Cocycles on free quantum groups

Roland Vergnioux

University of Normandy (France)

Roma, June 20th, 2014

Roland Vergnioux (Univ. Normandy)

- < ∃ → Roma, June 20th, 2014 1 / 14

Outline

Cocycles on discrete quantum groups

- Definitions
- Analytical properties

Path cocycles on free quantum groups

- Path cocycles
- Vanishing of *L*²-cocycles
- A proper cocycle on $\mathbb{F}O_n$
 - Construction of the cocycle
 - Applications

3

A B < A B </p>

___ ▶

Cocycles

Discrete quantum group \mathbb{T} : given by a full Woronowicz C^* -algebra $(C^*(\Gamma), \Delta)$. Example: $\Delta(g) = g \otimes g$ on $C^*(\Gamma)$, Γ usual discrete group.

- unitary repr: unital *-hom $\pi : C^*(\mathbb{F}) \to B(H)$
- regular repr: GNS $(\ell^2(\mathbb{F}), \xi_0, \lambda)$ of Haar state h
- reduced C*-algebra: $C^*_{red}(\Gamma) = \lambda(C^*(\Gamma))$
- trivial repr: co-unit $\epsilon : C^*(\mathbb{F}) \to \mathbb{C}$
- dense Hopf algebra: $\mathbb{C}[\mathbb{F}] \subset C^*(\mathbb{F})$ with antipode S

There is a dual Hopf C^{*}-algebra $C_0(\Gamma)$ with duality described by a multiplicative unitary $V \in M(C_0(\Gamma) \otimes C^*_{red}(\Gamma))$.

Definition

A π -cocycle on \mathbb{F} is a derivation $c : \mathbb{C}[\mathbb{F}] \to \pi H_{\epsilon}$, i.e. a linear map such that $c(xy) = \pi(x)c(y) + c(x)\epsilon(y)$. It is trivial if there is a fixed vector $\xi \in H$, such that $c(x) = \pi(x)\xi - \xi\epsilon(x)$.

イロト 人間 ト イヨト イヨト

Connection with quantum Dirichlet forms

"Generating functional": $\psi \in \mathbb{C}[\mathbb{F}]^*$ such that $\psi(1) = 0, \ \psi(x^*) = \overline{\psi(x)}$ and $\psi(x^*x) \leq 0$ for $x \in \operatorname{Ker} \epsilon$.

- → convolution semigroup of states, quantum Levy process, ..., and also:
- → Dirichlet form \mathcal{E} under a symmetry condition [Cipriani-Franz-Kula]. In the tracial case: $\mathcal{E}(x\xi_0) = h(x^*(\psi * x))$.

Proposition (V.)

Assume
$$c : \mathbb{C}[\Gamma] \to H$$
 to be real, i.e.
 $(c(x)|c(y)) \in \mathbb{R}$ as soon as $x = S(x)^*$ and $y = S(y^*)$.
Then: $\psi : x \mapsto (c(S(x_{(1)})^*)|c(x_{(2)}))$ is a generating functional,
 $\psi(x^*y) = -2(c(x)|c(y))$ for all $x, y \in \operatorname{Ker} \epsilon$,
 ψ is symmetric: $\psi \circ S = \psi$.

Note : if h is tracial, reality is not needed to get a generating functional. In the classical case, it is not needed either for symmetry.

Roland Vergnioux (Univ. Normandy)

Analytical properties

Cocycle $c \rightarrow$ "function" $C = (id \otimes c)(V)$, unbdd multiplier of $C_0(\mathbb{F}) \otimes H$. We have $C_0(\mathbb{F}) \simeq \bigoplus_{\alpha} B(H_{\alpha}) \rightarrow C = (C_{\alpha})_{\alpha} \in \prod B(H_{\alpha}, H_{\alpha} \otimes H)$.

Say that c is bounded if $(||C_{\alpha}||)_{\alpha}$ is bounded, (metrically) proper if $||(C_{\alpha}^*C_{\alpha})^{-1}|| \rightarrow_{\alpha} 0$.

Lemma [V. 2012]: A cocycle c is bounded iff it is trivial.

Theorem (Kyed 2011)

The property (T) [Fima 2010] iff every cocycle in a unitary repr. is trivial.

