Analysis on singular spaces, Lie manifolds, and non-commutative geometry II Pseudodifferential operators on groupoids

Victor Nistor¹

¹Université Lorraine and Penn State U.

Noncommutative geometry and applications Frascati, June 16-21, 2014

・ 同 ト ・ ヨ ト ・ ヨ ト

Abstract of series

We study **Analysis and Index Theory** on singular and non-compact spaces.

Central: exact sequence.

 $0 \rightarrow I \rightarrow A \rightarrow Symb \rightarrow 0$.

- A is a suitable algebra of operators that describes the analysis on a given (class of) singular space(s). Will be constructed using Lie algebroids and Lie groupoids.
- ► the ideal *I* = *A* ∩ *K* of compact operators (to describe). Will be determined using the representation theory of groupoids.

イロト 不得 とくほ とくほ とう

э.

The contents of the four talks

- Motivation: Index Theory (a) Exact sequences and index theory (b) The Atiyah-Singer index theorem (c) Foliations (d) The Atiyah-Patodi-Singer index theorem (e) More singular examples. <u>No</u> new results.
- Lie Manifolds: (a) Definition (b) The APS example (c) Lie algebroids (d) Metric and connection (e) Fredholm conditions (f) Examples :Lie manifolds and Fredholm c.
- Pseudodifferential operators on groupoids: (a) Groupoids,
 (b) Pseudodifferential operators, (c) Principal symbol, (d) Indicial operators, (e) Groupoid C*-algebras and Fredholm conditions, (f) The index problem and homology.
- Applications: (a) Well posedness on polyhedral domains (L2), (b) Essential spectrum (L3), (c) An index theorem for Callias-type operators (L4).

Collaborators

- Bernd Ammann (Regensburg),
- Catarina Carvalho (Lisbon),
- Alexandru Ionescu (Princeton),
- Robert Lauter (Mainz ...),
- Bertrand Monthubert (Toulouse)

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Table of contents

Lie manifolds: review

Fredholm conditions and examples Fredholm conditions (statement) Examples of Lie manifolds and Fredholm conditions

Pseudodifferential operators on groupoids Pseudodifferential operators on groupoids

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Definition of Lie manifolds using Lie algebroids Let $\mathcal{V} \subset \mathcal{V}_b := \{X \in \Gamma(T\overline{M}), X \text{ tangent to all faces of } \overline{M}\}.$

Definition. The pair $(\overline{M}, \mathcal{V})$ is a **Lie manifold** if, and only if, there is a vector bundle $A_{\mathcal{V}} \to \overline{M}$ such that:

- $\mathcal{V} \simeq \Gamma(\mathcal{A}_{\mathcal{V}}) \iff \mathcal{V} \text{ is } \mathcal{C}^{\infty}(\overline{M}) \text{-projective}).$
- $\varrho: A_{\mathcal{V}} \to T\overline{M}$ is an **isomorphism** over $M := \overline{M} \setminus \partial M$.
- $A_{\mathcal{V}}$ is a Lie algebroid ($\Leftrightarrow \mathcal{V}$ is a Lie algebra).

A metric on $A = A_{\mathcal{V}}$ gives a **metric** on $M : \overline{M} \setminus \partial \overline{M}$.

IMPORTANT: ker($\rho_X : A_X \to T_X \overline{M}$) is the **isotropy** of *A* at $x \in \overline{M}$. Can be shown to be a Lie algebra.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Definition of Lie manifolds

Definition. The pair $(\overline{M}, \mathcal{V})$ is a **Lie manifold** if, and only if, there is a vector bundle $A_{\mathcal{V}} \to T\overline{M}$ such that:

- 1. $\mathcal{V} \simeq \Gamma(\boldsymbol{A}_{\mathcal{V}}).$
- 2. $A_{\mathcal{V}}$ extends *TM* to \overline{M} .
- 3. $A_{\mathcal{V}}$ is a Lie algebroid.

Old Definition. The pair $(\overline{M}, \mathcal{V})$ is a **Lie manifold** if, and only if,

- 1. \mathcal{V} is a finitely-generated, projective $\mathcal{C}^{\infty}(\overline{M})$ -module.
- 2. $\Gamma_c(T\overline{M}) \subset \mathcal{V}$.
- 3. \mathcal{V} is closed under the Lie bracket [,].

