Algebraic models for equivariant cohomology of noncommutative spaces

Lucio Simone Cirio

(Max Planck Institute for Mathematics - Bonn, Germany)

09GENCO - September 4, 2009

Outline

- Equivariant cohomology: classical models, equiv. HKR thm
- i) Deformation of symmetries by Drinfeld twists (arXiv:[math.QA]0706.3602v3)
- ii) Drinfeld-Jimbo quantum groups (with C.Pagani, A.Zampini)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Equivariant cohomology: classical models, equiv. HKR thm

Outline

- Equivariant cohomology: classical models, equiv. HKR thm
- i) Deformation of symmetries by Drinfeld twists (arXiv:[math.QA]0706.3602v3)
- ii) Drinfeld-Jimbo quantum groups (with C.Pagani, A.Zampini)

Equivariant cohomology: for free actions $G \circ \mathcal{M}$ define $H_G(\mathcal{M}) = H(\mathcal{M}/G)$. Reduce to this the general case.

- Borel model: $\left(H_G(\mathcal{M}) = H\left((EG \times \mathcal{M})/G\right)\right)$

Outline

- Equivariant cohomology: classical models, equiv. HKR thm
- i) Deformation of symmetries by Drinfeld twists (arXiv:[math.QA]0706.3602v3)
- ii) Drinfeld-Jimbo quantum groups (with C.Pagani, A.Zampini)

Equivariant cohomology: for free actions $G \circ \mathcal{M}$ define $H_G(\mathcal{M}) = H(\mathcal{M}/G)$. Reduce to this the general case.

- Borel model: $H_G(\mathcal{M}) = H((EG \times \mathcal{M})/G)$
- $W_{\mathfrak{g}} = Sym(\mathfrak{g}^*) \otimes \wedge(\mathfrak{g}^*)$ as algebraic model for $\Omega(EG)$: Weil model: $H_G(\mathcal{M}) = H((W_{\mathfrak{g}} \otimes \Omega(\mathcal{M}))_{hor}^{\mathfrak{g}}, d \otimes 1 + 1 \otimes d)$

Equivariant cohomology: classical models, equiv. HKR thm

Outline

- Equivariant cohomology: classical models, equiv. HKR thm
- i) Deformation of symmetries by Drinfeld twists (arXiv:[math.QA]0706.3602v3)
- ii) Drinfeld-Jimbo quantum groups (with C.Pagani, A.Zampini)

Equivariant cohomology: for free actions $G \circ \mathcal{M}$ define $H_G(\mathcal{M}) = H(\mathcal{M}/G)$. Reduce to this the general case.

- Borel model: $H_G(\mathcal{M}) = H((EG \times \mathcal{M})/G)$
- $W_{\mathfrak{g}} = Sym(\mathfrak{g}^*) \otimes \wedge(\mathfrak{g}^*)$ as algebraic model for $\Omega(EG)$: Weil model: $H_G(\mathcal{M}) = H((W_{\mathfrak{g}} \otimes \Omega(\mathcal{M}))^{\mathfrak{g}}_{hor}, d \otimes 1 + 1 \otimes d)$
- **Cartan model**: by $\Phi = \exp\{\theta^a \otimes i_a\} \in Aut^{\mathfrak{g}}(W_{\mathfrak{g}} \otimes \Omega(\mathcal{M}))$ $((W_{\mathfrak{g}} \otimes \Omega(\mathcal{M}))_{|bas}, d \otimes 1 + 1 \otimes d) \xrightarrow{\Phi} ((Sym(\mathfrak{g}^*) \otimes \Omega(\mathcal{M}))^{\mathfrak{g}}, d_G)$ with induced differential $(d_G \alpha)(\xi) = d(\alpha(\xi)) - i_{\xi}(\alpha(\xi)), \xi \in \mathfrak{g}$

- To define a Weil model for nc symmetries we need:
- a deformation of $\mathfrak{U}(\mathfrak{g})$: Drinfeld twists, Drinfeld-Jimbo ...
- a nc differential calculus Γ on a Hopf module algebra
- a Cartan calculus $\tilde{\mathfrak{g}}=(L,i,d)$ on Γ
- a Weil algebra ${\mathcal W}$ as the universal locally free ${\tilde{\mathfrak{g}}}\text{-}da$

- To define a Weil model for nc symmetries we need:
- a deformation of $\mathfrak{U}(\mathfrak{g})$: Drinfeld twists, Drinfeld-Jimbo ...
- a nc differential calculus Γ on a Hopf module algebra
- a Cartan calculus $\tilde{\mathfrak{g}} = (L, i, d)$ on Γ
- a Weil algebra ${\mathcal W}$ as the universal locally free ${\tilde{\mathfrak g}}\text{-}\mathsf{da}$

Thm (*Atiyah&Segal*): $H^i_G(X, \mathbb{Q}) \cong (K^i_G(X) \otimes \mathbb{Q})_{\mathbb{J}}$ as R(G)modules (\mathbb{J} the ideal of repr's of (virtual) dimension 0, $i \in \mathbb{Z}_2$). **Thm** (*Brylinski,Block*): $K^i_G(X) \otimes_{R(G)} R^{\infty}(G) \cong HP^G_i(C^{\infty}(X))$.

