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@ Equivariant cohomology: classical models, equiv. HKR thm

@ i) Deformation of symmetries by Drinfeld twists
(arXiv:[math.QA]0706.3602v3)

@ ii) Drinfeld-Jimbo quantum groups
(with C.Pagani, A.Zampini)

Equivariant cohomology: for free actions G O M define
He(M) = H(M/G). Reduce to this the general case.

- Borel model: [ Hg(M) = H ((EG x M)/G))
- Wy = Sym(g*) ® A(g*) as algebraic model for Q(EG):

Weil model: [ Hg(M) = H((W, ® QM))S,, d©1+18 d)]
- Cartan model: by ® = exp{6? ® i} € Autd(W; ® Q(M))

(W ® QM) jpass d @ 1+ 10 d) —2 ((Sym(g*) © Q(M))?, dg)
with induced differential (dga)(&) = d(a(§)) — ie((€)), € € g
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e To define a Weil model for nc symmetries we need:
- a deformation of 4(g): Drinfeld twists, Drinfeld-Jimbo ...

a nc differential calculus I on a Hopf module algebra

a Cartan calculus § = (L,i,d) on I

a Weil algebra W as the universal locally free g-da
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LEquivariant cohomology: classical models, equiv. HKR thm

e To define a Weil model for nc symmetries we need:

- a deformation of 4(g): Drinfeld twists, Drinfeld-Jimbo ...

- a nc differential calculus I on a Hopf module algebra

- a Cartan calculus § = (L,i,d) on T

- a Weil algebra ‘W as the universal locally free g-da

Thm (Atiyah&Segal): Hé(X,Q) = (K’G(X) ® Q)g as R(G)
modules (J the ideal of repr's of (virtual) dimension 0, i € Z).
Thm (Brylinski,Block): K5(X) ®r(6) R™(G) = HPE (C>®(X)).
Equivariant HKR thm (Block&Getzler): Q(X; G) sheaf over G
whose stalk in g € G is Qge(X#). Global sections Ag(X) as
delocalized equiv diff forms. | HPC(C(X)) = Hi(Ag(X), d + )|
e Equiv. cohom. for (nc) algebras as HC(A x H) or HCy¢(A)

i there exist a 'geometric’ description (via nc deloc equiv diff
forms) of HCy¢(A) which, localized, reduces to a nc Weil model 7
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L Case I: deformation of symmetries by Drinfeld twists

The Cartan calculus: G O M via operators (i, L, d)

- for g given by [e,, ep] = f,;, “ec introduce the super Lie algebra
8= 9(—1) D 9(0) D g(1) generated by {&,, €5, d} and relations

| [eaa eb] = fab “ec [eaaéb] = fab “6c [ea? d] = 0}

[€2,€6] = 0 [€2,d] = e, [d,d]=0
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it is a g-differential algebra, or $i(g)-module algebra.
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L Case I: deformation of symmetries by Drinfeld twists

The Cartan calculus: G O M via operators (i, L, d)

- for g given by [e,, ep] = f,;, “ec introduce the super Lie algebra
8= 9(—1) D 9(0) D g(1) generated by {&,, €5, d} and relations

| [eaa eb] = fab “ec [eaaéb] = fab “6c [ea’ d] = 0}

[€2,€6] = 0 [€2,d] = e, [d,d]=0

- Q(M) carries a representation of § by derivations (i, L, d):
it is a g-differential algebra, or $i(g)-module algebra.

e The category of (left) Hopf-module algebras 5¢Alg:
- monoidal category: h>(A® B) = (h1y> A) @ (hi2) > B)
- (H, R) quasitriang. = braiding Wag=70oR:A®B —-B®A
- braided tensor product AQB: the algebra structure is
(1@ b1) (2@ b)=(a1®1) - [Vga(b1 ®a)] - (1 ® by)
= a1 (R b ay) @ (RM > by ) by
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covariance 'generate’ nc geometries (and vice versal)

deformation of H covariance deformation of -4
as Hopf algebra — in qcAlg
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L Case I: deformation of symmetries by Drinfeld twists

Deformed symmetries (Drinfel'd-Jimbo QEA, Drinfel'd twists ...) by
covariance 'generate’ nc geometries (and vice versal)

deformation of H covariance deformation of -4 I
as Hopf algebra — in qcAlg

The Drinfel’d twist of a Hopf algebra H

Let x = YV @ x® be an invertible element of H @ K, satisfying
-lex)(ideA)x=(xo1)(A®id)x  (cocycle condition)
-(dee)xy=(e®id)x =1 (counitality)

Then it is possible to define HX = (3, AX, e, SX) with

the same algebra structure and counity

twisted coproduct AX(h) = xA(h)x ™1

twisted antipode SX(h) = US(h)U~! where U = x(D(5x(?)

if (3, R) quasitriangular, RX = yPRx !
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L Case I: deformation of symmetries by Drinfeld twists

Theorem (HX-module structure)

