Fiberwise products of C*-bundles

E. Blanchard (CNRS)

Definition 1.1 (Dixmier; Fell; Tomiyama) A unital C*-bundle over X with non-zero fibres A_x ($x \in X$) is

a unital C*-subalgebra $A \subset \prod_{x \in X} A_x$ such that:

Definition 1.1 (Dixmier; Fell; Tomiyama) A unital C*-bundle over X with non-zero fibres A_x ($x \in X$) is

a unital C*-subalgebra $A \subset \prod_{x \in X} A_x$ such that:

(a) There is a unital *-embedding $C(X) \rightarrow A$ given by

 $f \mapsto (f(x)1_{A_x})$ for all $f \in C(X)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition 1.1 (Dixmier; Fell; Tomiyama) A unital C*-bundle over X with non-zero fibres A_x ($x \in X$) is

a unital C*-subalgebra $A \subset \prod_{x \in X} A_x$ such that:

(a) There is a unital *-embedding $C(X) \rightarrow A$ given by

 $f \mapsto (f(x)1_{A_x})$ for all $f \in C(X)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(b) For all $x \in X$, the fibre map $A \to A_x$ is surjective.

Definition 1.1 (Dixmier; Fell; Tomiyama) A unital C*-bundle over X with non-zero fibres A_x ($x \in X$) is

a unital C*-subalgebra $A \subset \prod_{x \in X} A_x$ such that:

(a) There is a unital *-embedding $C(X) \rightarrow A$ given by

 $f \mapsto (f(x)1_{A_x})$ for all $f \in C(X)$

(b) For all $x \in X$, the fibre map $A \to A_x$ is surjective.

(c) $\forall (a_x)_{x \in X} \in A$, $\mathbf{x} \mapsto \|\mathbf{a}_{\mathbf{x}}\|_{\mathbf{A}_{\mathbf{x}}}$ is continuous.

Definition 1.2 (Kasparov) A unital **C(X)-algebra** is a unital C*-algebra with a unital *-morphism

 $C(X) \longrightarrow \mathcal{Z}(A)$

Definition 1.2 (Kasparov) A unital **C(X)-algebra** is a unital C*-algebra with a unital *-morphism

 $C(X) \longrightarrow \mathcal{Z}(A)$

$$\forall x \in X, \quad C_x(X) = \{f \in C(X) \mid f(x) = 0\}$$

Definition 1.2 (Kasparov) A unital **C(X)-algebra** is a unital C*-algebra with a unital

*-morphism

 $C(X) \longrightarrow \mathcal{Z}(A)$

$$\forall x \in X, \quad C_x(X) = \{f \in C(X) \mid f(x) = 0\}$$

 $\mathsf{A}_\mathsf{x} := \mathsf{A} / [\mathsf{C}_\mathsf{x}(\mathsf{X}).\mathsf{A}] \quad \text{and} \quad a \in A \longmapsto a_\mathsf{x} \in \mathsf{A}_\mathsf{x}$

 $\begin{array}{l} \textbf{Definition 1.2 (Kasparov)} \\ \textbf{A unital C(X)-algebra is a unital C*-algebra with a unital} \end{array}$

*-morphism

 $C(X) \longrightarrow \mathcal{Z}(A)$

$$\forall x \in X, \quad \boxed{C_x(X) = \{f \in C(X) \mid f(x) = 0\}}$$

 $\mathsf{A}_\mathsf{x} := \mathsf{A} / [\mathsf{C}_\mathsf{x}(\mathsf{X}).\mathsf{A}] \quad \text{and} \quad a \in A \longmapsto a_\mathsf{x} \in \mathsf{A}_\mathsf{x}$

$$\begin{aligned} x \mapsto \|a_x\| &= \|a + C_x(X)A\| \\ &= \inf\{\| [1 - f + f(x)]a\|, f \in C(X)\} \\ \text{upper semi-continuous (u.s.c.)} \end{aligned}$$

 $\begin{array}{l} \textbf{Definition 1.2 (Kasparov)} \\ \textbf{A unital C(X)-algebra is a unital C*-algebra with a unital} \end{array}$

*-morphism

 $C(X) \longrightarrow \mathcal{Z}(A)$

$$\forall x \in X, \quad C_x(X) = \{f \in C(X) \mid f(x) = 0\}$$

 $\mathsf{A}_\mathsf{x} := \mathsf{A} / [\mathsf{C}_\mathsf{x}(\mathsf{X}).\mathsf{A}] \quad \text{and} \quad a \in A \longmapsto a_\mathsf{x} \in \mathsf{A}_\mathsf{x}$

$$x \mapsto ||a_x|| = ||a + C_x(X)A|| = \inf\{|| [1 - f + f(x)]a||, f \in C(X)\}$$

upper semi-continuous (u.s.c.) Definition 1.3

A is a continuous C*-bundle over X with fibres A_x

iff

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

 $\forall a \in A$, the function $x \mapsto ||a_x||$ is continuous.