- To define a Weil model for nc symmetries we need:
- a deformation of $\mathfrak{U}(\mathfrak{g})$: Drinfeld twists, Drinfeld-Jimbo ...
- a nc differential calculus Γ on a Hopf module algebra
- a Cartan calculus $\tilde{\mathfrak{g}}=(L,i,d)$ on Γ
- a Weil algebra ${\mathcal W}$ as the universal locally free ${\tilde{\mathfrak{g}}}\text{-}\mathsf{da}$

Thm (Atiyah&Segal): $H_G^i(X, \mathbb{Q}) \cong (K_G^i(X) \otimes \mathbb{Q})_J$ as R(G)modules (J the ideal of repr's of (virtual) dimension 0, $i \in \mathbb{Z}_2$). Thm (Brylinski,Block): $K_G^i(X) \otimes_{R(G)} R^\infty(G) \cong HP_i^G(C^\infty(X))$. Equivariant HKR thm (Block&Getzler): $\Omega(X; G)$ sheaf over G whose stalk in $g \in G$ is $\Omega_{G^g}(X^g)$. Global sections $\mathcal{A}_G(X)$ as delocalized equiv diff forms. $HP_i^G(C^\infty(X)) \cong H^i(\mathcal{A}_G(X), d+i)$

- To define a Weil model for nc symmetries we need:
- a deformation of $\mathfrak{U}(\mathfrak{g})$: Drinfeld twists, Drinfeld-Jimbo ...
- a nc differential calculus Γ on a Hopf module algebra
- a Cartan calculus $\tilde{\mathfrak{g}}=(L,i,d)$ on Γ
- a Weil algebra ${\mathcal W}$ as the universal locally free ${\tilde{\mathfrak{g}}}{\operatorname{\mathsf{-da}}}$

Thm (Atiyah&Segal): $H_G^i(X, \mathbb{Q}) \cong (K_G^i(X) \otimes \mathbb{Q})_J$ as R(G)modules (J the ideal of repr's of (virtual) dimension 0, $i \in \mathbb{Z}_2$). Thm (Brylinski,Block): $K_G^i(X) \otimes_{R(G)} R^\infty(G) \cong HP_i^G(C^\infty(X))$. Equivariant HKR thm (Block&Getzler): $\Omega(X; G)$ sheaf over G whose stalk in $g \in G$ is $\Omega_{G^g}(X^g)$. Global sections $\mathcal{A}_G(X)$ as delocalized equiv diff forms. $HP_i^G(C^\infty(X)) \cong H^i(\mathcal{A}_G(X), d+i)$

• Equiv. cohom. for (nc) algebras as $HC(A \rtimes \mathfrak{H})$ or $HC_{\mathfrak{H}}(A)$

i there exist a 'geometric' description (via nc deloc equiv diff forms) of $HC_{\mathcal{H}}(A)$ which, localized, reduces to a nc Weil model ?

The Cartan calculus: $G ightarrow \mathfrak{M}$ via operators (i, L, d)

- for g given by $[e_a, e_b] = f_{ab}^{\ \ c} e_c$ introduce the super Lie algebra $\tilde{\mathfrak{g}} = \mathfrak{g}_{(-1)} \oplus \mathfrak{g}_{(0)} \oplus \mathfrak{g}_{(1)}$ generated by $\{\xi_a, e_a, d\}$ and relations

$$[e_a, e_b] = f_{ab}^{\ c} e_c \quad [e_a, \xi_b] = f_{ab}^{\ c} \xi_c \quad [e_a, d] = 0 [\xi_a, \xi_b] = 0 \quad [\xi_a, d] = e_a \quad [d, d] = 0$$

The Cartan calculus: $G ightarrow \mathfrak{M}$ via operators (i, L, d)

- for g given by $[e_a, e_b] = f_{ab}^{\ \ c} e_c$ introduce the super Lie algebra $\tilde{\mathfrak{g}} = \mathfrak{g}_{(-1)} \oplus \mathfrak{g}_{(0)} \oplus \mathfrak{g}_{(1)}$ generated by $\{\xi_a, e_a, d\}$ and relations

$$[e_a, e_b] = f_{ab}^{\ c} e_c \quad [e_a, \xi_b] = f_{ab}^{\ c} \xi_c \quad [e_a, d] = 0 [\xi_a, \xi_b] = 0 \quad [\xi_a, d] = e_a \quad [d, d] = 0$$

 Ω(M) carries a representation of ğ by derivations (i, L, d): it is a ğ-differential algebra, or U(ğ)-module algebra.