Let A be an H-module algebra, x € H ® H a twist element for H.
Then HX acts covariantly on the deformed algebra A, = (A, )

(axb=-("o(a@b) = (x )b a) ()b b))
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L Case I: deformation of symmetries by Drinfeld twists

Theorem (HX-module structure)

Let A be an H-module algebra, x € H ® H a twist element for H.
Then HX acts covariantly on the deformed algebra A, = (A, )

(axb=-("o(a@b) = (x )b a) ()b b))

A (graded)commutative <= A, braided (graded)commutative
(o Van=m

e Cartan calculus on A, : repr of UX(g), twisted derivations

[Lx(al x @) = (Lxy a1) x (LX(2)32)J and similar formula for ix

e Examples: Moyal planes, toric isospectral deformations (T, Sf')

Think of A, as (Mp). Note that the commutation relations of
g = (L, i, d) are not deformed; we say A, is a twisted g-da.
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L Case I: deformation of symmetries by Drinfeld twists

e Example: action of s0(5) = {Hi, Ha, E,} on 3
- twist U(s0(5))(ey with x = exp{ OS(Hi@ Hy— Hy ® Hy)}

- AX(HI):HI®1+1®HI> AX( r):Er®)‘r_1+)\r®Er
where A\, = exp {-%(r]_H2 — r2H1)}

- Lie derivative on S$& (same rules for iy ,, iE,):

[LH;(W Nen) = (Lpw)Aen+wAe (Lun) J

Le(when) = (Lew)he (A 1en)+ (Ar>w) e (Len)
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L Case I: deformation of symmetries by Drinfeld twists

e Example: action of s0(5) = {Hi, Ha, E,} on 3
- twist U(s0(5))(ey with x = exp{ OS(Hi@ Hy— Hy ® Hy)}

- AX(HI):HI®1+1®HI> AX( r):Er®)‘r_1+)\r®Er
where A\, = exp {-%(r]_H2 — r2H1)}

- Lie derivative on S$& (same rules for iy ,, iE,):

Ly(when) = (Lyw)Aen+whe (Lyn)
Lg,(when)

= (Lew)ho (A 1en) + (Arpw) Ae (Len)

e Example: action of s0(2n) on Moyal R%

- now the relevant twist element is x = exp {—i%ab P,® Pb}

- the twisted symmetry is 4X(ep,), with ex, = R?" x s0(2n)

- from [M,,, Pa) = guaPy — gvaPu: AX (M) = A(My) +
2 (GpaPy = 61aPu) @ P + Pa ® (6P — 0,5P)]
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e Weil model for the equivariant cohomology of twisted nc g-da’s:



Algebraic models for equivariant cohomology of noncommutative spaces
L Case I: deformation of symmetries by Drinfeld twists

Weil model for the equivariant cohomology of twisted nc g-da's:

(9. B) quadratic; g% = g(ey) ® 8(oda) as 8, only [£a, Eb] = Bab.
the twisted nc Weil algebra is W§ = tX(gB).

Cartan calculus on Wy by (twisted) inner derivations:
Li=ady . b=ad . d=[D.]]  (5={e}, DinZ(W})
we use the braided monoidal structure of twisted g-da’s (i.e. in
si(3)Alg) to consider Wi ®A, together with its Cartan calculus
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L Case I: deformation of symmetries by Drinfeld twists

e Weil model for the equivariant cohomology of twisted nc g-da’s:

- (g, B) quadratic; g% = g(ey) @ 8(oda) as §, only [£a, £b] = Bap.
- the twisted nc Weil algebra is Wy = 4X(g5).
- Cartan calculus on Wy by (twisted) inner derivations:
[La =ad) , i,=ad} , d=[D, ]j (g = {es}, D in Z(WY))

a )’

- we use the braided monoidal structure of twisted g-da’s (i.e. in
si(3)Alg) to consider Wi ®A, together with its Cartan calculus

Twisted noncommutative Weil model

The nc equivariant cohomology of a twisted nc g-da A, is defined
as the cohomology of the twisted nc Weil complex

(Han(o(A) = (W3@AYE,. d81+164d))

- we also define a twisted nc Kalkman map to get a Cartan model
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e Properties of twisted nc equivariant cohomology:
- Basic cohomology ring: Hpx(g)(C) = (Wy)p, = (4(9))?
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e Properties of twisted nc equivariant cohomology:
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- Homogeneous spaces: for P C G by commuting actions Thm
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similar result for Hx(q) via a generalized Harish-Chandra map
and spectral sequences from the (associated graded module of the)
nc Cartan complex.
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L Case I: deformation of symmetries by Drinfeld twists

e Properties of twisted nc equivariant cohomology:

Basic cohomology ring: Hpx(g)(C) = (Wy)ho, = (4(9))?

hor
Homogeneous spaces: for P C G by commuting actions Thm

Ha(G/P) = Hp(G \ G) = Hp({pt}) = Sym(p*)”
Using dual Drinfeld twists on Fun(G) we have
| Huax(g) (Fum (6))P) = Hupu ) (P (Funy(G))) = U(p)"
Example: J‘fﬂx(5a(5))(sg) = 5.1(50(4))50(4) i Sym(fz)W

Reduction to maximal torus: LH(,'(X) = HT(X)WJ. We get a
similar result for Hx(q) via a generalized Harish-Chandra map
and spectral sequences from the (associated graded module of the)
nc Cartan complex.