Proposition 2.1 (Kirchberg, Wassermann) Let X be a compact Hausdorff space and

A a separable continuous C(X)-algebra.

Proposition 2.1 (Kirchberg, Wassermann) Let X be a compact Hausdorff space and A a separable continuous C(X)-algebra.

(1) For all compact space Y and all continuous C(Y)-algebra B, $A \overset{M}{\otimes} B$ is a continuous $C(X \times Y)$ -algebra with fibres $(A \overset{M}{\otimes} B)_{(x,y)} \cong A_x \overset{M}{\otimes} B_y$

Proposition 2.1 (Kirchberg, Wassermann) Let X be a compact Hausdorff space and A a separable continuous C(X)-algebra.

(1) For all compact space Y and all continuous C(Y)-algebra B, A ⊗ B is a continuous C(X × Y)-algebra with fibres (A ⊗ B)_(x,y) ≅ A_x ⊗ B_y (2) The C*-algebra A is nuclear.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Proposition 2.1 (Kirchberg, Wassermann) Let X be a compact Hausdorff space and A a separable continuous C(X)-algebra.

(3) For all compact space Y and all continuous C(Y)-algebra B, $A \overset{m}{\otimes} B$ is a continuous $C(X \times Y)$ -algebra with fibres $(A \overset{m}{\otimes} B)_{(x,y)} \cong A_x \overset{m}{\otimes} B_y$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proposition 2.1 (Kirchberg, Wassermann) Let X be a compact Hausdorff space and A a separable continuous C(X)-algebra.

Fiberwise tensor products

Question 1. What can be said for the fiberwise tensor products of C(X)-algebras?

Question 1. What can be said for the fiberwise tensor products of C(X)-algebras?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Proposition 2.3 (B.) Let -X be a compact Hausdorff space -A, B be two unital C(X)-algebras. $-A \odot B := (A \odot B)/\mathcal{I}_X(A, B)$ with $\mathcal{I}_X(A, B) = \langle af \otimes b - a \otimes fb \rangle$ **Question 1.** What can be said for the fiberwise tensor products of C(X)-algebras?

Proposition 2.3 (B.) Let -X be a compact Hausdorff space -A, B be two unital C(X)-algebras. $-A \odot B := (A \odot B)/\mathcal{I}_X(A, B)$ with $\mathcal{I}_X(A, B) = \langle af \otimes b - a \otimes fb \rangle$ There are a minimal Hausdorff completion $A \bigotimes_{C(X)}^{\infty} B$ of $A \odot B$ and a maximal Hausdorff completion $A \bigotimes_{C(X)}^{\infty} B$ of $A \odot B$ C(X) **Question 1.** What can be said for the fiberwise tensor products of C(X)-algebras?

Proposition 2.3 (B.) Let -X be a compact Hausdorff space -A, B be two unital C(X)-algebras. $-A \odot B := (A \odot B)/\mathcal{I}_X(A, B)$ with $\mathcal{I}_X(A, B) = \langle af \otimes b - a \otimes fb \rangle$ C(X)There are a minimal Hausdorff completion $A \bigotimes_{C(X)}^{m} B$ of $A \odot_{C(X)} B$ and a maximal Hausdorff completion $A \bigotimes_{C(X)}^{M} B$ of $A \odot_{C(X)} B$ given by $- \|d\|_{A_{[k]}^{m}B} = \sup\{\|(\pi_{x}^{A} \overset{m}{\otimes} \pi_{x}^{B})(d)\|, x \in X\}$ $- \|d\|_{A_{\underset{C(X)}{\otimes}B}} = \sup\{\|(\pi_x^A \overset{M}{\otimes} \pi_x^B)(d)\|, x \in X\}$

Proposition 2.4 (B., Wassermann)

Let X be a perfect compact metric space and

A a separable continuous C(X)-algebra.

Proposition 2.4 (B., Wassermann) Let X be a perfect compact metric space and A a separable continuous C(X)-algebra. (1) $A \underset{C(X)}{\overset{M}{\otimes}} B$ is continuous with fibres $A_x \overset{M}{\otimes} B_x$ ($x \in X$) for all continuous C(X)-alg. B.

Proposition 2.4 (B., Wassermann) Let X be a perfect compact metric space and A a separable continuous C(X)-algebra. (1) $A \bigotimes_{C(X)}^{M} B$ is continuous with fibres $A_X \bigotimes_{B_X}^{M} B_X$ ($x \in X$) \uparrow for all continuous C(X)-alg. B. (2) The C*-algebra A is nuclear.

