Groupoids and Pseudodifferential calculus II

Georges Skandalis, joint work with Claire Debord

Université Paris-Diderot (Paris 7) Institut de Mathématiques de Jussieu - Paris Rive Gauche

Frascati - June 2014

Debord-Skandalis (Paris 7/ IMJ-PRG) Groupoids and Pseudodifferential calculus II

Let A, B be C^* -algebras. Morita equivalence between A and B is

• a Hilbert *B*-module *E* which is full

Let A, B be C^* -algebras.

Morita equivalence between A and B is

- a Hilbert B-module E which is full (products (x|y) generate a dense subspace of B).
- Isomorphism $A \to \mathcal{K}(E)$.

Let A, B be C^* -algebras.

Morita equivalence between A and B is

- a Hilbert B-module E which is full (products (x|y) generate a dense subspace of B).
- Isomorphism $A \to \mathcal{K}(E)$.

A Morita equivalence E between A and B defines

• A bijection: Ideals $A \leftrightarrow$ Ideals of B.

Let A, B be C^* -algebras.

Morita equivalence between A and B is

- a Hilbert B-module E which is full (products (x|y) generate a dense subspace of B).
- Isomorphism $A \to \mathcal{K}(E)$.

A Morita equivalence E between A and B defines

- A bijection: Ideals $A \leftrightarrow$ Ideals of B.
- If $J \subset B$ corresponds to $I \subset A$, Morita equivalence of I with J and of A/I with B/J.

Let A, B be C^* -algebras.

Morita equivalence between A and B is

- a Hilbert B-module E which is full (products (x|y) generate a dense subspace of B).
- Isomorphism $A \to \mathcal{K}(E)$.

A Morita equivalence E between A and B defines

- A bijection: Ideals $A \leftrightarrow$ Ideals of B.
- If $J \subset B$ corresponds to $I \subset A$, Morita equivalence of I with J and of A/I with B/J.

More precisely: EJ = IE full Hilbert J module; and $E/EJ = E \otimes_B B/J$ full. $\mathcal{K}(EJ) = I$ and $A/I = \mathcal{K}(E/EJ)$.

Let A, B be C^* -algebras.

Morita equivalence between A and B is

- a Hilbert B-module E which is full (products (x|y) generate a dense subspace of B).
- Isomorphism $A \to \mathcal{K}(E)$.

A Morita equivalence E between A and B defines

- A bijection: Ideals $A \leftrightarrow$ Ideals of B.
- If $J \subset B$ corresponds to $I \subset A$, Morita equivalence of I with J and of A/I with B/J.

More precisely: EJ = IE full Hilbert J module; and $E/EJ = E \otimes_B B/J$ full. $\mathcal{K}(EJ) = I$ and $A/I = \mathcal{K}(E/EJ)$.

Let's say that $0 \rightarrow I \rightarrow A \rightarrow A/I \rightarrow 0$ and $0 \rightarrow J \rightarrow B \rightarrow B/J \rightarrow 0$ are Morita equivalent exact sequences.

イロト 不得下 イヨト イヨト

Statement

Let $G \rightrightarrows G^{(0)}$ be a smooth groupoid and denote by $\mathfrak{A}G$ its Lie algebroid. Claire defined exact sequences:

Pseudo differential operators exact sequence

$$0 \to C^*(G) \longrightarrow \Psi_0^*(G) \stackrel{\sigma_0}{\longrightarrow} C(S^* \mathfrak{A} G) \to 0 \tag{PDO}$$

• Gauge adiabatic groupoid exact sequence :

$$0 \to C^*(G) \otimes \mathcal{K} \longrightarrow J(G) \rtimes \mathbb{R}^*_+ \longrightarrow C(S^*\mathfrak{A} G) \otimes \mathcal{K} \to 0 \quad (\mathsf{GAG})$$

Statement

Let $G \rightrightarrows G^{(0)}$ be a smooth groupoid and denote by $\mathfrak{A}G$ its Lie algebroid. Claire defined exact sequences:

Pseudo differential operators exact sequence

$$0 o C^*(G) \longrightarrow \Psi_0^*(G) \stackrel{\sigma_0}{\longrightarrow} C(S^* \mathfrak{A} G) o 0$$
 (PDO)

• Gauge adiabatic groupoid exact sequence :

$$0 \to C^*(G) \otimes \mathcal{K} \longrightarrow J(G) \rtimes \mathbb{R}^*_+ \longrightarrow C(S^*\mathfrak{A} G) \otimes \mathcal{K} \to 0 \quad (\mathsf{GAG})$$

Theorem

These two exact sequences are Morita equivalent

Statement

Let $G \rightrightarrows G^{(0)}$ be a smooth groupoid and denote by $\mathfrak{A}G$ its Lie algebroid. Claire defined exact sequences:

Pseudo differential operators exact sequence

$$0 o C^*(G) \longrightarrow \Psi_0^*(G) \stackrel{\sigma_0}{\longrightarrow} C(S^* \mathfrak{A} G) o 0$$
 (PDO)

• Gauge adiabatic groupoid exact sequence :

$$0 \to C^*(G) \otimes \mathcal{K} \longrightarrow J(G) \rtimes \mathbb{R}^*_+ \longrightarrow C(S^*\mathfrak{A} G) \otimes \mathcal{K} \to 0 \quad (\mathsf{GAG})$$

Theorem

These two exact sequences are Morita equivalent

Moreover, the corresponding Morita equivalences of the ideals is the canonical one, as well as that of the quotients.

The bimodule $\ensuremath{\mathcal{E}}$

It is the closure of $\mathcal{J}(G)$ with respect to the $\Psi^*(G)$ -valued "scalar" product

$$\langle f|g
angle = \int_0^\infty f_t^* * g_t rac{dt}{t} \in \Psi^*(G)$$

The bimodule $\ensuremath{\mathcal{E}}$

It is the closure of $\mathcal{J}(G)$ with respect to the $\Psi^*(G)$ -valued "scalar" product

$$\langle f|g
angle = \int_0^\infty f_t^* * g_t rac{dt}{t} \in \Psi^*(G)$$

for $f = (f_t)$ and $g = (g_t)$ in $\mathcal{J}(G)$ (as explained by Claire).

