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Motivations

At short distance the spacetime should be non-commutative.

This feature should be encoded in the “Quantum Gravity”

No satisfactory description.

We can get information about such a theory analyzing
particular regimes [Hawking].

Gravity classically Matter by quantum theory.

Gab(x) = 8π〈Tab(x)〉ω
Doplicher, Fredenhagen and Roberts 95 use this to obtain
uncertainty relations for the coordinates on a flat quantum space.



Motivations

Semiclassical equations: Quantum fields as source for classical
ones, like:

Gab(x) = 〈Tab(x)〉 .

Fluctuations of Tab(x) diverge. Cannot be renormalized.

Smearing is needed: Tab(f ), 〈Tab(f )n〉 give the probability dist.

However, smearing brakes covariance.

Solution: quantize the full theory.

Intermediate step: Langevin equation (like Brownian motion).
(Passive influence of the right side on the left one).

Gab = Tab



Two-dimensional model

Carlip, Mosna and Pitelli PRL (2011)
“Vacuum Fluctuations and the Small Scale Structure of Spacetime”.

Effective 2d dilatonic model for gravity.
Analyze the probability of a geodesic collapse at small scales.
Expansion parameter of null geodesics.

θ̇ +
1

2
θ2 = −T

Probability distribution for a energy
density in a 2d CFT.
[Fewster Ford Roman 2010]

Mean value vanishes.
It is bounded from below.
There is a long positive tail.
Negative energies are more likely.
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Motivations

The Raychaudhuri equation for timelike geodesics provides a simplified
model:

θ̇ +
1

3
θ2︸ ︷︷ ︸

geometry

= . . .− (Tµν −
1

2
Tgµν︸ ︷︷ ︸

matter

)ξµξν

It can be seen as a one-dimensional non-linear field theory.

Test of the ideas in a simplified setting.

Might provide hints on the underlying quantum gravity.



Plan

Plan of the talk

Restriction of matter fields on timelike curves.

Perturbative analysis of Raychaudhuri equation.

Probability of focusing and some final comments on the arising
probability distribution.

Bounds for uncertainty of quantum coordinates.

This talk is based on

N. Drago, NP, [arXiv.1402.4265] (2014).

C.J. Fewster, L.H. Ford, T.A. Roman PRD (2010).

S.Carlip, R.A.Mosna and J.P.M.Pitelli PRL (2011).

S. Doplicher, G. Morsella, NP JGP (2013).



Restriction of Matter fields on timelike curves

Matter fields - Restriction on timelike curves

Massless minimally coupled scalar quantum field.

−�ϕ = 0

The quantization is very well under control.

The ∗−algebra generated by linear fields ϕ(f ), implementing:

ϕ∗(f ) = ϕ(f ) , [ϕ(f ), ϕ(h)] = i∆(f , h) , ϕ(�f ) = 0 .

Assign to every spacetime [Brunetti Fredenhagen Verch]

M 7→ A(M)

Local non linear fields can be added to the algebra. [Hollands Wald]



Restriction of Matter fields on timelike curves

Extended algebra of fields

Following [Brunetti Fredenhagen Duetsch], A(M) algebra of functionals
over smooth field configurations.

After deforming A(M) ∆→ −2iH it can be extended trivially.

F(M) := {F : E(M)→ C| F inf. diff. with compact support,

WF (F (n)) ∩ (V
n
+ ∪ V

n
−) = ∅},

where the product is

F ?H G :=
∞∑
n=0

1

n!
〈F (n),H⊗nG (n)〉

H is an Hadamard parametrix, enjoying the microlocal spectrum condition.



Restriction of Matter fields on timelike curves

Fields on timelike curves

Let be γ ⊂ M a smooth timelike curve.

Not every element of F(M) can be restricted on γ:

F(M) 3 F (ϕ)→
∫
ϕδ(γ)fdµ, F (δ(γ)ϕ) diverges.

We can define fields intrinsically on γ

F(γ) := {F : E(γ)→ C| F inf. diff. with compact support,

WF (F (n)) ∩ (Rn
+ ∪ Rn

−) = ∅},

F ?h G :=
∞∑
n=0

1

n!
〈F (n), h⊗nG (n)〉

being h a two-point function with WF (h) ⊂ R+ × R−.



Restriction of Matter fields on timelike curves

Connection with the spacetime theory

Question

Can we imbed F(γ) into F(M)?

Yes because we can restrict

h = H ◦ (γ ⊗ γ) = H · δ(γ ⊗ γ)

WF (δ(γ ⊗ γ)) contains only spatial directions.

