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Classical random walk

0.0

S5, =X1+...+ X,
X, = +1




Brownian motion
Scale by ¢ in time and /¢ in space.
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PITMAN THEOREM (1975)
B;; t > 0 Brownian motion; /; = info<s<¢ Bs
R: = By — 2l;; t > 0 is distributed as the norm of a three
dimensional Brownian motion(=Bessel 3 process)
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Explained by considering a random walk in a non-commutative
space.



DISCRETE VERSION

Xi==x1, S, =X1+Xo+...4+X,

1/2 1/2

Ry = Sn — 2ming<k<p Sk is a Markov chain(=discrete Bessel 3
process)
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PROOF OF PITMAN’S THEOREM
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Quantum Bernoulli random walks

We "quantize” the set of increments of the random walk {£1} to
obtain M,(C).

The subset of hermitian operators in M»(C) is a four dimensional
real subspace, generated by the identity matrix / as well as the
three matrices

/01 (0 —i /1 0
9%=\10) = \i o) %27 \o -1

The matrices oy, 0,0, are the Pauli matrices. They satisfy the
commutation relations

lox,0y] =2i0,; [oy,0,] =2i0s; [07,04]=2ic, (1)



The random walk
For w a state on M,(C), in (M>(C),w)®N we put
xp = 10 N@e, 0190y, = 120 Ve @19% 7, = [0 Dge,019%

Xp is @ commuting family of operators, a sequence of independent
Bernoulli random variables.

n n n
Xn:ZXi; Yn:ZYI Zn:z:zi
i=1 i=1 i=1

are Bernoulli random walks.
They do not commute but obey

[Xm Ym] = 2/.Zn/\m (2)

as well as the similar relations obtained by cyclic permutation of
X,Y,Z.
(Xn, Yn, Zn); n > 1 is a quantum Bernoulli random walk.



The spin process

Let Sp= /I + X2+ Y2+ Z2

Proposition For all n, m one has

[Sn, Sm] =0

Thus we have a commutative process and we can try to compute
its distribution.



Theorem

Let w be the tracial state %Tr, then S, is distributed as a Markov

chain on the positive integers, with probability transitions
_k+1 k-1

p(k, k+1) v p(k, k—1) = ok



Random walks on groups

W = abelian group W = dual group
& € W = character of W
F(W)=algebra of functions on W  A(W)=group algebra of W

F(W) — F(W x W) A AW) — A(W) @ A(W)

f(x) = fx+y) A)=E®¢

w:F(W)—C p=positive definite function on W
=probability measure on W o) = [ f()i)du(x)

state w on A(W)



Q= (W,p)>® M = @®(A(W),w)

Yo=wi+...+w, Jn i A(W) —
f—flwg+ ...+ wy) Jn1 = (A @ 12D o | © j,

Markov operator
O(F)(x) = [ F(x+y)du(y) o(f)
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Random walks on duals of compact groups
Replace 7% by a compact group G.

¢=continuous positive definite functions on G, with ¢(e) = 1.
=state v on A(G).
v= distribution of the increments.

o, A(G) — A(G)
o, =(l®v)ocA

is a completely positive map. It generates a semigroup ®,;n > 1.



(N, w) = (A(G), )™
Jn : A(G) — N defined by jn(Ag) = A" @/

The morphisms (j,)n>0, define a random walk on the
noncommutative space dual to G, with Markov operator.

o, : A(G) — A(G)

o, =(l®v)oA

The quantum Bernoulli random walk is obtained for G = SU(2),
and v the tracial state associated with the 2-dimensional
representation.



The dual of SU(2) as a noncommutative space

A(SU(2)) = @321 Ma(C)

is the noncommutative space dual to SU(2).

The Pauli matrices belong to the Lie algebra su(2), they define
unbounded operators X, Y, Z, on L2(SU(2)).

They generate oneparameter sugbroups isomorphic to U(1). This
is true also of any linear combination xX + yY + zZ with

X2 +y?+22=1.



Noncommutative space underlying A(SU(2))
If you are in this space and measure your coordinate in some
direction (x, y, z) using the operator xX + yY + zZ, and you will

always find an integer.
You cannot measure coordinates in two different directions at the

same time.



The operator D = /[ + X2+ Y24+ Z2 — | is in the center of the
algebra A(SU(2)), and therefore can be measured simultaneoulsy
with any other operator.