<

The bimodule \mathcal{E}

It is the closure of $\mathcal{J}(G)$ with respect to the $\Psi^*(G)$ -valued "scalar" product

$$\langle f|g
angle = \int_0^\infty f_t^* * g_t rac{dt}{t} \in \Psi^*(G)$$

for $f = (f_t)$ and $g = (g_t)$ in $\mathcal{J}(G)$ (as explained by Claire).

Right action of Ψ^* :

Lemma

For $f \in \mathcal{J}(G)$ and P order 0 (classical) pseudodifferential operator in G with compact support, $h = (f_t * P) \in \mathcal{J}(G)$

The bimodule \mathcal{E}

It is the closure of $\mathcal{J}(G)$ with respect to the $\Psi^*(G)$ -valued "scalar" product

$$\langle f|g
angle = \int_0^\infty f_t^* * g_t rac{dt}{t} \in \Psi^*(G)$$

for $f = (f_t)$ and $g = (g_t)$ in $\mathcal{J}(G)$ (as explained by Claire).

Right action of Ψ^* :

Lemma

For $f \in \mathcal{J}(G)$ and P order 0 (classical) pseudodifferential operator in G with compact support, $h = (f_t * P) \in \mathcal{J}(G)$, with $\hat{h_0} = \hat{f_0} \sigma(P)$.

The bimodule $\ensuremath{\mathcal{E}}$

It is the closure of $\mathcal{J}(G)$ with respect to the $\Psi^*(G)$ -valued "scalar" product

$$\langle f|g
angle = \int_0^\infty f_t^* * g_t rac{dt}{t} \in \Psi^*(G)$$

for $f = (f_t)$ and $g = (g_t)$ in $\mathcal{J}(G)$ (as explained by Claire).

Right action of Ψ^* :

Lemma

For $f \in \mathcal{J}(G)$ and P order 0 (classical) pseudodifferential operator in G with compact support, $h = (f_t * P) \in \mathcal{J}(G)$, with $\hat{h_0} = \hat{f_0} \sigma(P)$.

To see this, we write $P = \int_0^\infty g_t \frac{dt}{t}$, and use the adiabatic groupoid of the adiabatic groupoid...

 $\mathcal{J}(G)$ is an ideal in $\mathcal{S}(G_{ad})$. We thus get an action of $\mathcal{S}(G_{ad})$ on $\mathcal{J}(G)$: $f = (f_t) \in \mathcal{S}(G_{ad})$ and $g \in \mathcal{J}(G)$: $(f \cdot g)_t = f_t * g_t$.

 $\mathcal{J}(G)$ is an ideal in $\mathcal{S}(G_{ad})$. We thus get an action of $\mathcal{S}(G_{ad})$ on $\mathcal{J}(G)$: $f = (f_t) \in \mathcal{S}(G_{ad})$ and $g \in \mathcal{J}(G)$: $(f \cdot g)_t = f_t * g_t$. Note

$$\langle f \cdot g | f \cdot g \rangle = \int_0^{+\infty} g_t^* * f_t^* * f_t * g_t \frac{dt}{t}$$

 $\mathcal{J}(G)$ is an ideal in $\mathcal{S}(G_{ad})$. We thus get an action of $\mathcal{S}(G_{ad})$ on $\mathcal{J}(G)$: $f = (f_t) \in \mathcal{S}(G_{ad})$ and $g \in \mathcal{J}(G)$: $(f \cdot g)_t = f_t * g_t$. Note

$$\begin{array}{ll} \langle f \cdot g | f \cdot g \rangle &=& \int_0^{+\infty} g_t^* * f_t^* * f_t * g_t \, \frac{dt}{t} \\ &\leq& \int_0^{+\infty} \|f_t\|^2 g_t^* * g_t \, \frac{dt}{t} \\ &\leq& \|f\|^2 \int_0^{+\infty} g_t^* * g_t \, \frac{dt}{t} \end{array}$$

 $\mathcal{J}(G)$ is an ideal in $\mathcal{S}(G_{ad})$. We thus get an action of $\mathcal{S}(G_{ad})$ on $\mathcal{J}(G)$: $f = (f_t) \in \mathcal{S}(G_{ad})$ and $g \in \mathcal{J}(G)$: $(f \cdot g)_t = f_t * g_t$. Note

$$\begin{array}{ll} \langle f \cdot g | f \cdot g \rangle &=& \int_0^{+\infty} g_t^* * f_t^* * f_t * g_t \, \frac{dt}{t} \\ &\leq& \int_0^{+\infty} \|f_t\|^2 g_t^* * g_t \, \frac{dt}{t} \\ &\leq& \|f\|^2 \int_0^{+\infty} g_t^* * g_t \, \frac{dt}{t} \end{array}$$

where $||f|| = \sup_t ||f_t||$ is the norm of f in $C^*(G_{ad})$. Whence extends continuously as an action of $C^*(G_{ad})$ on \mathcal{E} .

 $\mathcal{J}(G)$ is an ideal in $\mathcal{S}(G_{ad})$. We thus get an action of $\mathcal{S}(G_{ad})$ on $\mathcal{J}(G)$: $f = (f_t) \in \mathcal{S}(G_{ad})$ and $g \in \mathcal{J}(G)$: $(f \cdot g)_t = f_t * g_t$. Note

$$\begin{array}{ll} \langle f \cdot g | f \cdot g \rangle &=& \int_0^{+\infty} g_t^* * f_t^* * f_t * g_t \, \frac{dt}{t} \\ &\leq& \int_0^{+\infty} \|f_t\|^2 g_t^* * g_t \, \frac{dt}{t} \\ &\leq& \|f\|^2 \int_0^{+\infty} g_t^* * g_t \, \frac{dt}{t} \end{array}$$

where $||f|| = \sup_t ||f_t||$ is the norm of f in $C^*(G_{ad})$. Whence extends continuously as an action of $C^*(G_{ad})$ on \mathcal{E} .