Theorem (DFSW)

 \mathbb{F} admits a metrically proper real cocycle iff it has Haagerup's approximation property, i.e. there exists a net of states $\varphi_k \in C^*(\mathbb{F})^*_+$ s.t. $\varphi_k \xrightarrow{w*} \epsilon$ and $\forall k \ (id \otimes \varphi_k)(V_{full}) \in C_0(\mathbb{F}).$

- 3

Free quantum groups

The orthogonal free quantum groups $\mathbb{F}O_n$ [Wang 1995] are given by

$$C^*(\mathbb{F}O_n) = A_o(n) = \langle u_{ij}, 1 \leq i, j \leq n \mid u_{ij} = u^*_{ij}, \ (u_{ij}) \text{ unitary} \rangle$$

with $\Delta(u_{ij}) = \sum u_{ik} \otimes u_{kj}$. For $n \ge 3$, the quantum group $\mathbb{F}O_n$ is non amenable [Banica 1996], exact, C^* -simple [Vaes-Vergnioux 2007], ...

Theorem (Brannan 2012)

 $\mathbb{F}O_n$ satisfies Haagerup's approximation property.

Proof : explicit net of states φ_k (in fact associated multipliers) arising from the "central subalgebra" generated by $\chi = \sum u_{ii}$.

Question : What can be said about proper cocycles on $\mathbb{F}O_n$? In which representations do they live?

イロト 不得 トイヨト イヨト 二日

Outline

Cocycles on discrete quantum groups

- Definitions
- Analytical properties

2 Path cocycles on free quantum groups

- Path cocycles
- Vanishing of *L*²-cocycles

A proper cocycle on $\mathbb{F}O_n$

- Construction of the cocycle
- Applications

★ 3 > < 3 >

___ ▶

A classical path cocycle

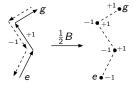
Consider the Cayley graph of the classical free group $\Gamma = F_n = \langle S \rangle$:

•
$$X^{(0)} = \Gamma, X^{(1)} = \Gamma \times S,$$

•
$$s(g,h) = g$$
, $t(g,h) = gh$, $\theta(g,h) = (gh, h^{-1})$.

Put $p(g) = \sum$ (edges along path $e \to g$) – (reversed edges). Fact. $p: \Gamma \to \ell^2(\Gamma) \otimes \ell^2(S)$ is a proper cocycle \rightarrow Haagerup's property.

Other fact. p is a lift of the trivial cocycle $c_0(g) = g - e$ through the boundary map $B(g \otimes h) = gh - g \rightarrow$ every cocycle "factors" through p.



A classical path cocycle

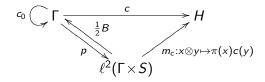
Consider the Cayley graph of the classical free group $\Gamma = F_n = \langle S \rangle$:

•
$$X^{(0)} = \Gamma, X^{(1)} = \Gamma \times S,$$

•
$$s(g,h) = g$$
, $t(g,h) = gh$, $\theta(g,h) = (gh, h^{-1})$.

Put $p(g) = \sum$ (edges along path $e \to g$) – (reversed edges). Fact. $p: \Gamma \to \ell^2(\Gamma) \otimes \ell^2(S)$ is a proper cocycle \rightarrow Haagerup's property.

Other fact. p is a lift of the trivial cocycle $c_0(g) = g - e$ through the boundary map $B(g \otimes h) = gh - g \rightarrow$ every cocycle "factors" through p.



▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The quantum case

Denote
$$\ell^2(\mathbb{S}) = \operatorname{Span}\{u_{ij}\} \subset \ell^2(\mathbb{F}) = \ell^2(\mathbb{F}O_n)$$
. Quantum Cayley graph:
• $\ell^2(\mathbb{X}^{(0)}) = \ell^2(\mathbb{F}), \ \ell^2(\mathbb{X}^{(1)}) = \ell^2(\mathbb{F}) \otimes \ell^2(\mathbb{S}),$
• $S(x \otimes y) = x\epsilon(y), \ T(x \otimes y) = xy, \ \Theta(x \otimes y) = xy_{(1)} \otimes S(y_{(2)}).$
Put $B = T - S, \ \ell^2_{\wedge}(\mathbb{X}^{(1)}) = \operatorname{Ker}(\Theta + \operatorname{id}).$
Path cocycle : $p : \mathbb{C}[\mathbb{F}] \to \ell^2_{\wedge}(\mathbb{X}^{(1)})$ such that $B \circ p = c_0$.

Theorem (V. 2012)

For $\mathbb{F} = \mathbb{F}O_n$, $n \ge 3$, the operator $B : \ell^2_{\wedge}(\mathbb{X}^{(1)}) \to \ell^2(\mathbb{X}^{(0)})$ is invertible. There exists a unique path cocycle, and it is bounded.

Theorem (V. 2012)

For $\mathbb{T} = \mathbb{F}U_n$, $n \geq 3$, there exists a unique path cocycle in a suitable dense subspace of $\ell^2_{\wedge}(\mathbb{X}^{(1)})$. It is unbounded but not proper.

イロト イポト イヨト イヨト 二日

Applications

Recall the classical case: every cocycle factors through the path cocycle.