Theorem

Let ıγ : E(M)→ E(γ) defined by ıγϕ := ϕ ◦ γ realizing the restriction of
field configurations on γ

Its pullback imbed F(γ) ⊂ F(M): ı∗γF(γ) ⊆ F(M).

ı∗γF ?H ı
∗
γG = ı∗γ(F ?h G ),

It does not work on light like curves.



Rauchaudhuri equation

Raychaudhuri equation

Consider a congruence of timelike geodesic C.

The expansion parameter θ measures the
rate of change of 4

3πr
3 along C

θ > 0 expansion

θ = 0 parallel motion

θ < 0 contraction

Its evolution is governed by the Raychaudhuri equation

θ̇ = −1

3
θ2 − σµνσµν + ωµνωµν − Rµνξ

µξν ,

ωµν : angular velocity of the geodesics;
σµν : deformation parameter;
ξµ : tangent vector of the geodesic.



Rauchaudhuri equation

Raychaudhuri equation - an example in cosmology

Einstein equation can be used to evaluate Rµν .

Rµν = Tµν −
1

2
gµνT

In the case of an expanding flat FRW spacetime

ds2 = −dt2 + a2(t)dx2 , θ(t) = 3H(t)

Raychaudhuri equation

θ̇ = −1

3
θ2 −

(
Tµν −

1

2
gµνT

)
ξµξν ,

is equivalent to Friedmann equations (up to an initial condition).



Rauchaudhuri equation

Question

Can we treat fluctuations of the expansion parameter as fields in the
matter algebra?

The equation for ψ (θ = 3ψ̇/ψ) defined up to a scale.

ψ̈ +
1

3
(σµνσ

µν − ωµνωµν + Tcl)︸ ︷︷ ︸
:=V

ψ +
1

3
ϕ̇2ψ = 0,

We are interested in the fluctuations of ψ induced by the ones of ϕ.

We shall use perturbation theory and test if ψ vanishes

1 The fluctuations of ωµν , σµν are negligible;
2 The influence of ψ on ϕ is negligible.

It is a one dimensional problem. It is a field theory on a line.



Rauchaudhuri equation

Retarded propagator of the theory

A poor man interacting quantum field theory.

ψ̈ + Vψ +
1

3
ϕ̇2ψ = 0,

The solution is formally

ψ = ψ0 + RV (ϕ̇2ψ),

RV : D(R)→ E(R) the retarded propagator of Pγ = − d2

dt2 − V i.e.

RVPγ(f ) = PγRV (f ) = f , supp(RV f ) ⊆ J+(supp(f )).

The integral kernel of RV has the form

RV (x , y) = S(x , y)︸ ︷︷ ︸
∈E(R2)

ϑ(x − y), (RV f )(x) =

∫
RV (x , y)f (y)dy .

We look for a recursive solution.



Rauchaudhuri equation

Perturbative analysis: Yang-Feldman method

Solution as a formal power series in λ around a free classical solution
ψ0.

ψ(f ) = ψ0(f ) + λψ1(f ) + λ2ψ2(f ) + . . .

[Epstain, Glaser, Steinmann, Hollands, Wald, Brunetti, Duetsch,
Fredenhagen] Choose λ ∈ C∞0 (γ)

ψn(f ) = RV (λϕ̇2ψn−1)(f ) n = 1, 2, . . .

ψn(f ) =

∫
fR(xn−1)S(xn−1, xn−2) . . . S(x1, x0)λ(xn−1) . . . λ(x0)·

·ϑ(xn−1 − xn−2) . . . ϑ(x1 − x0)ϕ̇2(xn−1) ?h . . . ?h ϕ̇
2(x0)︸ ︷︷ ︸

:=r(xn−1,...,x0)

To solve it we need to consider ill defined RV (x , y) · h(x , y).

We want r for every possible V =⇒ we leave S out of r .

Small problem, S is not symmetric =⇒ slightly modify the standard
construction.



Rauchaudhuri equation

Construction of r(xn, . . . , x0) in F(γ)

The r(xn, . . . , x0) are distributions with values in F(γ)

1 retardation 1: if xn > . . . > x0 then

r(xn, . . . , x0) = ϕ̇2(xn) ?h . . . ?h ϕ̇
2(x0);

2 retardation 2: if it does not hold that xn ≥ . . . ≥ x0 then

r(xn, . . . , x0) = 0;

3 factorization: if xn ≥ . . . ≥ x0 and xm+1 > xm, m ∈ {1, . . . , n}, then

r(xn, . . . , x0) = r(xn, . . . , xm+1) ?h r(xm, . . . , x0);

4 initial element: r(x0) = ϕ̇2(x0).