The Cartan calculus: $G ightarrow \mathfrak{M}$ via operators (i, L, d)

- for g given by $[e_a, e_b] = f_{ab}^{\ \ c} e_c$ introduce the super Lie algebra $\tilde{\mathfrak{g}} = \mathfrak{g}_{(-1)} \oplus \mathfrak{g}_{(0)} \oplus \mathfrak{g}_{(1)}$ generated by $\{\xi_a, e_a, d\}$ and relations

$$[e_a, e_b] = f_{ab}^{\ c} e_c \quad [e_a, \xi_b] = f_{ab}^{\ c} \xi_c \quad [e_a, d] = 0 [\xi_a, \xi_b] = 0 \quad [\xi_a, d] = e_a \quad [d, d] = 0$$

 Ω(M) carries a representation of ğ by derivations (i, L, d): it is a ğ-differential algebra, or U(ğ)-module algebra.

- The category of (left) Hopf-module algebras ${}_{\mathcal{H}}Alg$:
- monoidal category: $h \triangleright (A \otimes B) = (h_{(1)} \triangleright A) \otimes (h_{(2)} \triangleright B)$
- (\mathfrak{H}, R) quasitriang. \blacktriangleright braiding $\Psi_{A;B} = \tau \circ R : A \otimes B \to B \otimes A$
- braided tensor product $A \underline{\otimes} B$: the algebra structure is

$$egin{aligned} (a_1\otimes b_1)\cdot(a_2\otimes b_2)&=(a_1\otimes 1)\cdot[\Psi_{B;A}(b_1\otimes a_2)]\cdot(1\otimes b_2)\ &=a_1(R^{(2)}\triangleright a_2)\otimes(R^{(1)}\triangleright b_1)b_2 \end{aligned}$$

Deformed symmetries (Drinfel'd-Jimbo QEA, Drinfel'd twists ...) by covariance 'generate' nc geometries (and vice versa!)

 $\begin{array}{ccc} \text{deformation of } \mathcal{H} & \textbf{covariance} & \text{deformation of } \cdot_{\mathcal{A}} \\ \text{as Hopf algebra} & \Longleftrightarrow & \text{in } {}_{\mathcal{H}}\mathcal{A}\textit{lg} \end{array}$

Deformed symmetries (Drinfel'd-Jimbo QEA, Drinfel'd twists ...) by covariance 'generate' nc geometries (and vice versa!)

 $\begin{array}{lll} \text{deformation of } \mathcal{H} & \begin{array}{c} \text{covariance} & \text{deformation of } \cdot_A \\ \text{as Hopf algebra} & \longleftrightarrow & \begin{array}{c} \text{in } {}_{\mathcal{H}} A \textit{lg} \end{array} \end{array}$

The Drinfel'd twist of a Hopf algebra ${\mathcal H}$

Let $\chi = \chi^{(1)} \otimes \chi^{(2)}$ be an invertible element of $\mathcal{H} \otimes \mathcal{H}$, satisfying

- $(1 \otimes \chi)(\mathit{id} \otimes \bigtriangleup)\chi = (\chi \otimes 1)(\bigtriangleup \otimes \mathit{id})\chi$ (cocycle condition)
- $(id \otimes \epsilon)\chi = (\epsilon \otimes id)\chi = 1$ (counitality)

Then it is possible to define $\mathcal{H}^{\chi} = (\mathcal{H}, \bigtriangleup^{\chi}, \epsilon, S^{\chi})$ with

- the same algebra structure and counity
- twisted coproduct $riangle ^{\chi}(h)=\chi riangle (h)\chi ^{-1}$
- twisted antipode $S^{\chi}(h) = US(h)U^{-1}$ where $U = \chi^{(1)}(S\chi^{(2)})$
- if (\mathcal{H},R) quasitriangular, $R^{\chi}=\chi^{op}R\chi^{-1}$

Theorem (\mathcal{H}^{χ} -module structure)

Let A be an \mathcal{H} -module algebra, $\chi \in \mathcal{H} \otimes \mathcal{H}$ a twist element for \mathcal{H} . Then \mathcal{H}^{χ} acts covariantly on the deformed algebra $A_{\chi} = (A, \cdot_{\chi})$

$$a \cdot_{\chi} b = \cdot (\chi^{-1} \triangleright (a \otimes b)) = ((\chi^{-1})^{(1)} \triangleright a) \cdot ((\chi^{-1})^{(2)} \triangleright b)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (\mathcal{H}^{χ} -module structure)

Let A be an \mathcal{H} -module algebra, $\chi \in \mathcal{H} \otimes \mathcal{H}$ a twist element for \mathcal{H} . Then \mathcal{H}^{χ} acts covariantly on the deformed algebra $A_{\chi} = (A, \cdot_{\chi})$

$$a \cdot_{\chi} b = \cdot (\chi^{-1} \triangleright (a \otimes b)) = ((\chi^{-1})^{(1)} \triangleright a) \cdot ((\chi^{-1})^{(2)} \triangleright b)$$

