Influence of quantum matter fluctuations on the expansion parameter of timelike geodesics

Nicola Pinamonti

Dipartimento di Matematica Università di Genova

Frascati, June 16th, 2014

joint work with N. Drago, arXiv.1402.4265

- At short distance the spacetime should be **non-commutative**.
- This feature should be encoded in the "Quantum Gravity"

No satisfactory description.

- We can get information about such a theory analyzing particular regimes [Hawking].
- Gravity classically
 Matter by quantum theory.

$$G_{ab}(x) = 8\pi \langle T_{ab}(x) \rangle_{\omega}$$

 Doplicher, Fredenhagen and Roberts 95 use this to obtain uncertainty relations for the coordinates on a flat quantum space.

Motivations

Semiclassical equations: Quantum fields as source for classical ones, like:

$$G_{ab}(x) = \langle T_{ab}(x) \rangle$$
.

- Fluctuations of $T_{ab}(x)$ diverge. Cannot be renormalized.
- **Smearing** is needed: $T_{ab}(f)$, $\langle T_{ab}(f)^n \rangle$ give the **probability dist**.
- However, smearing **brakes covariance**.

Solution: quantize the full theory.

Intermediate step: Langevin equation (like Brownian motion).
 (Passive influence of the right side on the left one).

$$G_{ab} = T_{ab}$$

Two-dimensional model

- Carlip, Mosna and Pitelli PRL (2011)
 "Vacuum Fluctuations and the Small Scale Structure of Spacetime".
 - Effective 2d dilatonic model for gravity.
 - Analyze the probability of a geodesic collapse at small scales.
 - Expansion parameter of null geodesics.

$$\dot{\theta} + \frac{1}{2}\theta^2 = -T$$

- Probability distribution for a energy density in a 2d CFT. [Fewster Ford Roman 2010]
 - Mean value vanishes.
 - It is bounded from below.
 - There is a long positive tail.
 - Negative energies are more likely.

The Raychaudhuri equation for timelike geodesics provides a simplified model:

$$\underbrace{\dot{\theta} + \frac{1}{3}\theta^2}_{geometry} = \dots - (\underbrace{T_{\mu\nu} - \frac{1}{2}Tg_{\mu\nu}}_{matter})\xi^{\mu}\xi^{\nu}$$

It can be seen as a one-dimensional non-linear field theory.

- Test of the ideas in a simplified setting.
- Might provide hints on the underlying quantum gravity.

- Restriction of matter fields on timelike curves.
- Perturbative analysis of Raychaudhuri equation.
- Probability of focusing and some final comments on the arising probability distribution.

Bounds for uncertainty of quantum coordinates.

This talk is based on

- N. Drago, NP, [arXiv.1402.4265] (2014).
- C.J. Fewster, L.H. Ford, T.A. Roman PRD (2010).
- S.Carlip, R.A.Mosna and J.P.M.Pitelli PRL (2011).
- S. Doplicher, G. Morsella, NP JGP (2013).

Plan

Matter fields - Restriction on timelike curves

Massless minimally coupled scalar quantum field.

$$-\Box \varphi = 0$$

The quantization is very well under control.

• The *-algebra generated by linear fields $\varphi(f)$, implementing:

$$arphi^*(f) = arphi(\overline{f}) \;, \qquad [arphi(f), arphi(h)] = i\Delta(f, h) \;, \qquad arphi(\Box f) = 0 \;.$$

Assign to every spacetime [Brunetti Fredenhagen Verch]

$$M\mapsto \mathcal{A}(M)$$

Local non linear fields can be added to the algebra. [Hollands Wald]

Extended algebra of fields

Following [Brunetti Fredenhagen Duetsch], $\mathcal{A}(M)$ algebra of functionals over smooth field configurations.

After deforming $\mathcal{A}(M) \ \Delta \rightarrow -2iH$ it can be extended trivially.

 $\mathcal{F}(M) := \{F : \mathcal{E}(M) \to \mathbb{C} | F \text{ inf. diff. with compact support,} \\ WF(F^{(n)}) \cap (\overline{V}^n_+ \cup \overline{V}^n_-) = \emptyset\},\$

where the product is

$$F \star_H G := \sum_{n=0}^{\infty} \frac{1}{n!} \langle F^{(n)}, H^{\otimes n} G^{(n)} \rangle$$

H is an Hadamard parametrix, enjoying the microlocal spectrum condition.