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

First example: cylindrical ends

- ► \overline{M} = a manifold with **smooth boundary** with defining function *x* (so $\partial \overline{M} = \{x = 0\}$).
- ▶ $\mathcal{V} = \mathcal{V}_b$ the space of vector fields on \overline{M} that are **tangent** to the boundary $\partial \overline{M}$.
- At the boundary ∂M = {x = 0}, a local basis of V is given by x∂_x, ∂_{y2}, ..., ∂_{yn}.
 (y₂,..., y_n are local coordinates on ∂M.)

The Riemannian metric $(r^1 dr)^2 + g_{\partial \overline{M}}$, so a manifold with cylindrical ends.

APS, Debord-Lescure, Kondratiev, Melrose, Schulze.

・ロン ・ 理 と ・ ヨ と ・ ヨ と

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Sobolev spaces

Let $(\overline{M}, \mathcal{V})$ be a Lie manifold and g a compatible metric on the interior M of \overline{M} . The space $L^2(M)$ is independent of the metric.

We then define for $m \in \mathbb{Z}_+$

 $H^m(M) := \{ u : M \to \mathbb{C}, X_1 X_2 \dots X_k u \in L^2(M), k \le m, X_j \in \mathcal{V} \}.$

It turns out that $H^{s}(M)$ coincides with the domain of $\Delta_{q}^{s/2}$.

A choice of partition of unity with bounded derivatives (Albin, Gromov, Shubin) can also be used to define the spaces $H^{s}(M)$ (Ammann-Ionescu-V.N.).

・ロト ・ ア・ ・ ヨト ・ ヨト

Mapping properties

Recall that $\text{Diff}(\mathcal{V})$ is the algebra of differential operators generated by multiplication with functions in $\mathcal{C}^{\infty}(\overline{M})$ and by differentiation with vector fields in \mathcal{V} .

We are interested in the analytic properties of $P \in \text{Diff}(\mathcal{V})$. Given that

 $H^m(M) := \{ u : M \to \mathbb{C}, X_1 X_2 \dots X_k u \in L^2(M), k \le m, X_j \in \mathcal{V} \}.$

We immediately see that

 $P \in \text{Diff}(\mathcal{V}), \text{ ord}(P) \leq m \Rightarrow P : H^k(M) \to H^{k-m}(M)$

is **bounded** for all k, m (we let $H^{-s}(M) := (H^{s}(M))^{*}$).

ヘロト 人間 とくほとく ほとう

Fredholm operators

Assume $(\overline{M}, \mathcal{V})$ is "nice."

- Denote $(Z_{\alpha})_{\alpha \in I}$ the family of **orbits** of \mathcal{V} on $\partial \overline{M}$.
- ► Let G_{α} be a family of Lie groups that integrates the corresponding isotropies, $\alpha \in I$.

Theorem. (Lauter-Monthubert-V.N.) We can choose the groups G_{α} and we can associate to each $P \in \text{Diff}(\mathcal{V})$ a family of G_{α} -invariant operators P_{α} on $Z_{\alpha} \times G_{\alpha}$ such that:

P is Fredholm \Leftrightarrow *P* is elliptic and all *P*_{α} are invertible.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Comments

If \overline{M} is compact without corners, then $I = \emptyset$, and we recover the usual result that states that on a compact, smooth manifold, a differential operator is Fredholm if, and only if, it is elliptic.

Each P_{α} is "of the same kind" as *P* (Laplace, Dirac, ...).

Questions on *M* are reduced to questions on P_{α} and G_{α} \Rightarrow Harmonic analysis on various Lie groups.

 \Rightarrow inductive procedure to study geometric operators on *M*.

Earlier results: Kondratiev, Mazya, Plamenevski, Mazzeo, Melrose, Mendoza, Piazza, Schrohe, Schulze ...