For
$$\lambda \in \mathbb{R}^*_+$$
 and $f \in \mathcal{J}(G)$, put $(U_\lambda f)_t = f_{\lambda t}$.
Covariant representation

 $\mathcal{J}(G)$ is an ideal in $\mathcal{S}(G_{ad})$. We thus get an action of $\mathcal{S}(G_{ad})$ on $\mathcal{J}(G)$: $f = (f_t) \in \mathcal{S}(G_{ad})$ and $g \in \mathcal{J}(G)$: $(f \cdot g)_t = f_t * g_t$. Note

$$\begin{array}{ll} \langle f \cdot g | f \cdot g \rangle &=& \int_0^{+\infty} g_t^* * f_t^* * f_t * g_t \, \frac{dt}{t} \\ &\leq& \int_0^{+\infty} \|f_t\|^2 g_t^* * g_t \, \frac{dt}{t} \\ &\leq& \|f\|^2 \int_0^{+\infty} g_t^* * g_t \, \frac{dt}{t} \end{array}$$

where $||f|| = \sup_t ||f_t||$ is the norm of f in $C^*(G_{ad})$. Whence extends continuously as an action of $C^*(G_{ad})$ on \mathcal{E} .

For $\lambda \in \mathbb{R}^*_+$ and $f \in \mathcal{J}(G)$, put $(U_\lambda f)_t = f_{\lambda t}$. Covariant representation: thus $\pi : C^*(G_{ad}) \rtimes \mathbb{R}^*_+ = C^*(G_{ga}) \to \mathcal{L}(\mathcal{E})$.

Claim

 $\pi(J(G) \rtimes \mathbb{R}^*_+) = \mathcal{K}(\mathcal{E}).$

Put $\mathcal{E}_0 = \mathcal{EC}^*(G)$. It is a closed submodule of \mathcal{E} . We prove that:

• $\mathcal{E}_0 \simeq C^*(G) \otimes L^2(\mathbb{R}^*_+)$ and π induces isomorphism from $J_0(G) \rtimes \mathbb{R}^*_+$ onto $\mathcal{K}(\mathcal{E}_0)$ - natural Morita equivalence between $C^*(G) \otimes C_0(\mathbb{R}^*_+) \rtimes \mathbb{R}^*_+$ and $C^*(G)$.

Claim

 $\pi(J(G) \rtimes \mathbb{R}^*_+) = \mathcal{K}(\mathcal{E}).$

Put $\mathcal{E}_0 = \mathcal{E}C^*(G)$. It is a closed submodule of \mathcal{E} . We prove that:

- $\mathcal{E}_0 \simeq C^*(G) \otimes L^2(\mathbb{R}^*_+)$ and π induces isomorphism from $J_0(G) \rtimes \mathbb{R}^*_+$ onto $\mathcal{K}(\mathcal{E}_0)$ - natural Morita equivalence between $C^*(G) \otimes C_0(\mathbb{R}^*_+) \rtimes \mathbb{R}^*_+$ and $C^*(G)$.
- ā induced by π, isomorphism from (J(G)/J₀(G)) ⋊ ℝ^{*}₊ onto K(E/E₀)

 it is the natural Morita equivalence between

 C(S*AG) ⊗ C₀(ℝ^{*}₊) ⋊ ℝ^{*}₊ and C(S*AG).

Claim

 $\pi(J(G) \rtimes \mathbb{R}^*_+) = \mathcal{K}(\mathcal{E}).$

Put $\mathcal{E}_0 = \mathcal{EC}^*(G)$. It is a closed submodule of \mathcal{E} . We prove that:

- $\mathcal{E}_0 \simeq C^*(G) \otimes L^2(\mathbb{R}^*_+)$ and π induces isomorphism from $J_0(G) \rtimes \mathbb{R}^*_+$ onto $\mathcal{K}(\mathcal{E}_0)$ - natural Morita equivalence between $C^*(G) \otimes C_0(\mathbb{R}^*_+) \rtimes \mathbb{R}^*_+$ and $C^*(G)$.
- **②** π induced by π , isomorphism from $(J(G)/J_0(G)) \rtimes \mathbb{R}^*_+$ onto $\mathcal{K}(\mathcal{E}/\mathcal{E}_0)$ - it is the natural Morita equivalence between $C(S^*\mathfrak{A}G) \otimes C_0(\mathbb{R}^*_+) \rtimes \mathbb{R}^*_+$ and $C(S^*\mathfrak{A}G)$.

 $\ \, \bullet \ \, \pi(J(G) \rtimes \mathbb{R}^*_+) \supset \mathcal{K}(\mathcal{E}).$

Claim

 $\pi(J(G) \rtimes \mathbb{R}^*_{\perp}) = \mathcal{K}(\mathcal{E}).$

Put $\mathcal{E}_0 = \mathcal{E}C^*(G)$. It is a closed submodule of \mathcal{E} . We prove that:

- $\mathcal{E}_0 \simeq C^*(G) \otimes L^2(\mathbb{R}^*_+)$ and π induces isomorphism from $J_0(G) \rtimes \mathbb{R}^*_+$ onto $\mathcal{K}(\mathcal{E}_0)$ - natural Morita equivalence between $C^*(G) \otimes C_0(\mathbb{R}^*_+) \rtimes \mathbb{R}^*_+$ and $C^*(G)$.
- **2** π induced by π , isomorphism from $(J(G)/J_0(G)) \rtimes \mathbb{R}^*_+$ onto $\mathcal{K}(\mathcal{E}/\mathcal{E}_0)$ - it is the natural Morita equivalence between $C(S^*\mathfrak{A}G)\otimes C_0(\mathbb{R}^*_{\perp})\rtimes\mathbb{R}^*_{\perp}$ and $C(S^*\mathfrak{A}G)$.
- $\pi(J(G) \rtimes \mathbb{R}^*_+) \supset \mathcal{K}(\mathcal{E})$. Use again the adiabatic groupoid of the adiabatic groupoid...