Fields on timelike curves

- Let be $\gamma \subset M$ a smooth timelike curve.
- Not every element of $\mathcal{F}(M)$ can be restricted on γ :

$$\mathcal{F}(M) \ni F(\varphi) \to \int \varphi \delta(\gamma) f d\mu$$
, $F(\delta(\gamma)\varphi)$ diverges.

 \blacksquare We can define fields intrinsically on γ

 $\begin{aligned} \mathcal{F}(\gamma) &:= \{F : \mathcal{E}(\gamma) \to \mathbb{C} | \ F \text{ inf. diff. with compact support,} \\ WF(F^{(n)}) \cap (\mathbb{R}^n_+ \cup \mathbb{R}^n_-) = \emptyset \}, \end{aligned}$

$$F\star_h G := \sum_{n=0}^{\infty} \frac{1}{n!} \langle F^{(n)}, h^{\otimes n} G^{(n)} \rangle$$

being *h* a two-point function with $WF(h) \subset \mathbb{R}_+ \times \mathbb{R}_-$.

Connection with the spacetime theory

Question

Can we imbed $\mathcal{F}(\gamma)$ into $\mathcal{F}(M)$?

Yes because we can restrict

$$h = H \circ (\gamma \otimes \gamma) = H \cdot \delta(\gamma \otimes \gamma)$$

 $WF(\delta(\gamma \otimes \gamma))$ contains only spatial directions.

Theorem

Let $\iota_{\gamma} : \mathcal{E}(M) \to \mathcal{E}(\gamma)$ defined by $\iota_{\gamma} \varphi := \varphi \circ \gamma$ realizing the restriction of field configurations on γ

Its pullback imbed $\mathcal{F}(\gamma) \subset \mathcal{F}(M)$: $\imath_{\gamma}^* \mathcal{F}(\gamma) \subseteq \mathcal{F}(M)$.

$$\imath_{\gamma}^{*}F\star_{H}\imath_{\gamma}^{*}G=\imath_{\gamma}^{*}(F\star_{h}G),$$

It does not work on light like curves.

・ロ・・聞・・聞・・聞・・日・

Raychaudhuri equation

Consider a congruence of timelike geodesic C.

The expansion parameter θ measures the rate of change of $\frac{4}{3}\pi r^3$ along C

- $\theta > 0$ expansion
- $\theta = 0$ parallel motion
- $\theta < 0$ contraction
- Its evolution is governed by the Raychaudhuri equation

$$\dot{\theta} = -\frac{1}{3}\theta^2 - \sigma_{\mu\nu}\sigma^{\mu\nu} + \omega^{\mu\nu}\omega_{\mu\nu} - R_{\mu\nu}\xi^{\mu}\xi^{\nu},$$

- $\omega_{\mu
 u}$: angular velocity of the geodesics;
- $\sigma_{\mu\nu}$: deformation parameter;
 - $\xi^{\mu}\,$: tangent vector of the geodesic.

Raychaudhuri equation - an example in cosmology

• Einstein equation can be used to evaluate $R_{\mu\nu}$.

$$R_{\mu\nu}=T_{\mu\nu}-\frac{1}{2}g_{\mu\nu}T$$

In the case of an expanding flat FRW spacetime

$$ds^2 = -dt^2 + a^2(t)d\mathbf{x}^2$$
, $\theta(t) = 3H(t)$

Raychaudhuri equation

$$\dot{ heta}=-rac{1}{3} heta^2-\left(extsf{T}_{\mu
u}-rac{1}{2} extsf{g}_{\mu
u} extsf{T}
ight)\xi^\mu\xi^
u,$$

is equivalent to Friedmann equations (up to an initial condition).

うせん 御を (曲を) (目を)

Question

Can we treat fluctuations of the expansion parameter as fields in the matter algebra?

• The equation for ψ ($\theta = 3\dot{\psi}/\psi$) defined up to a scale.

$$\ddot{\psi} + \underbrace{\frac{1}{3} \left(\sigma_{\mu\nu} \sigma^{\mu\nu} - \omega^{\mu\nu} \omega_{\mu\nu} + T_{cl} \right)}_{:=V} \psi + \frac{1}{3} \dot{\varphi}^2 \psi = 0,$$

We are interested in the fluctuations of ψ induced by the ones of φ .

- We shall use **perturbation theory** and test if ψ vanishes
 - The fluctuations of ω_{μν}, σ_{μν} are negligible;
 The influence of ψ on φ is negligible.
- It is a one dimensional problem. It is a field theory on a line.

