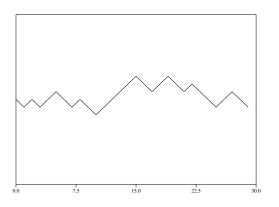
RANDOM WALKS ON SOME NONCOMMUTATIVE SPACES

Philippe Biane

Vietri Sul Mare, 01/09/2009

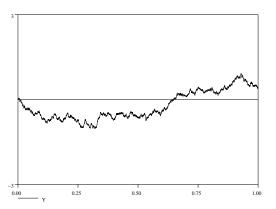
Classical random walk



$$S_n = X_1 + \ldots + X_n$$
$$X_k = \pm 1$$

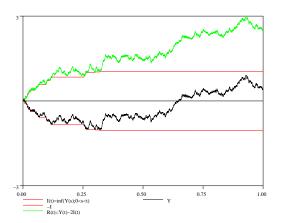
Brownian motion

Scale by ε in time and $\sqrt{\varepsilon}$ in space.



PITMAN THEOREM (1975)

 $B_t; t \geq 0$ Brownian motion; $I_t = \inf_{0 \leq s \leq t} B_s$ $R_t = B_t - 2I_t; t \geq 0$ is distributed as the norm of a three dimensional Brownian motion(=Bessel 3 process)



Explained by considering a random walk in a non-commutative space.

DISCRETE VERSION

$$X_i = \pm 1;$$
 $S_n = X_1 + X_2 + \ldots + X_n$

$$\frac{1/2}{\sqrt{2}}$$

 $R_n = S_n - 2 \min_{0 \le k \le n} S_k$ is a Markov chain(=discrete Bessel 3 process)

$$P(R_{n+1} = k + 1 | R_n = k) = \frac{k+1}{2k}$$

$$P(R_{n+1} = k - 1 | R_n = k) = \frac{k-1}{2k}$$

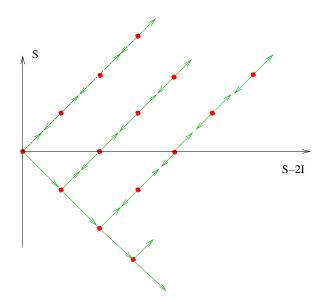
$$(k-1)/2k \quad (k+1)/2k$$

$$k-1 \quad k \quad k+1$$

when $n \to \infty$ $S_{[nt]}/\sqrt{n} \to_{n \to \infty}$ Brownian motion

 $R_{[nt]}/\sqrt{n} \rightarrow_{n \rightarrow \infty}$ norm of 3D-Brownian motion

PROOF OF PITMAN'S THEOREM



Quantum Bernoulli random walks

We "quantize" the set of increments of the random walk $\{\pm 1\}$ to obtain $M_2(\mathbf{C})$.

The subset of hermitian operators in $M_2(\mathbf{C})$ is a four dimensional real subspace, generated by the identity matrix I as well as the three matrices

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

The matrices $\sigma_x, \sigma_y, \sigma_z$ are the Pauli matrices. They satisfy the commutation relations

$$[\sigma_x, \sigma_y] = 2i\sigma_z; \quad [\sigma_y, \sigma_z] = 2i\sigma_x; \quad [\sigma_z, \sigma_x] = 2i\sigma_y$$
 (1)

The random walk

For ω a state on $M_2(\mathbf{C})$, in $(M_2(\mathbb{C}), \omega)^{\otimes \mathbb{N}}$ we put

$$x_n = I^{\otimes (n-1)} \otimes \sigma_x \otimes I^{\otimes \infty}, \ y_n = I^{\otimes (n-1)} \otimes \sigma_y \otimes I^{\otimes \infty}, \ z_n = I^{\otimes (n-1)} \otimes \sigma_z \otimes I^{\otimes \infty}$$

 x_n is a commuting family of operators, a sequence of independent Bernoulli random variables.

$$X_n = \sum_{i=1}^n x_i; \quad Y_n = \sum_{i=1}^n y_i \quad Z_n = \sum_{i=1}^n z_i$$

are Bernoulli random walks.

