.

Proposition

The map ] is equivariant (i.e. x*] = ] S(x) for all x € U4 (su(f))), and has square

=
JP= (-1t
v
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The quantum Grassmann algebra, Il

For x € W, we define left/right ‘exterior product’ eL'® : Wy, — Wy, as

L., _ R, _ 3
e w=xA\qw, eew=(—q)"WwAgx,

and left/right ‘contraction’ as the adjoint i-'® of ¢L'® w.r.t. the canonical inner product on W, .
An antilinear map J : Wy, — W,_y is given by

(Wi = (—q 1)U gdUt D e

where [i| :=1; +... + 11,1 = (1,...,{) i, and z is the complex conjugate of z € C.

Proposition

The map ] is equivariant (i.e. x*] = ] S(x) for all x € U4 (su(f))), and has square

Conjugating with | transforms the left exterior product into the right contraction:

JerJ 7t = —qif .
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Antiholomorphic forms on C]Pg

For N € Z, the irrep. of Uq (su(£)) with h.w. 8% is lifted to @ o : Ug(u(€)) — End(Wy) by

oM (K) = g~ TN Lidy,
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Antiholomorphic forms on C]Pg
For N € Z, the irrep. of Uq (su(£)) with h.w. 8% is lifted to @ o : Ug(u(€)) — End(Wy) by
oM (K) = g~ TN Lidy,

Since o ~ 0 ® oy,

Q¥ =M(o}) ~ QF ®a(cpt) QY.
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Antiholomorphic forms on C]Pf1

For N € Z, the irrep. of Uq (su(£)) with h.w. 8% is lifted to @ o : Ug(u(€)) — End(Wy) by

o (K) = q* oM L idw, .
Since o ~ 0 ® oy,
QF = M(od) ~ QF ®a(cpt) QY.
Qf = antiholomorphic k-forms. Q% = ‘sections of line bundles’.

If ¢is odd: Q9 = square root of the canonical bundle, Q = chiral spinors.
3 (L+1) 3 (0+1)
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Antiholomorphic forms on (C]P’f1

For N € Z, the irrep. of Uq (su(£)) with h.w. 8% is lifted to @ o : Ug(u(€)) — End(Wy) by
oM (K) = g~ TN Lidy,
Since o} ~ 0 ® o,
Q¥ =M(o}) ~ QF ® a(cpt) QY.
Q¥ = antiholomorphic k-forms. Q% = ‘sections of line bundles’.
If £ is odd: Q"%(Hl) = square root of the canonical bundle, Qzum = chiral spinors.
An associative product A : QY x Qk, — QKX is given by
wWAqw =a-ad VAV,

where w = av € Qf and w’ = a’v' € QF,, a,a’ € A(SU4(L+1)), v € Wi,V € Wy,
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Antiholomorphic forms on CP,

For N € Z, the irrep. of Uq (su(£)) with h.w. 8% is lifted to @ o : Ug(u(€)) — End(Wy) by
oN(K) = g& TN Lidy,
Since o} ~ 0 ® o,
Q¥ =M(o}) ~ QF ®a(cpt) QY.
Q¥ = antiholomorphic k-forms. Q% = ‘sections of line bundles’.

If £ is odd: QY

(141) = Square root of the canonical bundle, Qf = chiral spinors.
2 2

An associative product A4 : QF x QF, — Q‘,ﬁlﬂ{,, is given by
wAqw' :=a-a (vAqV),

where w = av € Qf and w’ = a’v' € QF,, a,a’ € A(SU4(L+1)), v € Wi,V € Wy,

Qf = EB]‘;:O QF is a graded associative algebra.
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Vector fields and the Dolbeault operator

Let {e'};_;,..¢ be the canonical basis of W; ~ C* and
Xi = KiKij1 - KK [Eq, [Eiga, - [Eeoq, Bddglalq . i=1,...,0C,
where [a, blq := ab — g 'ba. Then
X=Y e'X; € Ug(su(l+ 1)) Ke Wy