Retarded propagator of the theory

A poor man interacting quantum field theory.

$$\ddot{\psi}+V\psi+rac{1}{3}\dot{arphi}^{2}\psi=0,$$

The solution is formally

$$\psi = \psi_0 + R_V(\dot{\varphi}^2 \psi),$$

 $R_V : \mathcal{D}(\mathbb{R}) \to \mathcal{E}(\mathbb{R})$ the retarded propagator of $P_\gamma = -\frac{d^2}{dt^2} - V$ i.e. $R_V P_\gamma(f) = P_\gamma R_V(f) = f, \quad \operatorname{supp}(R_V f) \subseteq J^+(\operatorname{supp}(f)).$

The integral kernel of R_V has the form

$$R_V(x,y) = \underbrace{S(x,y)}_{\in \mathcal{E}(\mathbb{R}^2)} \vartheta(x-y), \quad (R_V f)(x) = \int R_V(x,y) f(y) dy.$$

We look for a recursive solution.

Perturbative analysis: Yang-Feldman method

Solution as a formal power series in λ around a free classical solution $\psi_0.$

$$\psi(f) = \psi_0(f) + \frac{\lambda}{\psi_1(f)} + \frac{\lambda^2}{\psi_2(f)} + \dots$$

[Epstain, Glaser, Steinmann, Hollands, Wald, Brunetti, Duetsch, Fredenhagen] Choose $\lambda \in C_0^{\infty}(\gamma)$

$$\psi_{n}(f) = R_{V}(\lambda \dot{\varphi}^{2} \psi_{n-1})(f) \quad n = 1, 2, \dots$$

$$\psi_{n}(f) = \int f_{R}(x_{n-1})S(x_{n-1}, x_{n-2}) \dots S(x_{1}, x_{0})\lambda(x_{n-1}) \dots \lambda(x_{0}) \cdot \underbrace{\vartheta(x_{n-1} - x_{n-2}) \dots \vartheta(x_{1} - x_{0})\dot{\varphi}^{2}(x_{n-1}) \star_{h} \dots \star_{h} \dot{\varphi}^{2}(x_{0})}_{:=r(x_{n-1}, \dots, x_{0})}$$

- To solve it we need to consider ill defined $R_V(x, y) \cdot h(x, y)$.
- We want r for every possible $V \implies$ we leave S out of r.
- Small problem, S is not symmetric ⇒ slightly modify the standard construction.

Construction of $r(x_n, \ldots, x_0)$ in $\mathcal{F}(\gamma)$

The $r(x_n, \ldots, x_0)$ are distributions with values in $\mathcal{F}(\gamma)$ **1** retardation **1**: if $x_n > \ldots > x_0$ then

$$r(x_n,\ldots,x_0)=\dot{\varphi}^2(x_n)\star_h\ldots\star_h\dot{\varphi}^2(x_0);$$

2 retardation **2**: if it does not hold that $x_n \ge \ldots \ge x_0$ then

$$r(x_n,\ldots,x_0)=0;$$

3 factorization: if $x_n \ge \ldots \ge x_0$ and $x_{m+1} > x_m$, $m \in \{1, \ldots, n\}$, then

$$r(x_n,\ldots,x_0)=r(x_n,\ldots,x_{m+1})\star_h r(x_m,\ldots,x_0);$$

4 initial element: $r(x_0) = \dot{\varphi}^2(x_0)$.

Solution

The construction of *r* is an application of the recently developed **pAQFT**. [Epstain, Glaser, Steinmann, Hollands, Wald, Brunetti, Duetsch, Fredenhagen, Rejzner]

Inductive construction of *r* [*Epstain Glaser*] uses the previous general properties.

- We have the initial element.
- Suppose that you have all rs with n-1 entries then
 - 1 Construct $r(x_n, ..., x_0)$ outside the full diagonal $x_n = ... = x_0$ with the factorization property.
 - 2 Extend it to the full diagonal by means of **Steinmann** scaling degree tecniques [*Brunetti Fredenhagen*].

In the last step there is the usual renormalization freedom expressed by a certain number of constants.