They do not commute but obey

$$[X_n, Y_m] = 2iZ_{n \wedge m} \tag{2}$$

as well as the similar relations obtained by cyclic permutation of $X,\,Y,\,Z.$

 (X_n, Y_n, Z_n) ; $n \ge 1$ is a quantum Bernoulli random walk.

The spin process

Let
$$S_n = \sqrt{I + X_n^2 + Y_n^2 + Z_n^2}$$

Proposition For all n, m one has

$$[S_n,S_m]=0$$

Thus we have a commutative process and we can try to compute its distribution.

Theorem

Let ω be the tracial state $\frac{1}{2}Tr$, then S_n is distributed as a Markov chain on the positive integers, with probability transitions

$$p(k, k+1) = \frac{k+1}{2k}; \quad p(k, k-1) = \frac{k-1}{2k}.$$

Random walks on groups

$$W=$$
 abelian group $\hat{W}=$ dual group $\xi\in \hat{W}=$ character of W $F(W)=$ algebra of functions on W $A(\hat{W})=$ group algebra of \hat{W} $F(W)\to F(W\times W)$ $\Delta:A(\hat{W})\to A(\hat{W})\otimes A(\hat{W})$ $\Delta:A(\hat{W})\to A(\hat{W})\otimes A(\hat{W})$ $A(\hat{W})\to A(\hat{W})\otimes A(\hat{W})$

$$\mu: F(W) \to C$$
 =probability measure on W

$$\phi$$
=positive definite function on \hat{W}

$$\phi(\xi) = \int_{W} \xi(x) d\mu(x)$$
state ω on $A(\hat{W})$

$$\Omega = (W, \mu)^{\infty}$$
 $M = \otimes^{\infty}(A(\hat{W}), \omega)$

$$Y_n = w_1 + \ldots + w_n$$
 $j_n : A(\hat{W}) \to M$
 $f \to f(w_1 + \ldots + w_n)$ $j_{n+1} = (\Delta \otimes I^{\otimes (n+1)}) \circ I \otimes j_n$

Markov operator

$$\Phi(f)(x) = \int_W f(x+y)d\mu(y) \quad \Phi(f) = (I \otimes \omega) \circ \Delta$$

Random walks on duals of compact groups

Replace \hat{W} by a compact group G.

 $\phi=$ continuous positive definite functions on ${\cal G}$, with $\phi(e)=1$.

=state ν on A(G).

 ν = distribution of the increments.

$$\Phi_{
u}:\mathcal{A}(G) o\mathcal{A}(G)$$

$$\Phi_{\nu} = (I \otimes \nu) \circ \Delta$$

is a completely positive map. It generates a semigroup Φ_{ν}^n ; $n \geq 1$.

$$(\mathcal{N},\omega)=(\mathcal{A}(G),\nu)^{\infty}$$

$$j_n: \mathcal{A}(G) o \mathcal{N}$$
 defined by $j_n(\lambda_g) = \lambda_g^{\otimes n} \otimes I$

The morphisms $(j_n)_{n\geq 0}$, define a random walk on the noncommutative space dual to G, with Markov operator.

$$\Phi_{\nu}:\mathcal{A}(G) o\mathcal{A}(G)$$

$$\Phi_{\nu} = (I \otimes \nu) \circ \Delta$$

The quantum Bernoulli random walk is obtained for G=SU(2), and ν the tracial state associated with the 2-dimensional representation.

The dual of SU(2) as a noncommutative space

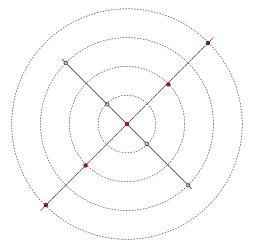
G = SU(2) = unitary 2 × 2 matrices with determinant 1. $\hat{G} = \{1, 2, 3, ...\}$

$$\mathcal{A}(SU(2)) = \bigoplus_{n=1}^{\infty} M_n(\mathbb{C})$$

is the noncommutative space dual to SU(2).

The Pauli matrices belong to the Lie algebra su(2), they define unbounded operators X, Y, Z, on $L^2(SU(2))$.

They generate oneparameter sugbroups isomorphic to U(1). This is true also of any linear combination xX + yY + zZ with $x^2 + y^2 + z^2 = 1$.