Its eigenvalues are the nonnegative integers 0,1,2..., and its
spectral projections are the identity elements of the algebras M,(C)

D=> (n—1)ly,q)
n=1

M,(C) is a kind of "noncommutative sphere of radius n —1".
Looking at the eigenvalues of the operators xX 4 yY + zZ the
coordinate on this "radius” can only take the n+ 1 values
nn—2n—4,...,—n.



Construction of the quantum Bernoulli random walk

w=state on Mp(C), v = w®>® on N' = @ M,(C).
Construct morphisms j, : A(SU(2)) — N by

Jn(Ag) = p2(g)®" @ 19

The family of morphisms (j,)n>1 is a stochastic noncommutative
process wih values in the dual of SU(2).

This is just the iterated tensor product of the basic representation
viewed as a random walk.



Restriction to a one parameter subgroup gives a Bernoulli random

walk.
1/2 1/2

The spin process (radial part) is obtained by restriction of j, to the
center of the group algebra.

The restriction of the completely positive map ® to this center can
be computed by the Clebsch Gordan formula

P2 @ Pk = Pk—1 D Pk+1

(k-1)/2k (k+1)/2k

k-1 k k+1






RESTRICTION TO A MAXIMAL ABELIAN ALGEBRA
Restrict the Markov operator to the maximal abelian subalgebra
generated by the center and a one parameter subgroup.

In the decomposition A(SU(2)) = ®M,(C) this is the algebra of
diagonal operators.
One gets probability transitions
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Kashiwara’s crystallization
Replace SU(2) by Drinfeld /Jimbo/Woronowicz SU,4(2) then

(rk)

‘\ ((Irﬂ _ q—kﬂ)/r_;(qrﬂ _ q—r—l) (q—kﬂ _ q—k+1)/2<qr+l _ q—r—l)

Let g — 0 then one obtains Pitman's theorem.



We can generalize the preceding construction to the quantum
groups SUq(n).



PITMAN OPERATORS
Y:[0,T]—=R,  Y(0)=0
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PY(t) = Y(t) -2 infogsgt Y(S)
For all t one has PY(t) > 0, in particular PPY = PY.



MULTIDIMENSIONAL PITMAN OPERATORS

V=real vector space, « € V, a¥ € V* a"(a) = 2.

P.Y(t) = Y(t) — inf a¥(Y(s))a

0<s<t

PoP.Y = P,Y



Braid relations

If the angle between v and 3 is @ = 7/n then
PoPgPq ... = PgP.Pg... (n terms)

Corollary: Let (W,S)=Coxeter system on V and «, a¥=simple

roots and coroots,
C=Weyl chamber. To each s, € S associate P;,. For each

w € W with reduced decomposition w = s, ... s,, there exists

Py = P

50‘1 . Sak

If wo=longest element then P, X takes values in C.



Example W = 53




GENERALIZED PITMAN THEOREM

Let X be Brownian motion in V

then P,,X is Brownian motion " conditioned to stay in C".



DOOB’S CONDITIONED BROWNIAN MOTION

v = ] 6x)

BER:

is a positive harmonic function on C

pl(x,y) = ) e(w)pe(x, w(y))
weWw
is the fundamental solution of Laplacian on W with Dirichlet
boundary conditions
(=transition probabilities for Brownian motion killed at the
boundary of C).

V(y) w
qi(x,y) = Vo P (x,¥)
are the transition probabilities of Brownian motion conditioned to
stay in C.



Fact:

when W =S, (i.e. Weyl group of type A,_1 then Brownian
motion conditionned to stay in C is the same as the motion of
eigenvalues

()\1(1'))\2(1’), L. ,)\n(t))

of a Brownian traceless hermitian matrix.

(M(1))



CONVERSE THEOREM

The conditional distribution of X(t) knowing P,,X(t) = p is the
Duistermaat-Heckmann measure on the convex polytope with
vertices w(p); w € W.




Its Fourier transform is

HﬁeRﬁ y) Z

weW

density is piecewise polynomial



In order to recover X from P,,X we need a positive real number x;
for each s; in Py, = Pg; ... Ps,.

Lemma Given P, X(t) the numbers (x1,...,xq) belong to a
certain convex polytope. Their distribution is the normalized
Lebesgue measure on this polytope.

Cristallographic case: Berenstein-Zelevinsky polytopes

The Duistermaat-Heckman measure is the image of this measure
by an affine map.



O<x<a

O<y<b

O<z<(a—x)+(b-y