Lie manifolds: review Fredholm conditions and examples Pseudodifferential operators on groupoids

Reduction in the first example We have defined the indicial family $\hat{P}(\tau)$ of

$$egin{aligned} & P = \sum_{|lpha| \leq m} a_lpha(m{r},m{x}')(m{r}\partial_m{r})^{lpha_1}\partial^{lpha'} & ext{as} \ & \widehat{P}(au) := \sum_{|lpha| \leq m} a_lpha(m{0},m{x}')(m{\imath au})^{lpha_1}\partial^{lpha'} \in ext{Diff}(\partial\overline{M}) \,. \end{aligned}$$

We can define also $I(P) \in \Psi^m(\partial \overline{M} \times \mathbb{R})^{\mathbb{R}}$ by noticing that our operator *P* becomes "more and more translation invariant" as we approach the infinity. The limit is then

$$I(P) = \sum_{|\alpha| \le m} a_{\alpha}(\mathbf{0}, x') \partial_t^{\alpha_1} \partial^{\alpha'}.$$

Then $\hat{P}(\tau)$ is the **Fourier transform** of I(P), so τ is dual to t.

・ロト ・同ト ・ヨト ・ヨトー

Groupoids and Fredholm conditions

The proof of the Fredholm conditions requires to find a groupoid \mathcal{G} with Lie algebroid $A(\mathcal{G})$ such that $A(\mathcal{G}) = A_{\mathcal{V}}$,. ($\Gamma(A(\mathcal{G}))$) consists of right invariant vector fields on \mathcal{G}).

This amounts to a **Lie's third theorem for Lie algebroids**, which is not true in general, but **is true** in our cases (N., Crainic-Fernandez, Debord, Androulakis-Skandalis).

Then we use the representation theory of the groupoid C^* -algebra associated to \mathcal{G} (later).

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

First Example Revisited

Recall $\mathcal{V} = \mathcal{V}_b$:= the space of vector fields on \overline{M} that are *tangent* to $\partial \overline{M}$. At the boundary $\partial \overline{M} = \{x = 0\}$, a local basis is given by $x \partial_x$, ∂_{y_2} , ..., ∂_{y_n} .

The geometry is that of a **manifold with cylindrical ends**.

We have that Z_{α} are the connected components of the boundary and $G_{\alpha} = \mathbb{R}$.

 P_{α} acts on $Z_{\alpha} \times \mathbb{R}$ and is \mathbb{R} invariant. It coincides with the restriction of I(P), who acts on $\partial \overline{M} \times \mathbb{R}$, to $Z_{\alpha} \times \mathbb{R}$.

(Melrose, Schulze, Atiyah-Patodi-Singer.)

◆□ > ◆□ > ◆豆 > ◆豆 > ●

Second example: asymptotically hyperbolic manifolds

- As before, \overline{M} with smooth boundary $\partial \overline{M} = \{x = 0\}$.
- ► $\mathcal{V} = \mathbf{x}\Gamma(T\overline{M})$ = the space of vector fields on \overline{M} that vanish on the boundary.
- ► At the boundary $\partial \overline{M} = \{x = 0\}$, a local basis is given by $x \partial_x, x \partial_{y_2}, \dots, x \partial_{y_n}$.
- ► No condition in the interior (all Lie manifolds).

Then the orbits Z_{α} are reduced to points, so $\alpha \in I := \partial \overline{M}$, and $G_{\alpha} = T_{\alpha} \partial \overline{M} \rtimes \mathbb{R}$.

Pseudodifferential calculus: Lauter, Mazzeo, Schulze.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Third example: asymptotically Euclidean manifolds

- As before, \overline{M} with smooth boundary $\partial \overline{M} = \{x = 0\}$.
- ► $\mathcal{V} = x\mathcal{V}_b$ = the space of vector fields on \overline{M} that vanish on the boundary $\partial \overline{M}$ and whose normal covariant derivative to the boundary also vanishes.
- ► At the boundary $\partial \overline{M} = \{x = 0\}$, a local basis is given by $x^2 \partial_x, x \partial_{y_2}, \dots, x \partial_{y_n}$.

The resulting geometry for $\partial \overline{M} = S^{n-1}$ is that of an asymptotically Euclidean manifold.

Again the orbits Z_{α} are reduced to points, so $\alpha \in I := \partial \overline{M}$, but this time $M_{\alpha} = G_{\alpha} = T_{\alpha}\partial \overline{M} \times \mathbb{R}$ is **commutative. (Callias, fourth lecture)**

ヘロン ヘロン ヘビン ヘビン

Fourth example: fibered boundaries

- As before, \overline{M} with smooth boundary $\partial \overline{M} = \{x = 0\}$.
- We are given a fibration $\pi : \partial M \to B$.
- ▶ \mathcal{V} = the space of vector fields on \overline{M} that are tangent to the fibers of $\pi : \partial \overline{M} \rightarrow B$.
- ► A local basis is given by $\mathbf{x}\partial_x$, $\mathbf{x}\partial_{y_2}$, ..., $\mathbf{x}\partial_{y_k}$, $\partial_{y_{k+1}}$, ..., ∂_{y_n} .