(on the first leg we use the right adjoint action composed with S71.)
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Vector fields and the Dolbeault operator
Let {e'};_;,..¢ be the canonical basis of W; ~ C* and
Xi = KiKij1 - KK [Eq, [Eiga, - [Eeoq, Bddglalq . i=1,...,0C,
where [a, blq := ab — g 'ba. Then
X=Y e'X; € Ug(su(l+ 1)) Ke Wy
(on the first leg we use the right adjoint action composed with S~1.) By invariance of X,
9= Y i1 Lix, ®eks

ki k+1
maps Qg in Q.
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Vector fields and the Dolbeault operator
Let {e'};_;,..¢ be the canonical basis of W; ~ C* and
Xi = KiKij1 - KK [Eq, [Eiga, - [Eeoq, Bddglalq . i=1,...,0C,
where [a, blq := ab — g 'ba. Then
X=Y e'X; € Ug(su(l+ 1)) Ke Wy
(on the first leg we use the right adjoint action composed with S~1.) By invariance of X,
9= Y i1 Lix, ®eks

maps QF, in Q™. The X;’s satisfy some useful commutation rules, for example

(X Aq Xtz = Xiy Xi, = Xi Xy =0, foralll <i; <i, < ¢,

together with associativity of Aq implies 92 = 3" _;, Lqgz(xa,x) el el =0.

iy,ip ® el1vei2
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Vector fields and the Dolbeault operator
Let {e};—;....¢ be the canonical basis of W; ~ C* and
Xi = KiKij1 - KK [Eq, [Eiga, - [Eeoq, Bddglalq . i=1,...,0C,
where [a, blq := ab — g 'ba. Then
X=Y e'X; € Ug(su(l+ 1)) Ke Wy
(on the first leg we use the right adjoint action composed with S~1.) By invariance of X,
9= Y i Lgx, © ek

maps QF, in Q™. The X;’s satisfy some useful commutation rules, for example

(XAq X)igis = Xiy Xiy — 4 XiXi, =0,  foralll <iy <ip <C,
together with associativity of Aq implies 0% = 3, i, Lqgz(xa,x)s, ., © ez thiz =0 -

Facts:

> (Qg,, ) is aleft covariant cohomology complex;
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Vector fields and the Dolbeault operator
Let {e};—;....¢ be the canonical basis of W; ~ C* and
Xi = KiKij1 - KK [Eq, [Eiga, - [Eeoq, Bddglalq . i=1,...,0C,
where [a, blq := ab — g 'ba. Then
X=Y e'X; € Ug(su(l+ 1)) Ke Wy
(on the first leg we use the right adjoint action composed with S~1.) By invariance of X,
9= Y i Lgx, © ek

maps QF, in Q™. The X;’s satisfy some useful commutation rules, for example

(XAq X)igis = Xiy Xiy — 4 XiXi, =0,  foralll <iy <ip <C,
together with associativity of Aq implies 0% = 3, i, Lqgz(xa,x)s, ., © ez thiz =0 -

Facts:
> (Qg,, ) is aleft covariant cohomology complex;

> (Q3, d) is a left covariant differential calculus:
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Vector fields and the Dolbeault operator
Let {e};—;....¢ be the canonical basis of W; ~ C* and
Xi = KiKij1 - KK [Eq, [Eiga, - [Eeoq, Bddglalq . i=1,...,0C,
where [a, blq := ab — g 'ba. Then
X=Y e'X; € Ug(su(l+ 1)) Ke Wy
(on the first leg we use the right adjoint action composed with S~1.) By invariance of X,
9= Y i Lgx, © ek

maps QF, in Q™. The X;’s satisfy some useful commutation rules, for example

(XAq X)igis = Xiy Xiy — 4 XiXi, =0,  foralll <iy <ip <C,
together with associativity of Aq implies 0% = 3, i, Lqgz(xa,x)s, ., © ez thiz =0 -

Facts:
> (Qg,, ) is aleft covariant cohomology complex;
> (Q3, d) is a left covariant differential calculus:
> foralla ¢ .A[(CIF";) and w € O d(aw) = a(dw) + (3a) Aq w.
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Outline

@ From GDAs to spectral triples
Reality and the first order condition
A family of spectral triples
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Reality and the first order condition
The adijoint of 0 is

. . ‘
O =3 ) Ly @i
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Reality and the first order condition
The adijoint of 0 is

. . ‘
O =3 ) Ly @i

. N—kfIyl 2 R
=—q + Zi:l q ZILS(X?]A() ®1ei .
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Reality and the first order condition
The adjoint of 3 is
o=y, Lxrk @ it
= —qN T A g ey @
An equivariant antilinear map Jo : Q¥ — Qf ¥ is given by

Jo:=(x@]J)(Ly;1®1d),

where K, = (K{K3'“ L kIETH k2,
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Reality and the first order condition
The adjoint of 3 is