The claim follows.

通 ト イヨ ト イヨト

Since \mathcal{E}_0 is a full $C^*(G)$ -module and and $\mathcal{E}/\mathcal{E}_0$ is a full $C(S^*\mathfrak{A}G)$ -module, it follows that \mathcal{E} is a full $\Psi^*(G)$ -module.

This concludes the Morita equivalence.

Since \mathcal{E}_0 is a full $C^*(G)$ -module and $\mathcal{E}/\mathcal{E}_0$ is a full $C(S^*\mathfrak{A}G)$ -module, it follows that \mathcal{E} is a full $\Psi^*(G)$ -module.

This concludes the Morita equivalence.

Remark

One can also very easily construct $f \in \mathcal{J}(G)$ such that $\langle f | f \rangle = 1$ up to smoothing and invertible.

Since \mathcal{E}_0 is a full $C^*(G)$ -module and $\mathcal{E}/\mathcal{E}_0$ is a full $C(S^*\mathfrak{A}G)$ -module, it follows that \mathcal{E} is a full $\Psi^*(G)$ -module.

This concludes the Morita equivalence.

Remark

One can also very easily construct $f \in \mathcal{J}(G)$ such that $\langle f | f \rangle = 1$ up to smoothing and invertible.

It follows that the algebra $\mathcal{P}_0(G)$ of order 0 pseudodifferential operators on G is (up to smoothing) $\theta_{f,f} \mathcal{S}(C_c^{\infty}(G_{ga})) \theta_{f,f}$

Since \mathcal{E}_0 is a full $C^*(G)$ -module and $\mathcal{E}/\mathcal{E}_0$ is a full $C(S^*\mathfrak{A}G)$ -module, it follows that \mathcal{E} is a full $\Psi^*(G)$ -module.

This concludes the Morita equivalence.

Remark

One can also very easily construct $f \in \mathcal{J}(G)$ such that $\langle f | f \rangle = 1$ up to smoothing and invertible.

It follows that the algebra $\mathcal{P}_0(G)$ of order 0 pseudodifferential operators on G is (up to smoothing) $\theta_{f,f} \mathcal{S}(C_c^{\infty}(G_{ga})) \theta_{f,f}$:

Pseudodifferential operators on G are smoothing operators on G_{ga} .

Can we deduce that $J(G) \rtimes \mathbb{R}^*_+ \simeq \Psi^*(G) \otimes \mathcal{K}$?

The stability of the ideal $J_0(G) \rtimes \mathbb{R}^*_+$ and of the quotient $J(G) \rtimes \mathbb{R}^*_+ / C^*(G \times \mathbb{R}^*_+) \rtimes \mathbb{R}^*_+$ is not enough!

Can we deduce that $J(G) \rtimes \mathbb{R}^*_+ \simeq \Psi^*(G) \otimes \mathcal{K}$?

The stability of the ideal $J_0(G) \rtimes \mathbb{R}^*_+$ and of the quotient $J(G) \rtimes \mathbb{R}^*_+ / C^*(G \times \mathbb{R}^*_+) \rtimes \mathbb{R}^*_+$ is not enough!

Proposition

The module \mathcal{E} is stable - and therefore $J(G) \rtimes \mathbb{R}^*_+$ is isomorphic to $\Psi^*(G) \otimes \mathcal{K}$.

Can we deduce that $J(G) \rtimes \mathbb{R}^*_+ \simeq \Psi^*(G) \otimes \mathcal{K}$?

The stability of the ideal $J_0(G) \rtimes \mathbb{R}^*_+$ and of the quotient $J(G) \rtimes \mathbb{R}^*_+ / C^*(G \times \mathbb{R}^*_+) \rtimes \mathbb{R}^*_+$ is not enough!

Proposition

The module \mathcal{E} is stable - and therefore $J(G) \rtimes \mathbb{R}^*_+$ is isomorphic to $\Psi^*(G) \otimes \mathcal{K}$.

Idea of proof. Invertible positive pseudodifferential operator D_1 of degree 1 on G unbounded multiplier of $C^*(G)$ (Vassout). It can be (uniquely) extended as an \mathbb{R}^*_+ invariant family D unbounded multiplier of $C^*(G_{ad})$.

< 回 ト < 三 ト < 三 ト

Can we deduce that $J(G) \rtimes \mathbb{R}^*_+ \simeq \Psi^*(G) \otimes \mathcal{K}$?

The stability of the ideal $J_0(G) \rtimes \mathbb{R}^*_+$ and of the quotient $J(G) \rtimes \mathbb{R}^*_+ / C^*(G \times \mathbb{R}^*_+) \rtimes \mathbb{R}^*_+$ is not enough!

Proposition

The module \mathcal{E} is stable - and therefore $J(G) \rtimes \mathbb{R}^*_+$ is isomorphic to $\Psi^*(G) \otimes \mathcal{K}$.

Idea of proof. Invertible positive pseudodifferential operator D_1 of degree 1 on G unbounded multiplier of $C^*(G)$ (Vassout). It can be (uniquely) extended as an \mathbb{R}^*_+ invariant family D unbounded multiplier of $C^*(G_{ad})$. $D_0 = \sigma_1(D)$.

< 回 ト < 三 ト < 三 ト

Can we deduce that $J(G) \rtimes \mathbb{R}^*_+ \simeq \Psi^*(G) \otimes \mathcal{K}$?

The stability of the ideal $J_0(G) \rtimes \mathbb{R}^*_+$ and of the quotient $J(G) \rtimes \mathbb{R}^*_+ / C^*(G \times \mathbb{R}^*_+) \rtimes \mathbb{R}^*_+$ is not enough!