Noncommutative space underlying $\mathcal{A}(SU(2))$

If you are in this space and measure your coordinate in some direction (x, y, z) using the operator xX + yY + zZ, and you will always find an integer.

You cannot measure coordinates in two different directions at the same time.

The operator $D = \sqrt{I + X^2 + Y^2 + Z^2} - I$ is in the center of the algebra $\hat{\mathcal{A}}(SU(2))$, and therefore can be measured simultaneoulsy with any other operator.

Its eigenvalues are the nonnegative integers $0, 1, 2, \ldots$, and its spectral projections are the identity elements of the algebras $M_n(\mathbb{C})$

$$D=\sum_{n=1}^{\infty}(n-1)I_{M_n(\mathbb{C})}$$

 $M_n(\mathbb{C})$ is a kind of "noncommutative sphere of radius n-1". Looking at the eigenvalues of the operators xX+yY+zZ the coordinate on this "radius" can only take the n+1 values $n, n-2, n-4, \ldots, -n$.

Construction of the quantum Bernoulli random walk

 ω =state on $M_2(\mathbb{C})$, $\nu = \omega^{\otimes \infty}$ on $\mathcal{N} = \bigotimes_1^{\infty} M_2(\mathbb{C})$. Construct morphisms $j_n : \mathcal{A}(SU(2)) \to \mathcal{N}$ by

$$j_n(\lambda_g) = \rho_2(g)^{\otimes n} \otimes I^{\otimes \infty}$$

The family of morphisms $(j_n)_{n\geq 1}$ is a stochastic noncommutative process wih values in the dual of SU(2).

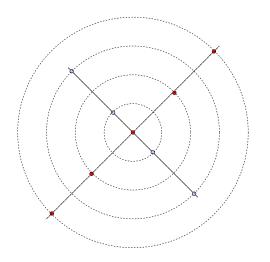
This is just the iterated tensor product of the basic representation viewed as a random walk.

Restriction to a one parameter subgroup gives a Bernoulli random walk.

The spin process (radial part) is obtained by restriction of j_n to the center of the group algebra.

The restriction of the completely positive map Φ to this center can be computed by the Clebsch Gordan formula

$$\rho_2 \otimes \rho_k = \rho_{k-1} \oplus \rho_{k+1}$$

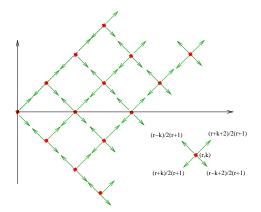


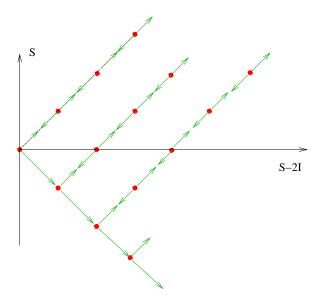
RESTRICTION TO A MAXIMAL ABELIAN ALGEBRA

Restrict the Markov operator to the maximal abelian subalgebra generated by the center and a one parameter subgroup.

In the decomposition $\mathcal{A}(SU(2))=\oplus M_n(\mathbb{C})$ this is the algebra of diagonal operators.

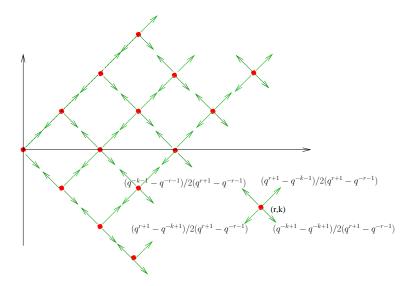
One gets probability transitions





Kashiwara's crystallization

Replace SU(2) by Drinfeld/Jimbo/Woronowicz $SU_q(2)$ then

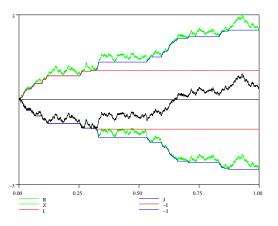


Let q o 0 then one obtains Pitman's theorem.

We can generalize the preceding construction to the quantum groups $SU_q(n)$.