_yv¢ . o il
=2 i L><’.;K @1

_ 4 _92i .
= 7qN k+lzi:1 q ZILS(X’;R) @ik .

el

An equivariant antilinear map Jo : Q¥ — Qf ¥ is given by

Jo == (* ® ])(£K2_p1 ®ld) ,
where K, = (K{K3'“ L kIETH k2,

Proposition
The antiunitary part g of Jo satisfies

(i) 82 = (-1LF;

(i) da*dw = w- (K&, > a) forallw € QX and a € A(CPL);
(ii)) 333y = a* "Nt
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A family of spectral triples
Data:
@ Hy := Hilbert space completion of QY;;
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A family of spectral triples
Data:
@ Hy := Hilbert space completion of QY;;
@ yn := +1 on even forms and —1 on odd forms;
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A family of spectral triples
Data:
@ Hy := Hilbert space completion of QY;;
@ yn := +1 on even forms and —1 on odd forms;
° A((CIP’f]) acts by left multiplication on QY (completed to bounded operators);
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A family of spectral triples
Data:
@ Hy := Hilbert space completion of QY;;
@ yn := +1 on even forms and —1 on odd forms;
° A((CIPf]) acts by left multiplication on QY (completed to bounded operators);
@ J extends to an (antilinear) isometry Hn — Her1-N;
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A family of spectral triples
Data:
@ Hy := Hilbert space completion of Q3;
@ yn := +1 on even forms and —1 on odd forms;
° A((CIP)f]) acts by left multiplication on QY (completed to bounded operators);
@ J extends to an (antilinear) isometry Hn — Her1-N;
@ an unbounded densely defined symmetric operator Dy on Hy is

Dy = i< N3 4 qdk-N-D31

and satisfies JDn = D1~ on QR,. For g = 1:
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A family of spectral triples
Data:
@ Hy := Hilbert space completion of Q3;
@ yn := +1 on even forms and —1 on odd forms;
° A((CIP)f]) acts by left multiplication on QY (completed to bounded operators);
@ J extends to an (antilinear) isometry Hn — Her1-N;
@ an unbounded densely defined symmetric operator Dy on Hy is

Dy = i< N3 4 qdk-N-D31

and satisfies JDn = D1~ on QR,. For g = 1:
» Do = Dolbeault-Dirac operator,
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A family of spectral triples
Data:
@ Hy := Hilbert space completion of Q3;
@ yn := +1 on even forms and —1 on odd forms;
° A((CIP)f]) acts by left multiplication on QY (completed to bounded operators);
@ J extends to an (antilinear) isometry Hn — Her1-N;
@ an unbounded densely defined symmetric operator Dy on Hy is

Dy = i< N3 4 qdk-N-D31

and satisfies JDn = D1~ on QR,. For g = 1:
» Do = Dolbeault-Dirac operator,
> Dy = twist of Dy with the Grassmannian connection Q%,,
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A family of spectral triples
Data:
@ Hy := Hilbert space completion of Q3;
@ yn := +1 on even forms and —1 on odd forms;
° A((CIPf]) acts by left multiplication on QY (completed to bounded operators);
@ J extends to an (antilinear) isometry Hn — Her1-N;
@ an unbounded densely defined symmetric operator Dy on Hy is

Dy = i< N3 4 qdk-N-D31

and satisfies JDn = D1~ on QR,. For g = 1:
» Do = Dolbeault-Dirac operator,
> Dy = twist of Dy with the Grassmannian connection Q%,,
> D%(e+1) = Dirac operator of the Fubini-Study metric (for odd £).
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A family of spectral triples
Data:
@ Hy := Hilbert space completion of Q3;
@ yn := +1 on even forms and —1 on odd forms;
° A((CIP’f]) acts by left multiplication on QY (completed to bounded operators);
@ J extends to an (antilinear) isometry Hn — Her1-N;
@ an unbounded densely defined symmetric operator Dy on Hy is

Dy = i< N3 4 qdk-N-D31

and satisfies JDn = D1~ on QR,. For g = 1:
» Do = Dolbeault-Dirac operator,
> Dy = twist of Dy with the Grassmannian connection Q%,,
> D%(un = Dirac operator of the Fubini-Study metric (for odd £).

Theorem

(A((C]P’fI ), Hn, DN, YN is a 0" -dimensional equivariant even spectral triple. If £ is
odd and N = %(6 + 1), the spectral triple is real with KO-dimension 2{ mod 8.
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