Proposition

The module \mathcal{E} is stable - and therefore $J(G) \rtimes \mathbb{R}^*_+$ is isomorphic to $\Psi^*(G) \otimes \mathcal{K}$.

Idea of proof. Invertible positive pseudodifferential operator D_1 of degree 1 on G unbounded multiplier of $C^*(G)$ (Vassout). It can be (uniquely) extended as an \mathbb{R}^*_+ invariant family D unbounded multiplier of $C^*(G_{ad})$. $D_0 = \sigma_1(D)$.

The map $f \mapsto f(D)$ is non degenerate morphism $C_0(\mathbb{R}^*_+) \to J(G)$

Can we deduce that $J(G) \rtimes \mathbb{R}^*_+ \simeq \Psi^*(G) \otimes \mathcal{K}$?

The stability of the ideal $J_0(G) \rtimes \mathbb{R}^*_+$ and of the quotient $J(G) \rtimes \mathbb{R}^*_+ / C^*(G \times \mathbb{R}^*_+) \rtimes \mathbb{R}^*_+$ is not enough!

Proposition

The module \mathcal{E} is stable - and therefore $J(G) \rtimes \mathbb{R}^*_+$ is isomorphic to $\Psi^*(G) \otimes \mathcal{K}$.

Idea of proof. Invertible positive pseudodifferential operator D_1 of degree 1 on G unbounded multiplier of $C^*(G)$ (Vassout). It can be (uniquely) extended as an \mathbb{R}^*_+ invariant family D unbounded multiplier of $C^*(G_{ad})$. $D_0 = \sigma_1(D)$.

The map $f \mapsto f(D)$ is non degenerate morphism $C_0(\mathbb{R}^*_+) \to J(G)$, of course equivariant.

Can we deduce that $J(G) \rtimes \mathbb{R}^*_+ \simeq \Psi^*(G) \otimes \mathcal{K}$?

The stability of the ideal $J_0(G) \rtimes \mathbb{R}^*_+$ and of the quotient $J(G) \rtimes \mathbb{R}^*_+ / C^*(G \times \mathbb{R}^*_+) \rtimes \mathbb{R}^*_+$ is not enough!

Proposition

The module \mathcal{E} is stable - and therefore $J(G) \rtimes \mathbb{R}^*_+$ is isomorphic to $\Psi^*(G) \otimes \mathcal{K}$.

Idea of proof. Invertible positive pseudodifferential operator D_1 of degree 1 on G unbounded multiplier of $C^*(G)$ (Vassout). It can be (uniquely) extended as an \mathbb{R}^*_+ invariant family D unbounded multiplier of $C^*(G_{ad})$. $D_0 = \sigma_1(D)$.

The map $f \mapsto f(D)$ is non degenerate morphism $C_0(\mathbb{R}^*_+) \to J(G)$, of course equivariant. Whence a non degenerate morphism $\mathcal{K} \simeq C_0(\mathbb{R}^*_+) \rtimes \mathbb{R}^*_+ \to J(G) \rtimes \mathbb{R}^*_+$.

イロト イポト イヨト イヨト
Proposition

Can construct action α of \mathbb{R} on $\Psi^*(G)$ with isomorphism $\theta: \Psi^*(G) \rtimes \mathbb{R} \to J(G)$ such that:

• $C^*(G)$ is α -invariant, and $\theta(C^*(G) \rtimes \mathbb{R}) = J_0(G)$.

Proposition

Can construct action α of \mathbb{R} on $\Psi^*(G)$ with isomorphism $\theta: \Psi^*(G) \rtimes \mathbb{R} \to J(G)$ such that:

- $C^*(G)$ is α -invariant, and $\theta(C^*(G) \rtimes \mathbb{R}) = J_0(G)$.
- Dual action: the one considered above.

Proposition

Can construct action α of \mathbb{R} on $\Psi^*(G)$ with isomorphism $\theta: \Psi^*(G) \rtimes \mathbb{R} \to J(G)$ such that:

- $C^*(G)$ is α -invariant, and $\theta(C^*(G) \rtimes \mathbb{R}) = J_0(G)$.
- Dual action: the one considered above.

(We use duality $\hat{\mathbb{R}} = \mathbb{R}^*_+$).

Proposition

Can construct action α of \mathbb{R} on $\Psi^*(G)$ with isomorphism $\theta: \Psi^*(G) \rtimes \mathbb{R} \to J(G)$ such that:

- $C^*(G)$ is α -invariant, and $\theta(C^*(G) \rtimes \mathbb{R}) = J_0(G)$.
- Dual action: the one considered above.

(We use duality $\hat{\mathbb{R}} = \mathbb{R}^*_+$).

Put
$$\alpha_t(P) = D_1^{it} P D_1^{-it}$$
 (with D_1 as above).

Proposition

Can construct action α of \mathbb{R} on $\Psi^*(G)$ with isomorphism $\theta: \Psi^*(G) \rtimes \mathbb{R} \to J(G)$ such that:

- $C^*(G)$ is α -invariant, and $\theta(C^*(G) \rtimes \mathbb{R}) = J_0(G)$.
- Dual action: the one considered above.

(We use duality $\hat{\mathbb{R}} = \mathbb{R}^*_+$).

Put $\alpha_t(P) = D_1^{it}PD_1^{-it}$ (with D_1 as above). D_1^{it} is pseudodifferential with (complex) order *it*, whence $D_1^{it}PD_1^{-it}$ is of order 0 (Vassout).

Proposition

Can construct action α of \mathbb{R} on $\Psi^*(G)$ with isomorphism $\theta: \Psi^*(G) \rtimes \mathbb{R} \to J(G)$ such that:

- $C^*(G)$ is α -invariant, and $\theta(C^*(G) \rtimes \mathbb{R}) = J_0(G)$.
- Dual action: the one considered above.

(We use duality
$$\hat{\mathbb{R}}=\mathbb{R}_+^*).$$

Put $\alpha_t(P) = D_1^{it}PD_1^{-it}$ (with D_1 as above). D_1^{it} is pseudodifferential with (complex) order *it*, whence $D_1^{it}PD_1^{-it}$ is of order 0 (Vassout).