Adiabatic limit

- With those r we can obtain $\psi_n(f) \in \mathcal{F}(\gamma)$ for every n.
- The last step is the analysis of the limit $\lambda \to 1$ (in $\mathcal{F}(\gamma)$).
- It can be performed in F(γ) because the equation for ψ is linear in ψ and we smear ψ with compactly supported smooth function f.
- \blacksquare Formally we can split $\psi=\psi^++\psi^-$

$$\ddot{\psi}^{\pm} + V\psi^{\pm} + \frac{1}{3}\dot{\varphi}^2\psi^{\pm} = \pm b,$$

b smooth and supported in the past of f.
 supp(ψ[±]) in the future/past of supp(b).

For ψ^+ with $\lambda = 1$ the retarded integral are compact.

With those r we can obtain $\psi_n(f)$ for every n in the limit $\lambda = 1$.

Question

What kind of fields are $\psi_n(f)$?

Theorem

 $\psi_n(f)$ are functionals over matter field configuration. They are elements of $\mathcal{F}(\gamma) \ \forall n$.

- The perturbative analysis of the moments of ψ can be put on firm mathematical grounds.
- If we have a state ω for the matter fields, we can construct the probability distribution for $\psi(f)$.

Application in Minkowski

Estimate the focusing probability of a family of timelike parallel geodesics on Minkowski within the interval of time *I*.

(collapse condition, realize ψ with negative values.)

$$\psi_0(t) = \psi_0, \qquad \ddot{\psi} = \psi_0 + R_V(\lambda \dot{\varphi}^2 \psi), \quad R_V(t,s) = -(t-s)\vartheta(t-s).$$

A second order estimate on the Minkowski vacuum gives

$$egin{aligned} & \omega(\psi(f)) &pprox & \psi_0, \ & arsigma^2(f) &pprox & \omega(\psi_1(f)\star_\omega\psi_1(f)) = rac{\psi_0^2}{\pi^2 7!}\int_0^{+\infty}dp \ p^3\overline{\widehat{f}(p)}\widehat{f}(p). \end{aligned}$$

- f is a smooth approximation of the characteristic function of the time interval I.
- The smaller the support, the larger the variance.

Decay probability

The **probability** density of ψ is approximated by a Gaussian distribution

$$\mathbb{P}(\psi(f_{ au})\leq 0)pprox \mathcal{N}\left(-\psi_{0},0,1
ight), \quad f_{ au}(s):=f(s- au).$$

Consider a sequence $\{X_n\}_n$ of random variables such that

$$X_n \sim \psi(f_\tau) \quad \forall n,$$

- Focusing occures.
- Time of the first collapse is distributed as an exponential of parameter $\lambda_{\tau} := \mathbb{P}(\psi(f_{\tau}) \leq 0)$.
- The result is qualitatively similar to the one obtained by Carlip et all.
- The larger the support of f the smaller the collapse probability due to quantum fluctuations.

Towards quantum spacetime?

In [DFR 95] the authors find the commutation rules among the coordinates

$$[q^{\mu},q^{\nu}]=iQ^{\mu\nu}$$

compatible with the following uncertainty relations

$$\Delta x_0 \left(\Delta x_1 + \Delta x_2 + \Delta x_3 \right) \geq \lambda_P^2,$$

$$\Delta x_1 \Delta x_2 + \Delta x_2 \Delta x_3 + \Delta x_3 \Delta x_1 \ge \lambda_P^2$$

which are obtained using the following:

Minimal Principle:

We cannot create a singularity just observing a system.

• Together with the Heisenberg principle (HP) (valid in Minkowski).

The uncertainties are tailored to the flat spacetime.

- In [Doplicher Morsella np 2013] the semiclassical equation in connection with that principle was used to obtain a minimal length scale in spherically symmetric spacetimes.
- A model for a measuring apparatus was discussed and the preparation of the system was considered → kinematical point of view.
- In the semiclassical approximation, the matter fluctuations can induce the formation of singularities.
- They can be made small smearing over long time intervals.
- Open task: Obtain bounds for the coordinate uncertainties relations without studying the measuring apparatus.

Summary

- Algebra of matter fields on timelike geodesics can be considered.
- Passive influence of matter fluctuation on expansion parameter can be studied within pAQFT.
- Bounds for uncertainty relations among spacetime coordinates can be studied.

Open Questions

- Can we get bounds for the validity of semiclassical equations?
- Can we do better then perturbation theory?
- Can we address intrinsic fluctuation of the expansion parameter?
- What about their influence on the matter?
- Quantum gravity solves those issues?

Thanks a lot for your attention!

<□ > < @ > < E > < E > E のQ @