Note that abelian Drinfeld twists on T are trivial = quite
classical behaviour of Hyx(g). Consistent with HC(A, x 4X(g)),
since when x is a 2-cocycle A, x HX = A x H as algebras.
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L Case II: deformation of symmetries by Drinfeld-Jimbo quantum groups

(joint work with C. Pagani, A. Zampini)

e We want to test our models on Drinfeld-Jimbo QEA's 4l4(g).
As guiding example we take lq(su(2)) and the g-Hopf fibration

U(1) — SUq(2) — S2. Goal: to compute | Hy (s(2))(S7)
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- if Ais a #l(g)-mod algebra there is no canonical {l4(g)-covariant

differential calculus on Aq (cfr with Drinfeld twists and toric
isospectral deformations Q, = (2, Ay))
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e We want to test our models on Drinfeld-Jimbo QEA's 4l4(g).

As guiding example we take l4(s5u(2)) and the g-Hopf fibration

U(1) — SUq(2) — S2. Goal: to compute

e What is different from the Drinfeld twists case:

- if Ais a #l(g)-mod algebra there is no canonical {l4(g)-covariant
differential calculus on Aq (cfr with Drinfeld twists and toric
isospectral deformations Q, = (2, Ay))

- needed a g-deformed Cartan calculus along the generators of the
symmetry (quantum tangent vectors). So far only for bicovariant

differential calculi (Woronowicz) and induced calculi on quantum
homogeneous spaces.
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L Case II: deformation of symmetries by Drinfeld-Jimbo quantum groups

(joint work with C. Pagani, A. Zampini)

e We want to test our models on Drinfeld-Jimbo QEA's 4l4(g).
As guiding example we take l4(s5u(2)) and the g-Hopf fibration

U(1) — SUq(2) — S2. Goal: to compute | Hy (su(2))(S2)
e What is different from the Drinfeld twists case:

- if Ais a #l(g)-mod algebra there is no canonical {l4(g)-covariant
differential calculus on Aq (cfr with Drinfeld twists and toric
isospectral deformations Q, = (2, Ay))

- needed a g-deformed Cartan calculus along the generators of the
symmetry (quantum tangent vectors). So far only for bicovariant
differential calculi (Woronowicz) and induced calculi on quantum
homogeneous spaces.

- does (and should) the equivariant cohomology depend on the
choice of a FODC on Ag? Compare with HC(Aq % Lg(g)).

(More natural to consider twisted cyclic homology HC?)
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L Case II: deformation of symmetries by Drinfeld-Jimbo quantum groups

Example: the {,(u(1)) equivariant cohomology of SUy(2) and the
induced calculi on the Podles sphere Sg = SU,4(2)eV(®)
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L Case II: deformation of symmetries by Drinfeld-Jimbo quantum groups

Example: the {,(u(1)) equivariant cohomology of SUy(2) and the
induced calculi on the Podles sphere 53 = SU,4(2)eV(®)

- both the 3D and 4D calculi on SU4(2) are U(1)-bicovariant:
we have a Cartan calculus (L, iXZ, d) along the U(1) action

)

(xzis == _2
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L Case II: deformation of symmetries by Drinfeld-Jimbo quantum groups

Example: the {,(u(1)) equivariant cohomology of SUy(2) and the
induced calculi on the Podles sphere 53 = SU,4(2)eV(®)

- both the 3D and 4D calculi on SU4(2) are U(1)-bicovariant:
we have a Cartan calculus (L, iy,, d) along the U(1) action

(xzis == _2 ° for the 3D and :11 for the 4D, )

- quantum principal bundle: we expect Jy (,1))(SUq(2)) to be
the cohomology of the basic subcomplex of the calculus on
5Uq(2), i.e. the induced calculus on 532 (free action)
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L Case II: deformation of symmetries by Drinfeld-Jimbo quantum groups

Example: the {,(u(1)) equivariant cohomology of SUy(2) and the
induced calculi on the Podles sphere 53 = SU,4(2)eV(®)

- both the 3D and 4D calculi on SU4(2) are U(1)-bicovariant:
we have a Cartan calculus (L, iy,, d) along the U(1) action

(xzis == _2 ° for the 3D and :11 for the 4D, )

- quantum principal bundle: we expect Jy (,1))(SUq(2)) to be
the cohomology of the basic subcomplex of the calculus on
5Uq(2), i.e. the induced calculus on 532 (free action)

- we get respectively a 2D and 3D calculus on Sg with different
cohomologies. Which one (if any..) has to be regarded as the
g-deformed de Rham cohomology?

- any relation with cyclic homology HC(SU4(2) x 4(u(1)))?
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