Geometry is related to that of locally symmetric spaces. Appears in the study of behaviour at the edge of boundary value problems.

Fredholm conditions: $I = \{\alpha\} = B$, $Z_{\alpha} = \pi^{-1}(\alpha)$, $G_{\alpha} = T_{\alpha}B \rtimes \mathbb{R}$ is a **solvable** Lie group. (Also Mazzeo, Lescure.)

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Groupoids

Definition. A **groupoid** is a small category \mathcal{G} all of whose morphisms are invertible.

More precisely: $\mathcal{G} = \mathcal{G}^{(1)}$ = the set of morphisms and $\overline{M} = \mathcal{G}^{(0)}$ is the set of units. (Right now \overline{M} is an arbitrary set, but will be a compact manifold with corners in applications.)

Objects will typically be called *units* and the morphisms will be called *arrows*.

The structure of small category gives rise to **structural morphisms** d, r, u, μ, ι , as follows.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

Structural morphisms

- *d*, *r* : *G* = *G*⁽¹⁾ → *M* are the **domain** and **range** maps.
 Two morphisms (or arrows) *g*, *h* ∈ *G* are **composable** if, and only if, *d*(*g*) = *r*(*h*)
- $u: \overline{M} = \mathcal{G}^{(0)} \to \mathcal{G}$, an injection that **identifies** an object with its identity morphism (u = id).

Let $\mathcal{G}^{(2)} := \{(g, h) \in \mathcal{G} \times \mathcal{G}, d(g) = r(h)\}$, the set of composable arrows.

- $\mu : \mathcal{G}^{(2)} \to \mathcal{G}$ is the composition: $\mu(g, h) = gh$.
- $\iota : \mathcal{G} \ni g \to g^{-1} \in \mathcal{G}$ is the inversion.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Properties of structural morphisms

The structure of small category also gives rise to various **properties of the** structural morphisms d, r, u, μ, ι , as follows:

- If two arrows g, h ∈ G⁽¹⁾ are composable (d(g) = r(h)), then d(gh) = d(h) and r(gh) = r(g).
- ► u(r(g))g = r(g)g, gd(g) = g, and $d(g) = r(g^{-1})$.
- The composition is required to be associative.
- $(gh)^{-1} = h^{-1}g^{-1}, \ (g^{-1})^{-1} = g, \ g^{-1}g = d(g).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Lie groupoids: definitions

Definition. A submersion $f : X \to Y$ between two manifolds with corners is a smooth map such that df_x is surjective for all $x \in X$ and $f^{-1}(y)$ has no corners for any $y \in Y$.

Definition. A Lie groupoid is a groupoid \mathcal{G} such that $\overline{M} = \mathcal{G}^{(0)}$ and $\mathcal{G}^{(1)}$ are manifolds with corners, \overline{M} is Hausdorff, and

- ► $d, r : G \to \overline{M},$
- ► $u: \overline{M} \to \mathcal{G},$
- $\iota: \mathcal{G} \ni \boldsymbol{g} \to \boldsymbol{g}^{-1} \in \mathcal{G}$, and
- ▶ $\mu : \mathcal{G}^{(2)} \ni (\boldsymbol{g}, \boldsymbol{h}) \rightarrow \boldsymbol{g}\boldsymbol{h} \in \mathcal{G}$

are smooth, and *d* (equivalently *r*) is a submersion.

◆□> ◆◎> ◆注> ◆注>

Objects "on groupoids"

Recall that objects on, or associated to, Lie groups are *right invariant* quantitities. **Example:** the **Lie algebra** of a Lie group *G* is the set of *right invariant vector fields* on *G*.

The same idea applies to Lie groupoids, except that we need to be careful about what **right invariant** means.

We shall denote the set of arrows with the same domain x

$$\mathcal{G}_x = d^{-1}(x), \quad x \in \overline{M}.$$

The right multiplication by $g \in \mathcal{G}$ defines a diffeomorphism

 $\mathcal{G}_{r(g)}
i h \to hg \in \mathcal{G}_{d(g)}$.