Rauchaudhuri equation

Solution

The construction of r is an application of the recently developed pAQFT.
[Epstain, Glaser, Steinmann, Hollands, Wald, Brunetti, Duetsch,
Fredenhagen, Rejzner]
Inductive construction of r [Epstain Glaser] uses the previous general
properties.

We have the initial element.

Suppose that you have all rs with n − 1 entries then

1 Construct r(xn, . . . , x0) outside the full diagonal xn = . . . = x0 with the
factorization property.

2 Extend it to the full diagonal by means of Steinmann scaling degree
tecniques [Brunetti Fredenhagen].

In the last step there is the usual renormalization freedom expressed by a
certain number of constants.



Rauchaudhuri equation

Adiabatic limit

With those r we can obtain ψn(f ) ∈ F(γ) for every n.

The last step is the analysis of the limit λ→ 1 (in F(γ)).

It can be performed in F(γ) because the equation for ψ is linear in ψ
and we smear ψ with compactly supported smooth function f .

Formally we can split ψ = ψ+ + ψ−

ψ̈± + Vψ± +
1

3
ϕ̇2ψ± = ±b,

b smooth and supported in the past of f .
supp(ψ±) in the future/past of supp(b).

For ψ+ with λ = 1 the retarded integral are compact.



Rauchaudhuri equation

With those r we can obtain ψn(f ) for every n in the limit λ = 1.

Question

What kind of fields are ψn(f )?

Theorem

ψn(f ) are functionals over matter field configuration. They are elements of
F(γ) ∀n.

The perturbative analysis of the moments of ψ can be put on firm
mathematical grounds.

If we have a state ω for the matter fields, we can construct the
probability distribution for ψ(f ).



Estimate on Minkowski space

Application in Minkowski

Estimate the focusing probability of a family of timelike parallel
geodesics on Minkowski within the interval of time I .

(collapse condition, realize ψ with negative values.)

ψ0(t) = ψ0, ψ̈ = ψ0 + RV (λϕ̇2ψ), RV (t, s) = −(t − s)ϑ(t − s).

A second order estimate on the Minkowski vacuum gives

ω(ψ(f )) ≈ ψ0,

ς2(f ) ≈ ω(ψ1(f ) ?ω ψ1(f )) =
ψ2

0

π27!

∫ +∞

0
dp p3f̂ (p)f̂ (p).

f is a smooth approximation of the characteristic function of the time
interval I .

The smaller the support, the larger the variance.



Estimate on Minkowski space

Decay probability

The probability density of ψ is approximated by a Gaussian distribution

P(ψ(fτ ) ≤ 0) ≈ N (−ψ0, 0, 1) , fτ (s) := f (s − τ).

Consider a sequence {Xn}n of random variables such that

Xn ∼ ψ(fτ ) ∀n,

Focusing occures.

Time of the first collapse is distributed as an exponential of
parameter λτ := P(ψ(fτ ) ≤ 0).

The result is qualitatively similar to the one obtained by Carlip et all.

The larger the support of f the smaller the collapse probability due
to quantum fluctuations.



Uncertainties

Towards quantum spacetime?

In [DFR 95] the authors find the commutation rules among the
coordinates

[qµ, qν ] = iQµν

compatible with the following uncertainty relations

∆x0 (∆x1 + ∆x2 + ∆x3) ≥ λ2
P ,

∆x1∆x2 + ∆x2∆x3 + ∆x3∆x1 ≥ λ2
P

which are obtained using the following:

Minimal Principle:

We cannot create a singularity just observing a system.

Together with the Heisenberg principle (HP) (valid in Minkowski).

The uncertainties are tailored to the flat spacetime.



Uncertainties

In [Doplicher Morsella np 2013] the semiclassical equation in
connection with that principle was used to obtain a minimal length
scale in spherically symmetric spacetimes.

A model for a measuring apparatus was discussed and the preparation
of the system was considered → kinematical point of view.

In the semiclassical approximation, the matter fluctuations can induce
the formation of singularities.

They can be made small smearing over long time intervals.

Open task: Obtain bounds for the coordinate uncertainties relations
without studying the measuring apparatus.



Conclusion

Summary
Algebra of matter fields on timelike geodesics can be considered.

Passive influence of matter fluctuation on expansion parameter can be
studied within pAQFT.

Bounds for uncertainty relations among spacetime coordinates can be
studied.

Open Questions
Can we get bounds for the validity of semiclassical equations?

Can we do better then perturbation theory?

Can we address intrinsic fluctuation of the expansion parameter?

What about their influence on the matter?

Quantum gravity solves those issues?



Conclusion

Thanks a lot for your attention!
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