 D_1^{it} multiplier of $C^*(G)$. Therefore the restriction of α_t to $C^*(G)$ inner.

Proposition

Can construct action α of \mathbb{R} on $\Psi^*(G)$ with isomorphism $\theta: \Psi^*(G) \rtimes \mathbb{R} \to J(G)$ such that:

- $C^*(G)$ is α -invariant, and $\theta(C^*(G) \rtimes \mathbb{R}) = J_0(G)$.
- Dual action: the one considered above.

(We use duality
$$\hat{\mathbb{R}}=\mathbb{R}_+^*).$$

Put $\alpha_t(P) = D_1^{it}PD_1^{-it}$ (with D_1 as above). D_1^{it} is pseudodifferential with (complex) order *it*, whence $D_1^{it}PD_1^{-it}$ is of order 0 (Vassout).

 D_1^{it} multiplier of $C^*(G)$. Therefore the restriction of α_t to $C^*(G)$ inner.

The identity at the quotient level.

Further topics: 1. Intrepretation of $C^*(G_{ad})$

We have interpreted $J(G) \subset C^*(G_{ad})$ as a crossed product.

Question

Can one interpret $C^*(G_{ad})$ in these terms?

Further topics: 1. Intrepretation of $C^*(G_{ad})$

We have interpreted $J(G) \subset C^*(G_{ad})$ as a crossed product.

Question

Can one interpret $C^*(G_{ad})$ in these terms?

Recall:

Construction (Baaj)

Let α be an action of a Lie group H act on a C^* -algebra A. Pseudodifferential extension of $A \rtimes H$. (Lie algebra \mathfrak{H}).

$$0 \to A \rtimes H \longrightarrow \Psi_0^*(A, G) \stackrel{\sigma}{\longrightarrow} C(S^*\mathfrak{H}) \otimes A \to 0.$$

Double pseudodifferential extension...

We prove:

Proposition

Commuting diagram, whose first line is Baaj's exact sequence:

Double pseudodifferential extension...

We prove:

Proposition

Commuting diagram, whose first line is Baaj's exact sequence:

$$0 \longrightarrow \Psi^{*}(G) \rtimes \mathbb{R}^{*}_{+} \longrightarrow \Psi^{*}(\Psi^{*}(G), \mathbb{R}) \xrightarrow{\sigma} \Psi^{*}(G) \oplus \Psi^{*}(G) \longrightarrow 0$$

$$\pi \stackrel{\uparrow}{\cong} \qquad \uparrow \qquad \qquad \uparrow \mu_{0}$$

$$0 \longrightarrow J(G) \longrightarrow C^{*}(G_{ad}) \longrightarrow C(G^{(0)}) \longrightarrow 0$$
Where $\mu_{0}(f) = (\mu(f), 0)$

$$\mu : C_{0}(G^{(0)}) \rightarrow \Psi^{*}(G) \text{ inclusion by multiplication operators.}$$

→ Ξ →

- ∢ ∃ ▶

2.a) Conic gauge groupoid

(This is related with work of Melo, Schick, Schrohe) Our construction extends to groupoids with boundaries:

M compact manifold with boundary. Consider M as included in a manifold \widetilde{M} without boundary such as its double - could be non compact.

2.a) Conic gauge groupoid

(This is related with work of Melo, Schick, Schrohe) Our construction extends to groupoids with boundaries:

M compact manifold with boundary. Consider M as included in a manifold \widetilde{M} without boundary such as its double - could be non compact.

Let \widetilde{G} be a smooth groupoid such that $\widetilde{G}^{(0)} = \widetilde{M}$. Assume ∂M transverse to \widetilde{G} (*i.e.* $\mathfrak{A}G_x + T_x \partial M = T_x \widetilde{M}$ - for all $x \in \partial M$).

2.a) Conic gauge groupoid

(This is related with work of Melo, Schick, Schrohe) Our construction extends to groupoids with boundaries:

M compact manifold with boundary. Consider M as included in a manifold \widetilde{M} without boundary such as its double - could be non compact.

Let \widetilde{G} be a smooth groupoid such that $\widetilde{G}^{(0)} = \widetilde{M}$. Assume ∂M transverse to \widetilde{G} (*i.e.* $\mathfrak{A}G_x + T_x \partial M = T_x \widetilde{M}$ - for all $x \in \partial M$).

Then the restriction G to ∂M of \widetilde{G} is a smooth groupoid and has a neighborhood of the form $G \times (\mathbb{R} \times \mathbb{R})$ in \widetilde{G} . Can then form a "conic gauge groupoid" G_{cg} , with objects M by gluing G_{ga} with the restriction \tilde{G} of \tilde{G} to \tilde{M} .

2.b) Symbol algebra and index

The algebra $\Psi^*(G_{cg})$ contains as an ideal $C^*(\tilde{\tilde{G}})$.

We then define:

- The full symbol algebra $\Sigma_f = \Psi^*(G_{cg})/C^*(\widetilde{\mathring{G}}).$
- The corresponding connecting map $ind_{cg}: K_*(\Sigma_f) \to K_{*+1}(C^*(\mathring{G})).$

2.b) Symbol algebra and index

The algebra $\Psi^*(G_{cg})$ contains as an ideal $C^*(\tilde{\tilde{G}})$.

We then define:

- The full symbol algebra $\Sigma_f = \Psi^*(G_{cg})/C^*(\tilde{G})$.
- The corresponding connecting map $ind_{cg}: K_*(\Sigma_f) \to K_{*+1}(C^*(\mathring{G})).$

Let $\Psi_{\partial M}(M)$ be pseudodifferential operators on M that become scalar in ∂M (in other words $\Psi_{\partial M}(\widetilde{G}_M) = \Psi_0^*(\widetilde{\mathring{G}}) + C(M)$).