 $\begin{array}{ccc} A \mbox{ (graded)commutative } & \longleftrightarrow & A_{\chi} \mbox{ braided (graded)commutative } \\ \hline m \circ \tau_{A,A} = m \\ \hline m_{\chi} \circ \Psi_{A,A} = m_{\chi} \end{array}$

Theorem (\mathcal{H}^{χ} -module structure)

Let A be an \mathcal{H} -module algebra, $\chi \in \mathcal{H} \otimes \mathcal{H}$ a twist element for \mathcal{H} . Then \mathcal{H}^{χ} acts covariantly on the deformed algebra $A_{\chi} = (A, \cdot_{\chi})$

$$a \cdot_{\chi} b = \cdot (\chi^{-1} \triangleright (a \otimes b)) = ((\chi^{-1})^{(1)} \triangleright a) \cdot ((\chi^{-1})^{(2)} \triangleright b)$$

- $\begin{array}{ccc} A \text{ (graded)commutative } & \longleftrightarrow & A_{\chi} \text{ braided (graded)commutative} \\ \hline m \circ \tau_{A,A} = m \\ \hline m_{\chi} \circ \Psi_{A,A} = m_{\chi} \end{array}$
- Cartan calculus on A_{χ} : repr of $\mathfrak{U}^{\chi}(\mathfrak{g})$, twisted derivations

 $ig(L_X(a_1\cdot_\chi a_2):=(L_{X_{(1)}}a_1)\cdot_\chi (L_{X_{(2)}}a_2)ig)$ and similar formula for i_X

• Examples: Moyal planes, toric isospectral deformations $(\mathbb{T}^n_{\theta}, S^n_{\theta})$ Think of A_{χ} as $\Omega(\mathcal{M}_{\theta})$. Note that the commutation relations of $\tilde{\mathfrak{g}} = (L, i, d)$ are not deformed; we say A_{χ} is a twisted $\tilde{\mathfrak{g}}$ -da. Algebraic models for equivariant cohomology of noncommutative spaces

Case I: deformation of symmetries by Drinfeld twists

- Example: action of $\mathfrak{so}(5) = \{H_1, H_2, E_r\}$ on S_{Θ}^4
- twist $\mathfrak{U}(\mathfrak{so}(5))_{[[\Theta]]}$ with $\chi = \exp\left\{-\frac{i\Theta}{2}(H_1 \otimes H_2 H_2 \otimes H_1)\right\}$

-
$$\triangle^{\chi}(H_i) = H_i \otimes 1 + 1 \otimes H_i$$
, $\triangle^{\chi}(E_r) = E_r \otimes \lambda_r^{-1} + \lambda_r \otimes E_r$
where $\lambda_r = \exp\left\{-\frac{i\Theta}{2}(r_1H_2 - r_2H_1)\right\}$

- Lie derivative on S_{Θ}^4 (same rules for $i_{H_{1,2}}$, i_{E_r}):

$$\begin{array}{lll} L_{H_i}(\omega \wedge_{\Theta} \eta) &= (L_{H_i}\omega) \wedge_{\Theta} \eta + \omega \wedge_{\Theta} (L_{H_i}\eta) \\ L_{E_r}(\omega \wedge_{\Theta} \eta) &= (L_{E_r}\omega) \wedge_{\Theta} (\lambda_r^{-1} \triangleright \eta) + (\lambda_r \triangleright \omega) \wedge_{\Theta} (L_{E_r}\eta) \end{array}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Example: action of $\mathfrak{so}(5) = \{H_1, H_2, E_r\}$ on S_{Θ}^4
- twist $\mathfrak{U}(\mathfrak{so}(5))_{[[\Theta]]}$ with $\chi = \exp\left\{-\frac{i\Theta}{2}(H_1 \otimes H_2 H_2 \otimes H_1)\right\}$

-
$$\triangle^{\chi}(H_i) = H_i \otimes 1 + 1 \otimes H_i$$
, $\triangle^{\chi}(E_r) = E_r \otimes \lambda_r^{-1} + \lambda_r \otimes E_r$
where $\lambda_r = \exp\left\{-\frac{i\Theta}{2}(r_1H_2 - r_2H_1)\right\}$

- Lie derivative on S_{Θ}^4 (same rules for $i_{H_{1,2}}$, i_{E_r}):

$$\begin{array}{lll} L_{H_i}(\omega \wedge_{\Theta} \eta) &= & (L_{H_i}\omega) \wedge_{\Theta} \eta + \omega \wedge_{\Theta} (L_{H_i}\eta) \\ L_{E_r}(\omega \wedge_{\Theta} \eta) &= & (L_{E_r}\omega) \wedge_{\Theta} (\lambda_r^{-1} \triangleright \eta) + (\lambda_r \triangleright \omega) \wedge_{\Theta} (L_{E_r}\eta) \end{array}$$