Proposition 2.4 (B., Wassermann) Let X be a perfect compact metric space and A a separable continuous C(X)-algebra. (1) $A \bigotimes_{C(X)}^{M} B$ is continuous with fibres $A_X \bigotimes_{X}^{M} B_X$ ($x \in X$) \uparrow for all continuous C(X)-alg. B. (2) The C*-algebra A is nuclear.

(3) $A \bigotimes_{C(X)}^{m} B$ is continuous with fibres $A_{x} \bigotimes_{K}^{m} B_{x}$ ($x \in X$) for all continuous C(X)-alg. B.

Proposition 2.4 (B., Wassermann) Let X be a perfect compact metric space and A a separable continuous C(X)-algebra. (1) $A \bigotimes_{C(X)}^{M} B$ is continuous with fibres $A_x \bigotimes_{C(X)}^{M} B_x$ ($x \in X$) for all continuous C(X)-alg. B. 1 (2) The C*-algebra A is **nuclear**. (3) $A \bigotimes_{C(X)}^{m} B$ is continuous with fibres $A_x \bigotimes_{C(X)}^{m} B_x$ ($x \in X$)

for all continuous C(X)-alg. B.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

(4) The C*-algebra A is exact.

Proposition 2.4 (B., Wassermann) Let X be a perfect compact metric space and A a separable continuous C(X)-algebra. (1) $A \bigotimes_{C(X)}^{M} B$ is continuous with fibres $A_x \bigotimes_{C(X)}^{M} B_x$ ($x \in X$) for all continuous C(X)-alg. B. 1 (2) The C*-algebra A is **nuclear**. (3) $A \bigotimes_{C(X)}^{m} B$ is continuous with fibres $A_x \bigotimes_{C(X)}^{m} B_x$ ($x \in X$) for all continuous C(X)-alg. B.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

(4) The C*-algebra A is **exact**.

N.B. Wrong if $X = \{x\}$

Corollary 2.5 Let X be a perfect compact metric space and A a separable continuous C(X)-algebra.

Then the C^{*}-algebra A is exact

Corollary 2.5 Let X be a perfect compact metric space and A a separable continuous C(X)-algebra.

Then the C^* -algebra A is exact

if and only

for all short exact sequence

 $0 \rightarrow J \rightarrow B \rightarrow D \rightarrow 0$

of continuous C(X)-algebras, the sequence

$$0 \to A \underset{C(X)}{\overset{m}{\otimes}} J \to A \underset{C(X)}{\overset{m}{\otimes}} B \to A \underset{C(X)}{\overset{m}{\otimes}} D \to 0$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

is exact.

a) $\forall x \in X$, A_x exact C*-algebra

a) $\forall x \in X$, A_x exact C*-algebra

- Take $x \in X$ and set $Y := \{x_n, n \in \mathbb{N}\} \cup \{x\} \cong \mathbb{N} \cup \{\infty\}.$

a) $\forall x \in X$, A_x exact C*-algebra

- Take $x \in X$ and set $Y := \{x_n, n \in \mathbb{N}\} \cup \{x\} \cong \mathbb{N} \cup \{\infty\}.$

- **Proposition 2.6** (Kirchberg, Wassermann) Assume that A is a continuous C(X)-algebra.

```
(a) The C*-algebra A<sub>x</sub> is exact.
(b) For all continuous C(Y)-algebra B,
the C(Y)-algebra B ⊗ A<sub>x</sub> is continuous.
```

a) $\forall x \in X$, A_x exact C*-algebra

- Take $x \in X$ and set $Y := \{x_n, n \in \mathbb{N}\} \cup \{x\} \cong \mathbb{N} \cup \{\infty\}.$

- **Proposition 2.6** (Kirchberg, Wassermann) Assume that A is a continuous C(X)-algebra.

```
(a) The C*-algebra A<sub>x</sub> is exact.
(b) For all continuous C(Y)-algebra B,
the C(Y)-algebra B <sup>m</sup>⊗ A<sub>x</sub> is continuous.
```

 $- \exists B$ continuous C(Y)-algebra such that

 $\not\exists \mathcal{B} \text{ continuous } C(X) \text{-algebra with } \mathcal{B}_{|Y} \cong B$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

a) $\forall x \in X$, A_x exact C*-algebra

- Take $x \in X$ and set $Y := \{x_n, n \in \mathbb{N}\} \cup \{x\} \cong \mathbb{N} \cup \{\infty\}.$

- **Proposition 2.6** (Kirchberg, Wassermann) Assume that A is a continuous C(X)-algebra.

```
(a) The C*-algebra A<sub>x</sub> is exact.
(b) For all continuous C(Y)-algebra B,
the C(Y)-algebra B <sup>m</sup>⊗ A<sub>x</sub> is continuous.
```

 $- \exists B$ continuous C(Y)-algebra such that

 $\not\exists \mathcal{B} \text{ continuous } C(X)\text{-algebra with } \mathcal{B}_{|Y} \cong B$

- $\forall B$ continuous $\overline{C(Y)}$ -algebra
- $\exists \mathcal{B} \text{ continuous } C(X)\text{-algebra with } \mathcal{B}_{|Y} \cong B \otimes C_0((0,1]) \text{ (B.-W.)}$

a) $\forall x \in X$, A_x exact C*-algebra

- Take $x \in X$ and set $Y := \{x_n, n \in \mathbb{N}\} \cup \{x\} \cong \mathbb{N} \cup \{\infty\}.$

- **Proposition 2.6** (Kirchberg, Wassermann) Assume that A is a continuous C(X)-algebra.