Corresponding symbols on *M* that become trivial on ∂M :

$$\Sigma_t = \Psi_{\partial M}(\widetilde{G}_M)/C^*(\widetilde{\mathring{G}}) = C(\partial M \cup S^* \mathfrak{A} G_{|\mathring{M}}).$$

2.b) Symbol algebra and index (2)

Theorem

• The inclusions $\Psi_{\partial M}(\widetilde{G}_M) \subset \Psi^*(G_{cg})$ and $\Sigma_t \subset \Sigma_f$ induce KK-equivalences.

2.b) Symbol algebra and index (2)

Theorem

- The inclusions Ψ_{∂M}(G_M) ⊂ Ψ*(G_{cg}) and Σ_t ⊂ Σ_f induce KK-equivalences.
- $\begin{array}{l} \textcircled{0} \quad \text{Natural exact sequence} \\ 0 \rightarrow C_0(\mathfrak{A}^*G_{|\mathring{M}}) \rightarrow C(B^*\mathfrak{A}G_{|\mathring{M}} \cup \partial M) \rightarrow \Sigma_t \rightarrow 0. \end{array} \end{array}$

Then ind_{cg} is the composition of:

- the KK-inverse of the inclusion $\Sigma_t \subset \Sigma_f$;
- the connecting map $\in KK^1(\Sigma_t, C_0(\mathfrak{A}^*G_{|\mathring{M}}))$ of this exact sequence;
- the index map $\in \mathsf{KK}(\mathsf{C}_0(\mathfrak{A}^*\mathsf{G}_{|\mathring{M}}),\mathsf{C}^*(\widetilde{\mathring{G}}))$ of the groupoid $\widetilde{\mathring{G}}$.

As above: M compact manifold with boundary. Consider M as included in a manifold \widetilde{M} without boundary.

Boutet de Monvel defines:

• Pseudodifferential operators on \widetilde{M} with the transmitting property (acting on fonctions on M).

As above: M compact manifold with boundary. Consider M as included in a manifold \widetilde{M} without boundary.

Boutet de Monvel defines:

• Pseudodifferential operators on \widetilde{M} with the transmitting property (acting on fonctions on M).

Let χ_M be the characteristic function of M.

Definition

A pseudodifferential operator P (with compact support) on \widetilde{M} is said to have the transmitting property if for every smooth function \tilde{f} on \widetilde{M} , then $P(\chi_M \tilde{f})$ coincides on \mathring{M} with a smooth function on \widetilde{M} .

Can be described in terms of the (restriction to ∂M of the) total symbol of P.

Let $P_+(f)$ be the function on M which coincides with $P(\chi_M \tilde{f})$ on \mathring{M} .

As above: M compact manifold with boundary. Consider M as included in a manifold \widetilde{M} without boundary.

Boutet de Monvel defines:

• Pseudodifferential operators on \widetilde{M} with the transmitting property (acting on fonctions on M).

Definition

A pseudodifferential operator P (with compact support) on \widetilde{M} is said to have the transmitting property if for every smooth function \tilde{f} on \widetilde{M} , then $P(\chi_M \tilde{f})$ coincides on \mathring{M} with a smooth function on \widetilde{M} .

Let $P_+(f)$ be the function on M which coincides with $P(\chi_M \tilde{f})$ on \mathring{M} . The operators P_+ , do not form an algebra as $P_+Q_+ \neq (PQ)_+$.

As above: M compact manifold with boundary. Consider M as included in a manifold \widetilde{M} without boundary.

Boutet de Monvel defines:

• Pseudodifferential operators on \widetilde{M} with the transmitting property (acting on fonctions on M).

Definition

A pseudodifferential operator P (with compact support) on \widetilde{M} is said to have the transmitting property if for every smooth function \tilde{f} on \widetilde{M} , then $P(\chi_M \tilde{f})$ coincides on \mathring{M} with a smooth function on \widetilde{M} .

Let $P_+(f)$ be the function on M which coincides with $P(\chi_M \tilde{f})$ on \mathring{M} . The operators P_+ , do not form an algebra as $P_+Q_+ \neq (PQ)_+$.

The difference: a singular Green operator.

As above: M compact manifold with boundary. Consider M as included in a manifold \widetilde{M} without boundary.

Boutet de Monvel defines:

- Pseudodifferential operators on \widetilde{M} with the transmitting property (acting on fonctions on M).
- Singular Green operators (acting also on fonctions *M*).

As above: M compact manifold with boundary. Consider M as included in a manifold \widetilde{M} without boundary.

Boutet de Monvel defines:

- Pseudodifferential operators on \widetilde{M} with the transmitting property (acting on fonctions on M).
- Singular Green operators (acting also on fonctions *M*).

Pseudodifferential operators with the transmitting property + singular Green operators form an algebra. Call it $\mathcal{P}_{BM}(M)$.

As above: M compact manifold with boundary. Consider M as included in a manifold \widetilde{M} without boundary.

Boutet de Monvel defines:

- Pseudodifferential operators on \widetilde{M} with the transmitting property (acting on fonctions on M).
- Singular Green operators (acting also on fonctions *M*).

Pseudodifferential operators with the transmitting property + singular Green operators form an algebra. Call it $\mathcal{P}_{BM}(M)$.

• Singular Poisson and Singular Trace operators adjoint of each other (connecting fonctions on *M* and fonctions on its boundary).

As above: M compact manifold with boundary. Consider M as included in a manifold \widetilde{M} without boundary.

Boutet de Monvel defines:

- Pseudodifferential operators on \widetilde{M} with the transmitting property (acting on fonctions on M).
- Singular Green operators (acting also on fonctions *M*).

Pseudodifferential operators with the transmitting property + singular Green operators form an algebra. Call it $\mathcal{P}_{BM}(M)$.

• Singular Poisson and Singular Trace operators adjoint of each other (connecting fonctions on *M* and fonctions on its boundary).

They define a Morita equivalence between singular Green operators on M and ordinary pseudodifferential operators on its boundary.