- Example: action of $\mathfrak{so}(2n)$ on Moyal \mathbb{R}^{2n}_{Θ}
- now the relevant twist element is $\chi = \exp\left\{-rac{i\Theta^{ab}}{2}P_a\otimes P_b
 ight\}$
- the twisted symmetry is $\mathfrak{U}^{\chi}(\mathfrak{e}_{2n})$, with $\mathfrak{e}_{2n}=\mathbb{R}^{2n}
 times\mathfrak{so}(2n)$
- from $[M_{\mu\nu}, P_a] = g_{\mu a} P_{\nu} g_{\nu a} P_{\mu}$: $\triangle^{\chi}(M_{\mu\nu}) = \triangle(M_{\mu\nu}) + \frac{i\Theta^{ab}}{2} [(\delta_{\mu a} P_{\nu} \delta_{\nu a} P_{\mu}) \otimes P_b + P_a \otimes (\delta_{\mu b} P_{\nu} \delta_{\nu b} P_{\mu})]$

- Weil model for the equivariant cohomology of twisted nc \tilde{g} -da's:
- (\mathfrak{g}, B) quadratic; $\mathfrak{g}^B = \mathfrak{g}_{(ev)} \oplus \mathfrak{g}_{(odd)}$ as $\tilde{\mathfrak{g}}$, only $[\xi_a, \xi_b] = B_{ab}$.
- the twisted nc Weil algebra is $\mathcal{W}^{\chi}_{\mathfrak{g}} = \mathfrak{U}^{\chi}(\mathfrak{g}^{\mathcal{B}}).$
- Cartan calculus on $\mathcal{W}^{\chi}_{\mathfrak{g}}$ by (twisted) inner derivations:

$$L_{a} = ad_{e_{a}}^{\chi}, \ i_{a} = ad_{\xi_{a}}^{\chi}, \ d = [\mathcal{D}, \] \right) \qquad (\mathfrak{g} = \{e_{a}\}, \ \mathcal{D} \text{ in } \mathcal{Z}(\mathcal{W}_{\mathfrak{g}}^{\chi}))$$

- we use the braided monoidal structure of twisted $\tilde{\mathfrak{g}}$ -da's (i.e. in $_{\mathfrak{M}(\tilde{\mathfrak{g}})}Alg$) to consider $\mathcal{W}_{\mathfrak{g}}^{\chi} \underline{\otimes} A_{\chi}$ together with its Cartan calculus

- Weil model for the equivariant cohomology of twisted nc $\tilde{\mathfrak{g}}\text{-da's:}$
- (\mathfrak{g}, B) quadratic; $\mathfrak{g}^B = \mathfrak{g}_{(ev)} \oplus \mathfrak{g}_{(odd)}$ as $\tilde{\mathfrak{g}}$, only $[\xi_a, \xi_b] = B_{ab}$.
- the twisted nc Weil algebra is $\mathcal{W}^{\chi}_{\mathfrak{g}} = \mathfrak{U}^{\chi}(\mathfrak{g}^{\mathcal{B}}).$
- Cartan calculus on $\mathcal{W}^{\chi}_{\mathfrak{g}}$ by (twisted) inner derivations:

$$L_{a} = ad_{e_{a}}^{\chi}, \ i_{a} = ad_{\xi_{a}}^{\chi}, \ d = [\mathcal{D}, \] \right) \qquad (\mathfrak{g} = \{e_{a}\}, \ \mathcal{D} \text{ in } \mathcal{Z}(\mathcal{W}_{\mathfrak{g}}^{\chi}))$$

- we use the braided monoidal structure of twisted $\tilde{\mathfrak{g}}$ -da's (i.e. in $_{\mathfrak{U}^{\chi}(\tilde{\mathfrak{g}})}Alg$) to consider $\mathcal{W}_{\mathfrak{g}}^{\chi} \underline{\otimes} A_{\chi}$ together with its Cartan calculus

Twisted noncommutative Weil model

The nc equivariant cohomology of a twisted nc $\tilde{\mathfrak{g}}$ -da A_{χ} is defined as the cohomology of the twisted nc Weil complex

$$\mathfrak{H}_{\mathfrak{U}^{\chi}(\mathfrak{g})}(A_{\chi}) = ((\mathcal{W}^{\chi}_{\mathfrak{g}} \underline{\otimes} A_{\chi})^{\mathsf{G}}_{\mathit{hor}}, \ d \otimes 1 + 1 \otimes d)$$