(a) The C*-algebra A_x is exact.
(b) For all continuous C(Y)-algebra B, the C(Y)-algebra B ^m⊗ A_x is continuous.

 $- \exists B$ continuous C(Y)-algebra such that

 $\not\supseteq \mathcal{B}$ continuous C(X)-algebra with $\mathcal{B}_{|Y} \cong B$

- $\forall B$ continuous $\overline{C(Y)}$ -algebra
- $\exists \mathcal{B} \text{ continuous } C(X)$ -algebra with $\mathcal{B}_{|Y} \cong B \otimes C_0((0,1])$ (B.-W.)

$$\Rightarrow A_x$$
 exact

a) $\forall x \in X$, A_x exact C*-algebra

a) $\forall x \in X, A_x \text{ exact } C^*\text{-algebra}$ **b)** If *B* is a C*-algebra, $\mathcal{B} := C(X; B)$ and $D := A \bigotimes_{C(X)}^m \mathcal{B}$, then
a)
$$\forall x \in X, A_x \text{ exact } C^*\text{-algebra}$$

b) If *B* is a C*-algebra, $\mathcal{B} := C(X; B)$ and $D := A \bigotimes_{C(X)}^m \mathcal{B}$, then

$$0 \rightarrow C_{x}(X) D \rightarrow D \rightarrow D_{x} \rightarrow 0 \quad |exact|$$

$$\| \qquad \| \qquad \| \qquad \|$$

$$C_{x}(X) A \overset{m}{\otimes} B \qquad A \overset{m}{\otimes} B \qquad A_{x} \overset{m}{\otimes} B$$
c) If C continuous $C(X)$ -algebra and $x \in X$,
$$(A \overset{m}{\otimes} C)_{x} \twoheadrightarrow (A_{x} \overset{m}{\otimes} C)_{x} \twoheadrightarrow A_{x} \overset{m}{\otimes} C_{x}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

c) If C continuous C(X)-algebra and $\lfloor x \in X \rfloor$, $(A \bigotimes_{C(X)}^{m} C)_{X} \twoheadrightarrow (A_{X} \bigotimes_{C}^{m} C)_{X} \twoheadrightarrow A_{X} \bigotimes_{C}^{m} C_{X}$

d) Let $K \triangleleft B$ and $d \in \ker\{A \overset{m}{\otimes} B \to A \overset{m}{\otimes} B/K\}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

a)
$$\forall x \in X, A_x \text{ exact } C^*\text{-algebra}$$

b) If B is a $C^*\text{-algebra}, \mathcal{B} := C(X; B)$ and $D := A \bigotimes_{C(X)}^m \mathcal{B}$, then
 $0 \rightarrow C_x(X) D \rightarrow D \rightarrow D_x \rightarrow 0$ exact
 $\| \| \| \|$
 $C_x(X)A \bigotimes_{B}^m B A \bigotimes_{B}^m B A_x \bigotimes_{B}^m B$
c) If C continuous $C(X)$ -algebra and $x \in X$,
 $(A \bigotimes_{C(X)}^m C)_x \rightarrow (A_x \bigotimes_{C} C)_x \rightarrow A_x \bigotimes_{C_X}^m C_x$
d) Let $K \triangleleft B$ and $d \in \ker\{A \bigotimes_{B}^m B \rightarrow A \bigotimes_{B}^m B/K\}$.
 $d_x \in \ker\{(A \bigotimes_{B}^m B)_x \rightarrow (A \bigotimes_{B}^m B/K)_x\}$
 $= \ker\{A_x \bigotimes_{B}^m B \rightarrow A_x \bigotimes_{B}^m B/K\}$ by $b)$