・ロト ・ 理 ト ・ ヨ ト ・

The Lie algebroid of a Lie groupoid \mathcal{G}

Recall that all \mathcal{G}_{x} have **no corners** and define

 $T_d \mathcal{G} = \cup T \mathcal{G}_{\mathsf{X}} = \ker(d_* : T \mathcal{G} \to T \overline{M}),$

the vertical tangent bundle. Then

 $A(\mathcal{G}) := T_d \mathcal{G}|_{\overline{M}}.$

Let \mathcal{V} be the set of right invariant vector fields on \mathcal{G} that are tangent to the submanifolds \mathcal{G}_x , $x \in \overline{M}$ (fibers of $d : \mathcal{G} \to \overline{M}$).

IMPORTANT: The sections of $A(\mathcal{G})$ identify with \mathcal{V} (right invariant, vertical vector fields on \mathcal{G}), so $\Gamma(A(\mathcal{G}))$ has a natural Lie algebra structure: $A(\mathcal{G})$ is the Lie algebroid of \mathcal{G} .

Lie manifolds: review Fredholm conditions and examples Pseudodifferential operators on groupoids

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Right invariance

Fibers of d

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Pseudodifferential operators on \mathcal{G}

 $\Psi^m(\mathcal{G})$ consists of families $(P_x), P_x \in \Psi^m(\mathcal{G}_x)$, satisfying

- right invariant,
- smooth,
- ▶ with support in a compact neighborhood of the units of *G*.

For instance, $\Psi^{-\infty}(\mathcal{G}) = \mathcal{C}^{\infty}_{c}(\mathcal{G})$ with the convolution product.

We see that the **first order**, **differential** operators in $\Psi^{\infty}(\mathcal{G})$ coincide with \mathcal{V} (right invariant, vertical vector fields on \mathcal{G}).

It follows that

```
\Psi^{\infty}(\mathcal{G}) \cap \mathsf{Diff} = \mathsf{Diff}(\mathcal{V})
```

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Action on functions on M and \overline{M}

 $\Psi^m(\mathcal{G})$ acts on $\mathcal{C}^{\infty}_c(M)$ as follows.

Let $P = (P_x) \in \Psi^m(\mathcal{G})$. Any right invariant function on \mathcal{G} is of the form $f \circ r$. This gives $\pi(P) : \mathcal{C}^{\infty}_c(M) \to \mathcal{C}^{\infty}_c(M)$ by the formula

 $(\pi(P)f)\circ r|_{\mathcal{G}_{X}}=P_{X}f\circ r|_{\mathcal{G}_{X}}.$

In particular, \mathcal{V} and $\text{Diff}(\mathcal{V})$ will act on $\mathcal{C}^{\infty}_{c}(M)$.

 $\mathcal{V} \rightarrow \Gamma(T\overline{M})$ is NOT injective, in general. INJECTIVE for foliations, Lie manifolds.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

$\operatorname{Diff}(\mathcal{V})$ and $\Psi(\mathcal{G})$

Let \mathcal{G} be a Lie groupoid with units \overline{M} and with Lie algebroid $A(\mathcal{G})$.

Assume $(\overline{M}, \mathcal{A}(\mathcal{G}))$ defines a Lie manifold ($\Leftrightarrow \mathcal{A}(\mathcal{G})|_{\mathcal{M}} \simeq TM$).

Then the differential operators in $\Psi^{\infty}(\mathcal{G})$, acting on $\mathcal{C}^{\infty}_{c}(M)$, identify with Diff(\mathcal{V}).

Hence, the resolvents of operators in $\text{Diff}(\mathcal{V})$ "are in" $\Psi^{\infty}(\mathcal{G})$.

ヘロト ヘアト ヘビト ヘビト

1

Lie's third theorem for Lie groupoids

A major ingredient in the proof is then to establish **the** existence of a Lie groupoid \mathcal{G} such that $\Gamma(\mathcal{A}(\mathcal{G})) = \mathcal{V}$.

This amounts to a **Lie's third theorem** for \mathcal{V} (or **A**).

The Lie's third theorem is **not valid** for any Lie algebroid, but **is valid** for those arising from Lie manifolds!

Androulakis-Skandalis, Crainic-Fernandez, Debord, V.N., Pradines.