- we also define a twisted nc Kalkman map to get a Cartan model

- Properties of twisted nc equivariant cohomology:
- Basic cohomology ring: $\mathfrak{H}_{\mathfrak{U}^{\chi}(\mathfrak{g})}(\mathbb{C}) = (\mathcal{W}^{\chi}_{\mathfrak{g}})^{\mathfrak{g}}_{hor} \cong (\mathfrak{U}(\mathfrak{g}))^{\mathfrak{g}}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- Properties of twisted nc equivariant cohomology:
- Basic cohomology ring: $\mathfrak{H}_{\mathfrak{U}^{\chi}(\mathfrak{g})}(\mathbb{C}) = (\mathcal{W}^{\chi}_{\mathfrak{g}})^{\mathfrak{g}}_{hor} \cong (\mathfrak{U}(\mathfrak{g}))^{\mathfrak{g}}$
- Homogeneous spaces: for $P \subset G$ by commuting actions Thm

$$H_G(G/P) = H_P(G \setminus G) = H_P(\{pt\}) = Sym(\mathfrak{p}^*)^P$$

- Properties of twisted nc equivariant cohomology:
- Basic cohomology ring: $\mathfrak{H}_{\mathfrak{U}^{\chi}(\mathfrak{g})}(\mathbb{C}) = (\mathcal{W}^{\chi}_{\mathfrak{g}})^{\mathfrak{g}}_{hor} \cong (\mathfrak{U}(\mathfrak{g}))^{\mathfrak{g}}$
- Homogeneous spaces: for $P \subset G$ by commuting actions Thm

$$H_G(G/P) = H_P(G \setminus G) = H_P(\{pt\}) = Sym(\mathfrak{p}^*)^P$$

Using dual Drinfeld twists on Fun(G) we have

$$(\mathcal{H}_{\mathfrak{U}^{\chi}(\mathfrak{g})}((\mathit{Fun}_{\gamma}(G))^{\mathit{coP}}) = \mathcal{H}_{\mathfrak{U}^{\chi}(\mathfrak{p})}(^{\mathit{coG}}(\mathit{Fun}_{\gamma}(G))) = \mathfrak{U}(\mathfrak{p})^{\mathfrak{p}}$$

$$\underline{\mathsf{Example}}: \ \mathcal{H}_{\mathfrak{U}^{\chi}(\mathfrak{so}(5))}(S^4_{\theta}) = \mathfrak{U}(\mathfrak{so}(4))^{SO(4)} \cong Sym(\mathfrak{t}^2)^W$$

- Properties of twisted nc equivariant cohomology:
- Basic cohomology ring: $\mathfrak{H}_{\mathfrak{U}^{\chi}(\mathfrak{g})}(\mathbb{C}) = (\mathcal{W}^{\chi}_{\mathfrak{g}})^{\mathfrak{g}}_{hor} \cong (\mathfrak{U}(\mathfrak{g}))^{\mathfrak{g}}$
- Homogeneous spaces: for $P \subset G$ by commuting actions Thm

$$H_G(G/P) = H_P(G \setminus G) = H_P(\{pt\}) = Sym(\mathfrak{p}^*)^P$$

Using dual Drinfeld twists on Fun(G) we have

$$(\mathcal{H}_{\mathfrak{U}^{\chi}(\mathfrak{g})}((\mathit{Fun}_{\gamma}(G))^{\mathit{coP}}) = \mathcal{H}_{\mathfrak{U}^{\chi}(\mathfrak{p})}(^{\mathit{coG}}(\mathit{Fun}_{\gamma}(G))) = \mathfrak{U}(\mathfrak{p})^{\mathfrak{p}}$$

$$\underline{\mathsf{Example}}:\ \mathfrak{H}_{\mathfrak{U}^{\chi}(\mathfrak{so}(5))}(S^4_{\theta}) = \mathfrak{U}(\mathfrak{so}(4))^{SO(4)} \cong \mathit{Sym}(\mathfrak{t}^2)^W$$

- Reduction to maximal torus: $\left(H_G(X)\cong H_T(X)^W\right)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Properties of twisted nc equivariant cohomology:
- Basic cohomology ring: $\mathfrak{H}_{\mathfrak{U}^{\chi}(\mathfrak{g})}(\mathbb{C}) = (\mathcal{W}_{\mathfrak{g}}^{\chi})_{hor}^{\mathfrak{g}} \cong (\mathfrak{U}(\mathfrak{g}))^{\mathfrak{g}}$
- Homogeneous spaces: for $P \subset G$ by commuting actions Thm

$$H_G(G/P) = H_P(G \setminus G) = H_P(\{pt\}) = Sym(\mathfrak{p}^*)^P$$

Using dual Drinfeld twists on Fun(G) we have

$$(\mathcal{H}_{\mathfrak{U}^{\chi}(\mathfrak{g})}((\operatorname{Fun}_{\gamma}(G))^{\operatorname{co}P}) = \mathcal{H}_{\mathfrak{U}^{\chi}(\mathfrak{p})}(^{\operatorname{co}G}(\operatorname{Fun}_{\gamma}(G))) = \mathfrak{U}(\mathfrak{p})^{\mathfrak{p}}$$

$$\underbrace{\mathsf{Example}}_{\mathfrak{U}^{\chi}(\mathfrak{so}(5))}(S^4_{\theta}) = \mathfrak{U}(\mathfrak{so}(4))^{SO(4)} \cong \mathit{Sym}(\mathfrak{t}^2)^W$$

- Reduction to maximal torus: $H_G(X) \cong H_T(X)^W$. We get a similar result for $\mathcal{H}_{\mathfrak{U}^X(\mathfrak{g})}$ via a generalized Harish-Chandra map and spectral sequences from the (associated graded module of the) nc Cartan complex.