a)
$$\forall x \in X, A_x \text{ exact } C^*\text{-algebra}$$

b) If *B* is a C*-algebra, $\mathcal{B} := C(X; B)$ and $D := A \bigotimes_{C(X)}^m \mathcal{B}$, then
 $0 \to C_x(X)D \to D \to D_x \to 0$ exact
 $\| \quad \| \quad \| \quad \| \quad \| \quad \\ C_x(X)A \bigotimes_{B}^m B \quad A \bigotimes_{B}^m B \quad A_x \bigotimes_{B}^m B$
c) If *C* continuous $C(X)$ -algebra and $\overline{x \in X}$,
 $(A \bigotimes_{C(X)}^m C)_X \to (A_x \bigotimes_{K}^m C)_X \to A_x \bigotimes_{K}^m C_x$
d) Let $K \triangleleft B$ and $d \in \ker\{A \bigotimes_{B}^m B \to A \bigotimes_{K}^m B/K\}$.
 $d_x \in \ker\{(A \bigotimes_{B}^m B)_x \to (A \bigotimes_{K}^m B/K)_x\}$
 $= \ker\{A_x \bigotimes_{B}^m B \to A_x \bigotimes_{K}^m B/K\}$ by *b*)
 $= A_x \bigotimes_{K}^m K$ by *a*)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

a)
$$\forall x \in X, A_x \text{ exact } C^*\text{-algebra}$$

b) If B is a C*-algebra, $\mathcal{B} := C(X; B)$ and $D := A \bigotimes_{C(X)}^m \mathcal{B}$, then
 $0 \to C_x(X)D \to D \to D_x \to 0$ exact
 $\| \| \| \|$
 $C_x(X)A \bigotimes_B^m B A \bigotimes_B^m B A_x \bigotimes_B^m B$
c) If C continuous $C(X)\text{-algebra and } x \in X$,
 $(A \bigotimes_{C(X)}^m C)_x \to (A_x \bigotimes_C)_x \to A_x \bigotimes_C C_x$
d) Let $K \triangleleft B$ and $d \in \ker\{A \bigotimes_B^m B \to A \bigotimes_B^m B/K\}$.
 $d_x \in \ker\{(A \bigotimes_B^m B)_x \to (A \bigotimes_B^m B/K)_x\}$
 $= \ker\{A_x \bigotimes_B B \to A_x \bigotimes_B^m B/K\}$ by b)
 $= A_x \bigotimes_K^m K$ by a)
 $= (A \bigotimes_K)_x$ by (3)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

a)
$$\forall x \in X, A_x \text{ exact } C^*\text{-algebra}$$

b) If B is a C*-algebra, $\mathcal{B} := C(X; B)$ and $D := A \bigotimes_{C(X)}^m \mathcal{B}$, then
 $0 \rightarrow C_x(X) D \rightarrow D \rightarrow D_x \rightarrow 0$ exact
 $\| \quad \| \quad \| \quad \|$
 $C_x(X) A \bigotimes_B A \bigotimes_B A \bigotimes_B A_x \bigotimes_B B$
c) If C continuous $C(X)\text{-algebra and } x \in X$,
 $(A \bigotimes_C C)_x \rightarrow (A_x \bigotimes_C C)_x \rightarrow A_x \bigotimes_C C_x$
d) Let $K \triangleleft B$ and $d \in \ker\{A \bigotimes_B B \rightarrow A \bigotimes_B B/K\}$.
 $d_x \in \ker\{(A \bigotimes_B B)_x \rightarrow (A \bigotimes_B B/K)_x\}$
 $= \ker\{A_x \bigotimes_B B \rightarrow A_x \bigotimes_B B/K\}$ by b)
 $= A_x \bigotimes_K K$ by a)
 $= (A \bigotimes_K K)_x$ by (3)
Thus $d \in A \bigotimes_K K$.

a)
$$\forall x \in X, A_x \text{ exact } C^*\text{-algebra}$$

b) If B is a C*-algebra, $\mathcal{B} := C(X; B)$ and $D := A \bigotimes_{C(X)}^m \mathcal{B}$, then
 $0 \to C_x(X)D \to D \to D_x \to 0$ exact
 $\| \quad \| \quad \| \quad \|$
 $C_x(X)A \bigotimes_B^m B \quad A \bigotimes_B^m B \quad A_x \bigotimes_B^m B$
c) If C continuous $C(X)\text{-algebra and } x \in X$,
 $(A \bigotimes_C C)_x \to (A_x \bigotimes_C C)_x \to A_x \bigotimes_C C_x$
d) Let $K \triangleleft B$ and $d \in \ker\{A \bigotimes_B^m B \to A \bigotimes_B^m B/K\}$.
 $d_x \in \ker\{(A \bigotimes_B B)_x \to (A \bigotimes_B^m B/K)_x\}$
 $= \ker\{A_x \bigotimes_B B \to A_x \bigotimes_B^m B/K\}$ by b)
 $= A_x \bigotimes_B^m K \qquad by a)$
 $= (A \bigotimes_K K)_x \qquad by (3)$
Thus $d \in A \bigotimes_K^m K$. $\Rightarrow A \text{ exact}$

Amalgamated free product over C(X)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Amalgamated free product over C(X)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Amalgamated free product over C(X)

▲ロト ▲御ト ▲画ト ▲画ト 三回 - のへで

Amalgamated free product over C(X)

Amalgamated free product over C(X)

Assume that the unital C(X)-algebras A and B are continuous.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Assume that the unital C(X)-algebras A and B are continuous.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Question 2 Is the C(X)-algebra $A \underset{C(X)}{\overset{\alpha}{*}} B$ continuous ?