June 16, 2014

15 / 18

We have proved:

- The Boutet de Monvel calculus can be immediately extended to any groupoid with boundary as above.
- The corresponding Green operators coincide with smoothing operators of G_{cg}

We have proved:

- The Boutet de Monvel calculus can be immediately extended to any groupoid with boundary as above.
- **②** The corresponding Green operators coincide with smoothing operators of G_{cg} (more precisely, with the ideal $\widehat{J(G)}$).

We have (almost) proved:

- The Boutet de Monvel calculus can be immediately extended to any groupoid with boundary as above.
- **2** The corresponding Green operators coincide with smoothing operators of G_{cg} (more precisely, with the ideal $\widehat{J(G)}$).
- **③** The Poisson and Trace operators coincide with our bimodule \mathcal{E} .

We have (almost) proved:

- The Boutet de Monvel calculus can be immediately extended to any groupoid with boundary as above.
- **2** The corresponding Green operators coincide with smoothing operators of G_{cg} (more precisely, with the ideal $\widehat{J(G)}$).
- **③** The Poisson and Trace operators coincide with our bimodule \mathcal{E} .
- The algebra $\Psi^0_{BM}(G)$ of order zero Boutet de Monvel operators is identified as a subalgebra of $\Psi^*(G_{cg})$.

We have (almost) proved:

- The Boutet de Monvel calculus can be immediately extended to any groupoid with boundary as above.
- **2** The corresponding Green operators coincide with smoothing operators of G_{cg} (more precisely, with the ideal $\widehat{J(G)}$).
- **③** The Poisson and Trace operators coincide with our bimodule \mathcal{E} .
- The algebra $\Psi^0_{BM}(G)$ of order zero Boutet de Monvel operators is identified as a subalgebra of $\Psi^*(G_{cg})$.
- Some of the inclusion Ψ⁰_{BM}(G) ⊂ Ψ^{*}(G_{cg}) induces an isomorphism in K-theory, and (by 2.b) we recover the Boutet de Monvel index theorem.

・ 何 ト ・ ヨ ト ・ ヨ ト

Papers:

(All joint with Claire Debord)

 Adiabatic groupoid, crossed product by R^{*}₊ and Pseudodifferential calculus. *Adv. Math 2014* http://math.univ-bpclermont.fr/~debord/

- Pseudodifferential extensions and adiabatic deformation of a groupoid.
 Almost finished...
- [3] Boutet de Monvel calculus and adiabatic groupoid. In preparation

Papers:

(All joint with Claire Debord)

 Adiabatic groupoid, crossed product by R^{*}₊ and Pseudodifferential calculus. *Adv. Math 2014* http://math.univ-bpclermont.fr/~debord/

- Pseudodifferential extensions and adiabatic deformation of a groupoid.
 Almost finished...
- [3] Boutet de Monvel calculus and adiabatic groupoid. In preparation

Thank you!

Recall

Recall $J(G) \subset C^*(G_{ad})$: the kernel of $C^*(G_{ad}) \rightarrow C(G^{(0)})$ given as a composition

$$C^*(G_{ad}) \xrightarrow{ev_0} C^*(\mathfrak{A}G) \simeq C_0(\mathfrak{A}^*G) \longrightarrow C(G^{(0)})$$

3

Recall

Recall $J(G) \subset C^*(G_{ad})$: the kernel of $C^*(G_{ad}) \rightarrow C(G^{(0)})$ given as a composition

$$C^*(G_{ad}) \stackrel{ev_0}{\longrightarrow} C^*(\mathfrak{A}G) \simeq C_0(\mathfrak{A}^*G) \longrightarrow C(G^{(0)})$$

Exact sequence

 $0 \to C^*(G \times \mathbb{R}^*_+) \longrightarrow J(G) \xrightarrow{ev_0} C_0(\mathfrak{A}^*G \setminus G^{(0)}) \simeq C_0(S^*\mathfrak{A}G \times \mathbb{R}^*_+) \to 0$

Recall

Recall $J(G) \subset C^*(G_{ad})$: the kernel of $C^*(G_{ad}) \rightarrow C(G^{(0)})$ given as a composition

$$C^*(G_{ad}) \stackrel{ev_0}{\longrightarrow} C^*(\mathfrak{A}G) \simeq C_0(\mathfrak{A}^*G) \longrightarrow C(G^{(0)})$$

Exact sequence

$$0 \to C^*(G \times \mathbb{R}^*_+) \longrightarrow J(G) \xrightarrow{ev_0} C_0(\mathfrak{A}^*G \setminus G^{(0)}) \simeq C_0(S^*\mathfrak{A}G \times \mathbb{R}^*_+) \to 0$$

This exact sequence is equivariant with respect to the action of \mathbb{R}_+^* .
Recall

Recall $J(G) \subset C^*(G_{ad})$: the kernel of $C^*(G_{ad}) \rightarrow C(G^{(0)})$ given as a composition

$$C^*(G_{\mathsf{ad}}) \stackrel{\operatorname{ev}_0}{\longrightarrow} C^*(\mathfrak{A}G) \simeq C_0(\mathfrak{A}^*G) \longrightarrow C(G^{(0)})$$

Exact sequence

$$0 \to C^*(G \times \mathbb{R}^*_+) \longrightarrow J(G) \xrightarrow{ev_0} C_0(\mathfrak{A}^*G \setminus G^{(0)}) \simeq C_0(S^*\mathfrak{A}G \times \mathbb{R}^*_+) \to 0$$

This exact sequence is equivariant with respect to the action of \mathbb{R}^*_+ .

$$C^*(G imes \mathbb{R}^*_+)
times \mathbb{R}^*_+ \simeq C^*(G) \otimes \mathcal{K}$$
 and
 $C_0(S^*\mathfrak{A}G imes \mathbb{R}^*_+)
times \mathbb{R}^*_+ \simeq C_0(S^*\mathfrak{A}G) \otimes \mathcal{K}.$ $ullet$ Back