- Properties of twisted nc equivariant cohomology:
- Basic cohomology ring: $\mathfrak{H}_{\mathfrak{U}^{\chi}(\mathfrak{g})}(\mathbb{C}) = (\mathcal{W}_{\mathfrak{g}}^{\chi})_{hor}^{\mathfrak{g}} \cong (\mathfrak{U}(\mathfrak{g}))^{\mathfrak{g}}$
- Homogeneous spaces: for $P \subset G$ by commuting actions Thm

$$H_G(G/P) = H_P(G \setminus G) = H_P(\{pt\}) = Sym(\mathfrak{p}^*)^P$$

Using dual Drinfeld twists on Fun(G) we have

$$\mathfrak{H}_{\mathfrak{U}^{\chi}(\mathfrak{g})}((\operatorname{Fun}_{\gamma}(G))^{\operatorname{coP}}) = \mathfrak{H}_{\mathfrak{U}^{\chi}(\mathfrak{p})}(^{\operatorname{coG}}(\operatorname{Fun}_{\gamma}(G))) = \mathfrak{U}(\mathfrak{p})^{\mathfrak{p}}$$

 $\underline{\mathsf{Example}}: \ \mathcal{H}_{\mathfrak{U}^{\chi}(\mathfrak{so}(5))}(S^4_{\theta}) = \mathfrak{U}(\mathfrak{so}(4))^{SO(4)} \cong Sym(\mathfrak{t}^2)^W$

- Reduction to maximal torus: $(H_G(X) \cong H_T(X)^W)$. We get a similar result for $\mathcal{H}_{\mathfrak{U}^X(\mathfrak{g})}$ via a generalized Harish-Chandra map and spectral sequences from the (associated graded module of the) nc Cartan complex.
- Note that abelian Drinfeld twists on T are trivial \blacktriangleright quite classical behaviour of $\mathcal{H}_{\mathfrak{U}^{\chi}(\mathfrak{g})}$. Consistent with $HC(A_{\chi} \rtimes \mathfrak{U}^{\chi}(\mathfrak{g}))$, since when χ is a 2-cocycle $A_{\chi} \rtimes \mathcal{H}^{\chi} \cong A \rtimes \mathcal{H}$ as algebras.

 igsim Case II: deformation of symmetries by Drinfeld-Jimbo quantum groups

(joint work with C. Pagani, A. Zampini)

• We want to test our models on Drinfeld-Jimbo QEA's $\mathfrak{U}_q(\mathfrak{g})$. As guiding example we take $\mathfrak{U}_q(\mathfrak{su}(2))$ and the *q*-Hopf fibration $U(1) \hookrightarrow SU_q(2) \to S_q^2$. Goal: to compute $\mathcal{H}_{\mathfrak{U}_q(\mathfrak{su}(2))}(S_q^2)$

We want to test our models on Drinfeld-Jimbo QEA's 𝔄_q(𝔅). As guiding example we take 𝔅_q(𝔅𝑢(2)) and the *q*-Hopf fibration U(1) → SU_q(2) → S²_q. Goal: to compute 𝔄_{𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅)}
 What is different from the Drinfeld twists case:

• We want to test our models on Drinfeld-Jimbo QEA's $\mathfrak{U}_q(\mathfrak{g})$. As guiding example we take $\mathfrak{U}_q(\mathfrak{su}(2))$ and the *q*-Hopf fibration $U(1) \hookrightarrow SU_q(2) \to S_q^2$. Goal: to compute $\mathcal{H}_{\mathfrak{U}_q(\mathfrak{su}(2))}(S_q^2)$

• What is different from the Drinfeld twists case:

if A is a 𝔅(𝔅)-mod algebra there is no canonical 𝔅_q(𝔅)-covariant differential calculus on A_q (cfr with Drinfeld twists and toric isospectral deformations Ω_χ = (Ω, ∧_χ))

• We want to test our models on Drinfeld-Jimbo QEA's $\mathfrak{U}_q(\mathfrak{g})$. As guiding example we take $\mathfrak{U}_q(\mathfrak{su}(2))$ and the *q*-Hopf fibration $U(1) \hookrightarrow SU_q(2) \to S_q^2$. Goal: to compute $\mathcal{H}_{\mathfrak{U}_q(\mathfrak{su}(2))}(S_q^2)$

• What is different from the Drinfeld twists case:

- if A is a 𝔅(𝔅)-mod algebra there is no canonical 𝔅_q(𝔅)-covariant differential calculus on A_q (cfr with Drinfeld twists and toric isospectral deformations Ω_χ = (Ω, ∧_χ))
- needed a *q*-deformed Cartan calculus along the generators of the symmetry (quantum tangent vectors). So far only for bicovariant differential calculi (Woronowicz) and induced calculi on quantum homogeneous spaces.