Proposition 3.1 (C(X)-linear Ruan's theorem) Let X be a compact Hausdorff space and let W be a separable operator space which is (1) a unital C(X)-module and (2) such that $\forall w \in M_n(W)$, $x \mapsto ||w_x||$ is continuous.

Assume that the unital C(X)-algebras A and B are continuous.

Question 2 Is the C(X)-algebra $A \underset{C(X)}{\overset{\alpha}{*}} B$ continuous ?

Proposition 3.1 (C(X)-linear Ruan's theorem) Let X be a compact Hausdorff space and let W be a separable operator space which is (1) a unital C(X)-module and (2) such that $\forall w \in M_n(W)$, $x \mapsto ||w_x||$ is continuous.

Then $\exists \Phi_x : W_x \to L(H) \ (x \in X)$ completely isometric maps s.t.

 $\forall w \in M_n(W), \quad x \mapsto \Phi_x(w) \text{ *-strongly continuous in } L(H).$ (with $H = \ell^2(\mathbb{N})$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Assume that the unital C(X)-algebras A and B are continuous.

Question 2 Is the C(X)-algebra $A \underset{C(X)}{\overset{\alpha}{*}} B$ continuous ?

Proposition 3.1 (C(X)-linear Ruan's theorem) Let X be a compact Hausdorff space and let W be a separable operator space which is (1) a unital C(X)-module and (2) such that $\forall w \in M_n(W)$, $x \mapsto ||w_x||$ is continuous.

Then $\exists \Phi_x : W_x \to L(H) \ (x \in X)$ completely isometric maps s.t.

 $\forall w \in M_n(W), x \mapsto \Phi_x(w)$ *-strongly continuous in L(H).

(with $H = \ell^2(\mathbb{N})$) i.e. $\exists \Phi = (\Phi_x)_{x \in X} : W \to \mathcal{L}_{C(X)}(H \otimes C(X))$ such that ...

Definition 3.2 (Voiculescu) $(C, \phi * \psi) = (A, \phi) \underset{C(X)}{*} (B, \psi)$ is the **unique** unital C(X)-algebra with a continous field of states $\phi * \psi : C \to C(X)$ such that:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition 3.2 (Voiculescu) $(C, \phi * \psi) = (A, \phi) \underset{C(X)}{*} (B, \psi)$ is the **unique** unital C(X)-algebra with a continous field of states $\phi * \psi : C \to C(X)$ such that:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

-C is a unital C(X)-algebra generated by A and B;

Definition 3.2 (Voiculescu) $(C, \phi * \psi) = (A, \phi) \underset{C(X)}{*} (B, \psi)$ is the **unique** unital C(X)-algebra with a continous field of states $\phi * \psi : C \to C(X)$ such that:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- C is a unital C(X)-algebra generated by A and B; - $\phi * \psi|_A = \phi$ and $\phi * \psi|_B = \psi$;

Definition 3.2 (Voiculescu) $(C, \phi * \psi) = (A, \phi) \underset{C(X)}{*} (B, \psi)$ is the **unique** unital C(X)-algebra with a continous field of states $\phi * \psi : C \to C(X)$ such that:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- -C is a unital C(X)-algebra generated by A and B;
- $-\phi *\psi|_{A} = \phi$ and $\phi *\psi|_{B} = \psi$;
- the KGNS representation of $\phi * \psi$ is faithful on *C*;

Definition 3.2 (Voiculescu) $(C, \phi * \psi) = (A, \phi) \underset{C(X)}{*} (B, \psi)$ is the **unique** unital C(X)-algebra with a continous field of states $\phi * \psi : C \to C(X)$ such that:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- -C is a unital C(X)-algebra generated by A and B;
- $-\phi * \psi|_{A} = \phi$ and $\phi * \psi|_{B} = \psi$;
- the KGNS representation of $\phi * \psi$ is faithful on C;
- A and B are free in $(C, \phi * \psi)$.

Proposition 3.3 (B.) If X is perfect and ϕ cont.field of faithful states on the unital C(X)-algebra A, TFAE (1) The unital continuous C(X)-algebra A is an exact C*-alg. (2) The C(X)-alg. $(C, \phi * \psi) := (A, \phi) \overset{r}{\underset{C(X)}{\underset{C(X)}{\overset{r}{\underset{C(X)}{\underset{C(X)}{\overset{r}{\underset{C(X)}{\overset{r}{\underset{C(X)$

for :

- all separable continuous C(X)-algebra B and

– all continuous fields of faithful states ψ on B.