PITMAN OPERATORS

$$Y:[0,T] \rightarrow \mathbf{R}, \qquad Y(0)=0$$



 $PY(t) = Y(t) - 2\inf_{0 \le s \le t} Y(s)$ For all t one has $PY(t) \ge 0$, in particular PPY = PY.

MULTIDIMENSIONAL PITMAN OPERATORS

 $P_{\alpha}P_{\alpha}Y = P_{\alpha}Y$

$$V=$$
 real vector space, $\alpha \in V$, $\alpha^{\vee} \in V^*$ $\alpha^{\vee}(\alpha)=2$.
$$P_{\alpha}Y(t)=Y(t)-\inf_{0\leq s\leq t}\alpha^{\vee}(Y(s))\alpha$$

Braid relations

If the angle between α and β is $\theta = \pi/n$ then

$$P_{\alpha}P_{\beta}P_{\alpha}\ldots = P_{\beta}P_{\alpha}P_{\beta}\ldots$$
 (*n* terms)

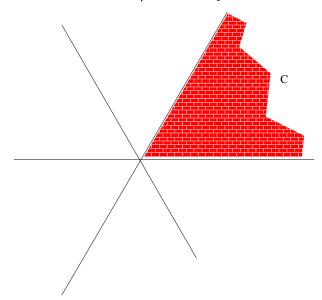
Corollary: Let (W,S)=Coxeter system on V and α,α^\vee =simple roots and coroots,

C=Weyl chamber. To each $s_{\alpha}\in S$ associate $P_{s_{\alpha}}.$ For each $w\in W$ with reduced decomposition $w=s_{\alpha_1}\dots s_{\alpha_k}$ there exists

$$P_w = P_{s_{\alpha_1}} \dots P_{s_{\alpha_k}}$$

If w_0 =longest element then $P_{w_0}X$ takes values in C.

Example $W = S_3$



GENERALIZED PITMAN THEOREM

Let X be Brownian motion in V then $P_{w_0}X$ is Brownian motion "conditioned to stay in C".

DOOB'S CONDITIONED BROWNIAN MOTION

$$\Psi(x) = \prod_{\beta \in R_+} \beta(x)$$

is a positive harmonic function on C

$$p_t^W(x,y) = \sum_{w \in W} \varepsilon(w) p_t(x,w(y))$$

is the fundamental solution of Laplacian on ${\it W}$ with Dirichlet boundary conditions

(=transition probabilities for Brownian motion killed at the boundary of C).

$$q_t(x,y) = \frac{\Psi(y)}{\Psi(x)} p_t^W(x,y)$$

are the transition probabilities of Brownian motion conditioned to stay in C.

Fact:

when $W = S_n$ (i.e. Weyl group of type A_{n-1} then Brownian motion conditionned to stay in C is the same as the motion of eigenvalues

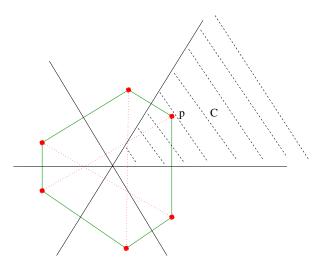
$$(\lambda_1(t)\lambda_2(t),\ldots,\lambda_n(t))$$

of a Brownian traceless hermitian matrix.

$$(M_{ij}(t))$$

CONVERSE THEOREM

The conditional distribution of X(t) knowing $P_{w_0}X(t)=p$ is the Duistermaat-Heckmann measure on the convex polytope with vertices w(p); $w \in W$.



Its Fourier transform is

$$\frac{1}{\prod_{\beta\in R}\beta(y)}\sum_{w\in W}\varepsilon(w)e^{i\langle p,y\rangle}$$

density is piecewise polynomial

In order to recover X from $P_{w_0}X$ we need a positive real number x_i for each s_i in $P_{w_0} = P_{s_1} \dots P_{s_q}$.

Lemma Given $P_{w_0}X(t)$ the numbers (x_1, \ldots, x_q) belong to a certain convex polytope. Their distribution is the normalized Lebesgue measure on this polytope.

Cristallographic case: Berenstein-Zelevinsky polytopes

The Duistermaat-Heckman measure is the image of this measure by an affine map.