• We want to test our models on Drinfeld-Jimbo QEA's $\mathfrak{U}_q(\mathfrak{g})$. As guiding example we take $\mathfrak{U}_q(\mathfrak{su}(2))$ and the *q*-Hopf fibration $U(1) \hookrightarrow SU_q(2) \to S_q^2$. Goal: to compute $\mathcal{H}_{\mathfrak{U}_q(\mathfrak{su}(2))}(S_q^2)$

• What is different from the Drinfeld twists case:

- if A is a 𝔅(𝔅)-mod algebra there is no canonical 𝔅_q(𝔅)-covariant differential calculus on A_q (cfr with Drinfeld twists and toric isospectral deformations Ω_χ = (Ω, ∧_χ))
- needed a q-deformed Cartan calculus along the generators of the symmetry (quantum tangent vectors). So far only for bicovariant differential calculi (Woronowicz) and induced calculi on quantum homogeneous spaces.
- does (and should) the equivariant cohomology depend on the choice of a FODC on A_q? Compare with HC(A_q ⋊ 𝔅_q(𝔅)). (More natural to consider twisted cyclic homology HC^σ?)

Case II: deformation of symmetries by Drinfeld-Jimbo quantum groups

Example: the $\mathfrak{U}_q(\mathfrak{u}(1))$ equivariant cohomology of $SU_q(2)$ and the induced calculi on the Podles sphere $S_q^2 = SU_q(2)^{coU(1)}$

Case II: deformation of symmetries by Drinfeld-Jimbo quantum groups

Example: the $\mathfrak{U}_q(\mathfrak{u}(1))$ equivariant cohomology of $SU_q(2)$ and the induced calculi on the Podles sphere $S_q^2 = SU_q(2)^{coU(1)}$

- both the 3D and $4D_+$ calculi on $SU_q(2)$ are U(1)-bicovariant: we have a Cartan calculus $(L_{\chi_z}, i_{\chi_z}, d)$ along the U(1) action

$$(\chi_z \text{ is } \frac{1-K^4}{1-q^{-2}} \text{ for the } 3D \text{ and } \frac{K^{-2}-1}{q-q^{-1}} \text{ for the } 4D_+)$$

 igsim Case II: deformation of symmetries by Drinfeld-Jimbo quantum groups

Example: the $\mathfrak{U}_q(\mathfrak{u}(1))$ equivariant cohomology of $SU_q(2)$ and the induced calculi on the Podles sphere $S_q^2 = SU_q(2)^{coU(1)}$

- both the 3D and $4D_+$ calculi on $SU_q(2)$ are U(1)-bicovariant: we have a Cartan calculus $(L_{\chi_z}, i_{\chi_z}, d)$ along the U(1) action

$$(\chi_z \text{ is } \frac{1-K^4}{1-q^{-2}} \text{ for the } 3D \text{ and } \frac{K^{-2}-1}{q-q^{-1}} \text{ for the } 4D_+)$$

- quantum principal bundle: we expect $\mathcal{H}_{\mathfrak{U}_q(\mathfrak{u}(1))}(SU_q(2))$ to be the cohomology of the basic subcomplex of the calculus on $SU_q(2)$, i.e. the induced calculus on S_q^2 (free action)

 igsim Case II: deformation of symmetries by Drinfeld-Jimbo quantum groups

Example: the $\mathfrak{U}_q(\mathfrak{u}(1))$ equivariant cohomology of $SU_q(2)$ and the induced calculi on the Podles sphere $S_q^2 = SU_q(2)^{coU(1)}$

- both the 3D and $4D_+$ calculi on $SU_q(2)$ are U(1)-bicovariant: we have a Cartan calculus $(L_{\chi_z}, i_{\chi_z}, d)$ along the U(1) action

$$(\chi_z \text{ is } \frac{1-K^4}{1-q^{-2}} \text{ for the } 3D \text{ and } \frac{K^{-2}-1}{q-q^{-1}} \text{ for the } 4D_+)$$

- quantum principal bundle: we expect $\mathcal{H}_{\mathfrak{U}_q(\mathfrak{u}(1))}(SU_q(2))$ to be the cohomology of the basic subcomplex of the calculus on $SU_q(2)$, i.e. the induced calculus on S_q^2 (free action)
- we get respectively a 2D and 3D calculus on S_q^2 with different cohomologies. Which one (if any..) has to be regarded as the *q*-deformed de Rham cohomology?
- any relation with cyclic homology $HC(SU_q(2) \rtimes \mathfrak{U}(\mathfrak{u}(1)))$?