Proposition 3.3 (B.) If X is perfect and ϕ cont.field of faithful states on the unital C(X)-algebra A, TFAE

(1) The unital continuous C(X)-algebra A is an exact C*-alg.

(2) The C(X)-alg. $(C, \phi * \psi) := (A, \phi) \mathop{*}\limits_{C(X)}^{r} (B, \psi)$ is continuous

for :

- all separable continuous C(X)-algebra B and - all continuous fields of faithful states ψ on B.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

N.B. Wrong if $X = \{x\}$

Proposition 3.3 (B.) If X is perfect and ϕ cont.field of faithful states on the unital C(X)-algebra A, TFAE (1) The unital continuous C(X)-algebra A is an exact C*-alg. (2) The C(X)-alg. $(C, \phi * \psi) := (A, \phi) \stackrel{'}{\underset{C(X)}{\overset{'}{\underset{C(X)}{\underset{C(X)}{\overset{'}{\underset{C(X)}{\underset{C(X)}{\overset{'}{\underset{C(X)}{\overset{'}{\underset{C(X)}{\overset{'}{\underset{C(X)}{\overset{'}{\underset{C(X)}{\overset{'}{\underset{C(X)}{\underset{$

for :

- all separable continuous C(X)-algebra B and - all continuous fields of faithful states ψ on B.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

N.B. Wrong if $X = \{x\}$

Proof. Let
$$D := A \bigotimes_{C(X)}^{m} B$$
 and $E := L^2(D, \phi \otimes \psi) \bigotimes_{C(X)} D$

Proposition 3.3 (B.) If X is perfect and ϕ cont.field of faithful states on the unital C(X)-algebra A, TFAE (1) The unital continuous C(X)-algebra A is an exact C*-alg.

- (2) The C(X)-alg. $(C, \phi * \psi) := (A, \phi) \mathop{\circ}\limits_{C(X)}^{r} (B, \psi)$ is continuous for :
 - all separable continuous C(X)-algebra B and - all continuous fields of faithful states ψ on B.

N.B. Wrong if $X = \{x\}$

Proof. Let
$$D := A \bigotimes_{C(X)}^{m} B$$
 and $E := L^2(D, \phi \otimes \psi) \bigotimes_{C(X)} D$

TFAE

(1)
$$D$$
 is a continuous $C(X)$ -algebra.
(2) $\mathcal{T}_D(E \oplus D) \cong C \rtimes_{\alpha} \mathbb{N}$ is a continuous $C(X)$ -algebra.
(Dykema-Schlyakhtenko)

Proposition 3.3 (B.) If X is perfect and ϕ cont.field of faithful states on the unital C(X)-algebra A, TFAE (1) The unital continuous C(X)-algebra A is an exact C*-alg.

(2) The C(X)-alg. $(C, \phi * \psi) := (A, \phi) \overset{r}{\underset{C(X)}{\ast}} (B, \psi)$ is continuous for :

- all separable continuous C(X)-algebra B and - all continuous fields of faithful states ψ on B.

N.B. Wrong if $X = \{x\}$

Proof. Let
$$D := A \bigotimes_{C(X)}^{m} B$$
 and $E := L^2(D, \phi \otimes \psi) \bigotimes_{C(X)} D$

TFAE

 D is a continuous C(X)-algebra.
 (2) T_D(E ⊕ D) ≅ C ⋊_α ℕ is a continuous C(X)-algebra. (Dykema-Schlyakhtenko)
 (3) C is a continuous C(X)-algebra.

Definition 3.4

If D is a unital C*-algebra and F is a Hilbert D-bimodule,

 $-\mathscr{F}_D(F) = D \oplus F \oplus F \otimes_D F \oplus \dots$ full Fock Hilbert *D*-bimodule

Definition 3.4 If D is a unital C*-algebra and F is a Hilbert D-bimodule,

 $-\mathscr{F}_D(F) = D \oplus F \oplus F \otimes_D F \oplus \dots$ full Fock Hilbert *D*-bimodule

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $-\ell(\xi) \in \mathcal{L}_D(\mathscr{F}_D(F)) \quad \text{creation operator} \quad \text{given by}$ $\ell(\xi).d = \xi d \quad \text{and} \quad \ell(\xi)(\zeta_1 \otimes \ldots \otimes \zeta_k) = \xi \otimes \zeta_1 \otimes \ldots \otimes \zeta_k$

Definition 3.4 If D is a unital C*-algebra and F is a Hilbert D-bimodule,

 $-\mathscr{F}_D(F) = D \oplus F \oplus F \otimes_D F \oplus \dots \text{ full Fock Hilbert } D\text{-bimodule}$

 $-\ell(\xi) \in \mathcal{L}_D(\mathscr{F}_D(F))$ creation operator given by

 $\ell(\xi).d = \xi d$ and $\ell(\xi)(\zeta_1 \otimes \ldots \otimes \zeta_k) = \xi \otimes \zeta_1 \otimes \ldots \otimes \zeta_k$