Theorem (V. 2012)

For $\mathbb{F} = \mathbb{F}O_n$, $n \geq 3$, every λ -cocycle $c : \mathbb{C}[\mathbb{F}] \to \ell^2(\mathbb{F})^k$ is trivial.

Proof. In the quantum case, the values of the path cocycle p do not have finite support \rightarrow one needs an analytical version of the "factorization trick" above, which only works for ℓ^2 -cocycles, and Property RD.

Applications:

•
$$\forall k \ \beta_k^{(2)}(\mathbb{F}O_n) = 0$$
 [Collins-Härtel-Thom]

•
$$\delta^*(\mathbb{C}[\mathbb{F}O_n], h) = 1$$
 by [Connes-Shlyakhtenko]
 $\delta(\mathbb{C}[\mathbb{F}O_n], h) = 1$ if $C^*_{red}(\mathbb{F}O_n)''$ is R^{ω} -embeddable

Outline

Cocycles on discrete quantum groups

- Definitions
- Analytical properties

2) Path cocycles on free quantum groups

- Path cocycles
- Vanishing of *L*²-cocycles

3 A proper cocycle on $\mathbb{F}O_n$

- Construction of the cocycle
- Applications

A B A A B A

A Deformation of $C^*_{red}(\mathbb{F}O_n)$ [Fima-V.]

Action of O_n

By definition there is a surjective map

$$\pi: C^*(\mathbb{F}O_n) = C(O_n^+) \to C(O_n).$$

By Fell's absorption principle, the coproduct Δ factors to
 $\Delta': C^*_{red}(\mathbb{F}O_n) \to C^*(\mathbb{F}O_n) \otimes C^*_{red}(\mathbb{F}O_n).$
We get an action of O_n on $C^*_{red}(\mathbb{F}O_n)$ by automorphisms :
 $\alpha_g = ((ev_g \circ \pi) \otimes id) \circ \Delta': C^*_{red}(\mathbb{F}O_n) \to C^*_{red}(\mathbb{F}O_n)$

Deformation of $C = C^*_{red}(\mathbb{F}O_n)$ **inside** $C \otimes C$ Consider the embedding $\iota = \Delta_{red} : C = C^*_{red}(\mathbb{F}O_n) \to C \otimes C$. We deform ι by putting $\iota_g(x) = (id \otimes \alpha_g)\iota : C \to C \otimes C$, for $g \in O_n$.

Note : using the conditional expectation $E : C \otimes C \to C$, one can recover Brannan's completely positive deformation, $T_t = E \circ \iota_g$ with t = Tr(g).

Constructing a cocycle

General scheme : deformation by automorphisms \longleftrightarrow derivation into a $C, C-bimodule \longleftrightarrow$ cocycle in a representation.

Some notation.

 u^{α} irreducible corepr. of $\mathbb{F}O_n \rightarrow v^{\alpha} = \pi_*(u^{\alpha})$ representation of O_n . $X = -X^t \neq 0 \in M_n(\mathbb{R})$ tangent vect. to O_n at $I \rightarrow$ differentiation d_X .

Proposition (Fima-V.)

The cocycle associated to the previous deformation is

 $c_X: \mathbb{C}[\mathbb{F}O_n] \to \ell^2(\mathbb{F}O_n), \ \ u_{ij}^{\alpha} \mapsto \sum_{kl} (d_X v_{kl}^{\alpha}) \times u_{ik}^{\alpha} u_{jl}^{\alpha*} \xi_0,$

with respect to the adjoint representation $\operatorname{ad} : C^*(\mathbb{F}O_n) \to B(\ell^2(\mathbb{F}O_n))$. Moreover it is proper.

Example. c_X is determined by it value on generators. For $X = e_{12} + e_{21}$: $c_X(u_{ij}) = (u_{i1}u_{j2} - u_{i2}u_{j1})\xi_0.$

Applications

The adjoint representation

Remark: in the unimodular case, ξ_0 is fixed by ad: $\epsilon \subset$ ad. However $c_X : \mathbb{C}[\mathbb{F}O_n] \to \ell^2(\mathbb{F}O_n)^\circ = \xi_0^{\perp}$.

Theorem (Fima-V.)

The subrepresentation $\mathrm{ad}^\circ \subset \mathrm{ad}$ on $\ell^2(\mathbb{F}O_n)^\circ$ factors through λ .

 $\mathbb{F}O_n$ has a proper cocycle in a weakly- ℓ^2 repr. : property "strong (HH)".

By Ozawa-Popa-Sinclair, using CBAP [Freslon], one gets another proof of:

Theorem (Isono 2012)

For $n \geq 3$, the factor $\mathscr{L}(\mathbb{F}O_n)$ is strongly solid. In particular it is prime and has no Cartan subalgebra.