 $-\mathcal{T}_D(F) = C^*(<\ell(\xi), \, \xi \in F >)$ Toeplitz C*-algebra

Definition 3.4 If D is a unital C*-algebra and F is a Hilbert D-bimodule,

 $-\mathscr{F}_D(F) = D \oplus F \oplus F \otimes_D F \oplus \dots \text{ full Fock Hilbert } D\text{-bimodule}$

 $-\ell(\xi) \in \mathcal{L}_D(\mathscr{F}_D(F))$ creation operator given by

 $\ell(\xi).d = \xi d$ and $\ell(\xi)(\zeta_1 \otimes \ldots \otimes \zeta_k) = \xi \otimes \zeta_1 \otimes \ldots \otimes \zeta_k$

 $-\mathcal{T}_D(F) = C^*(<\ell(\xi), \, \xi \in F >)$ Toeplitz C*-algebra

Proposition 3.5 If *D* is a unital C(X)-algebra and *F* is a countable generated Hilbert *D*-bimodule such that

 $D \hookrightarrow \mathcal{L}_D(F)$ and $f.\zeta = \zeta.f$ for $f \in C(X), \zeta \in F$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition 3.4 If D is a unital C*-algebra and F is a Hilbert D-bimodule,

 $-\mathscr{F}_D(F) = D \oplus F \oplus F \otimes_D F \oplus \dots \text{ full Fock Hilbert } D\text{-bimodule}$

 $-\ell(\xi) \in \mathcal{L}_D(\mathscr{F}_D(F))$ creation operator given by

 $\ell(\xi).d = \xi d$ and $\ell(\xi)(\zeta_1 \otimes \ldots \otimes \zeta_k) = \xi \otimes \zeta_1 \otimes \ldots \otimes \zeta_k$

 $-\mathcal{T}_D(F) = C^*(<\ell(\xi), \, \xi \in F >)$ Toeplitz C*-algebra

Proposition 3.5 If *D* is a unital C(X)-algebra and *F* is a countable generated Hilbert *D*-bimodule such that

$$D \hookrightarrow \mathcal{L}_D(F)$$
 and $f.\zeta = \zeta.f$ for $f \in C(X), \zeta \in F$

then D is a continuous C(X)-algebra if and only if $\mathcal{T}_D(F)$ is a continuous C(X)-algebra with fibres isomorphic to $\mathcal{T}_{D_x}(F_x)$.

Proposition 3.6 (Pedersen)

If the unital separable continuous C(X)-algebras A and B are nuclear, then

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$A \stackrel{f}{\underset{C(X)}{\overset{*}{\ast}}} B \subset C(X ; \mathcal{O}_2) \stackrel{f}{\underset{C(X)}{\overset{*}{\ast}}} C(X ; \mathcal{O}_2)$$

Proposition 3.6 (Pedersen)

If the unital separable continuous C(X)-algebras A and B are nuclear, then

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$A_{C(X)}^{f} B \subset C(X; \mathcal{O}_{2})_{C(X)}^{f} C(X; \mathcal{O}_{2}) = C(X; \mathcal{O}_{2} \overset{f}{\underset{\mathbb{C}}{\overset{\times}{\times}}} \mathcal{O}_{2})$$

Proposition 3.6 (Pedersen)

If the unital separable continuous C(X)-algebras A and B are nuclear, then

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$A_{C(X)}^{f}B \subset C(X;\mathcal{O}_{2})_{C(X)}^{f}C(X;\mathcal{O}_{2}) = C(X;\mathcal{O}_{2} \overset{f}{\underset{\mathbb{C}}{\ast}}\mathcal{O}_{2})$$

Proposition 3.7 (B.) The C(X)-algebra $A \underset{C(X)}{\stackrel{f}{*}} B$ is **always** continuous.

Proposition 3.7 (B.) The C(X)-algebra $A \stackrel{f}{\underset{C(X)}{\overset{f}{\ast}}} B$ is **always** continuous.

Sketch of proof. If $d \in A \underset{C(X)}{\odot} B$,

$$\begin{split} \|d_x\|_h &= \inf \left\{ \|\sum_i a_i a_i^*\|^{\frac{1}{2}} \cdot \|\sum_i b_i^* b_i\|^{\frac{1}{2}} \ ; \ d_x = \sum_i a_i \otimes b_i \right\} \\ &= \sup \left\{ \left| \langle \xi, \sum_i \pi(a_i) \cdot \sigma(b_i) \eta \rangle \right| \ ; \ \pi \, , \, \sigma \text{ unital } * - \operatorname{rep.} \right\} \end{split}$$

→ □ ▶ → 個 ▶ → 目 ▶ → 目 → のへで