Analysis on singular spaces, Lie manifolds, and non-commutative geometry II Lie manifolds

Victor Nistor¹

¹Université Lorraine and Penn State U.

Noncommutative geometry and applications Frascati, June 16-21, 2014

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Abstract of series

My four lectures are devoted to **Analysis and Index Theory** on singular and non-compact spaces. (Mostly the **analysis**.) From a technical point of view, a central place in my presentation will be occupied by **exact sequences**:

 $0 \rightarrow I \rightarrow A \rightarrow Symb \rightarrow 0$.

- A is a suitable algebra of operators that describes the analysis on a given (class of) singular space(s). Will be constructed using Lie algebroids and Lie groupoids.
- the **ideal** $I = A \cap \mathcal{K}$ of compact operators (to describe).
- the algebra of symbols Symb := A/I needs to be described and leads to Fredholm conditions.

白人又同人又是人又是人。是

The contents of the four talks

- Motivation: Index Theory (a) Exact sequences and index theory (b) The Atiyah-Singer index theorem (c) Foliations (d) The Atiyah-Patodi-Singer index theorem (e) More singular examples. <u>No</u> new results.
- Lie Manifolds: (a) Definition (b) The APS example (c) Lie algebroids (d) Metric and connection (e) Fredholm conditions (f) Examples :Lie manifolds and Fredholm c.
- Pseudodifferential operators on groupoids: (a) Groupoids,
 (b) Pseudodifferential operators, (c) Principal symbol, (d) Indicial operators, (e) Groupoid C*-algebras and Fredholm conditions, (f) The index problem and homology.
- Applications: (a) Well posedness on polyhedral domains (L2), (b) Essential spectrum (L3), (c) An index theorem for Callias-type operators (L4).

Collaborators

- Bernd Ammann (Regensburg),
- Catarina Carvalho (Lisbon),
- Alexandru Ionescu (Princeton),
- Robert Lauter (Mainz ...),
- Bertrand Monthubert (Toulouse)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

ъ

Table of contents

Degeneration and singularity

Abstract index theory The Atiyah-Patodi-Singer framework Exact sequences and the APS index formula APS-type operators and beyond

Lie manifolds

Definition The "simplest" example: cylindrical ends Metric and the Lie algebroid

(雪) (ヨ) (ヨ)

æ

Abstract index theory The Atiyah-Patodi-Singer framework Exact sequences and the APS index formula APS-type operators and beyond

イロト 不得 とくほ とくほ とう

Abstract index theorems

The exact sequence $0 \rightarrow I \rightarrow A \rightarrow Symb \rightarrow 0$ gives rise to

 $\partial: K_1(Symb) \to K_0(I)$.

Let $\phi \in HP^0(I)$ (periodic cyclic cocycle). A general (higher) index theorem is then to compute

 $\phi_* \circ \partial : K_1(Symb) \to \mathbb{C}$.

Since $\phi_* \circ \partial = \psi_*$, where $\psi = \partial \phi \in HP^1(Symb)$, the higher index theorem is equivalent to computing the class of ψ .

Typically in my talk, $I \subset \mathcal{K}$ and $\phi = Tr$.

Abstract index theory The Atiyah-Patodi-Singer framework Exact sequences and the APS index formula APS-type operators and beyond

ヘロト 人間 とくほとくほと

Manifolds with cylindrical ends

We shall look now in some detail at the important example of **manifolds with cylindrical ends:** analysis and index theory.

Let \overline{M} be a manifold with **smooth boundary** $\partial \overline{M}$ to which we attach the semi-infinite cylinder

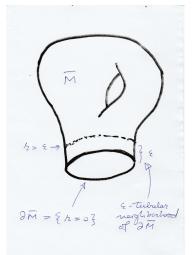
 $\partial \overline{M} \times (-\infty, 0],$

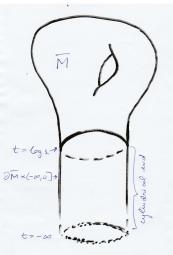
yielding a **manifold with cylindrical ends**. The metric is taken to be a product metric $g = g_{\partial \overline{M}} + dt^2$ far on the end.

Kondratiev's transform $r = e^t$ maps the cylindrical end to a tubular neighborhood of the boundary $g = g_{\partial \overline{M}} + (r^{-1}dr)^2$.

Degeneration and singularity Lie manifolds Abstract index theory The Atiyah-Patodi-Singer framework Exact sequences and the APS index formula APS-type operators and beyond

Kondratiev transform $t = \log r$





▲圖> ▲ ヨ> ▲ ヨ>

ъ

Abstract index theory The Atiyah-Patodi-Singer framework Exact sequences and the APS index formula APS-type operators and beyond

◆□ → ◆□ → ◆豆 → ◆豆 → ○

Differential operators for APS

We want differential operators with coefficients that extend to smooth functions even at infinity, that is on \overline{M} .

Important: ∂_t becomes $r\partial_r$.

In local coordinates (r, x') near the boundary $\partial \overline{M}$:

$$P = \sum_{|\alpha| \leq m} a_{\alpha}(r, x') (r \partial_r)^{\alpha_1} \partial_{x'_2}^{\alpha_2} \dots \partial_{x'_n}^{\alpha_n}.$$

totally characteristic differential operators. . Example:

$$\Delta = -(r\partial_r)^2 - \Delta_{\partial \overline{M}}.$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Principal symbol

In suitable local coordinates near the bundary such that r is the distance to the boundary, shall write the resulting differential operators simply as

$$P = \sum_{|\alpha| \le m} a_{\alpha}(r, x') (r \partial_r)^{\alpha_1} \partial_2^{\alpha_2} \dots \partial_n^{\alpha_n} = \sum_{|\alpha| \le m} a_{\alpha} (r \partial_r)^{\alpha_1} \partial^{\alpha'}.$$

The right notion of principal symbol (near $\partial \overline{M}$) is then simply

$$\sigma_m(P) = \sum_{|\alpha|=m} a_{\alpha} \xi^{\alpha} \quad \text{NO } r^{\alpha_1} \,.$$

(It is not $\sum_{|\alpha|=m} a_{\alpha} r^{\alpha_1} \xi^{\alpha}$ as one might think first!)

Abstract index theory The Atiyah-Patodi-Singer framework Exact sequences and the APS index formula APS-type operators and beyond

イロト 不得 とくほ とくほとう

Indicial family

The indicial family of $P = \sum_{|\alpha| \le m} a_{\alpha}(r, x') (r \partial_r)^{\alpha_1} \partial^{\alpha'}$ is

$$\widehat{P}(au) := \sum_{|lpha| \le m} a_{lpha}(\mathbf{0}, \mathbf{X}') (\imath au)^{lpha_1} \partial^{lpha'}.$$

Note that $\hat{P}(\tau)$ is a family of differential operators on $\partial \overline{M}$.

Theorem. We have that $P : H^{s}(M; E) \to H^{s-m}(M; F)$ is Fredholm if, and only if, P is elliptic and $\widehat{P}(\tau)$ is invertible for all $\tau \in \mathbb{R}$.

Generalizes compact case, model result. (Lockhart-Owen, ...)

ヘロン ヘアン ヘビン ヘビン

Exact sequences and the APS index formula

The index of a totally characteristic, **twisted Dirac operator** P is given by the **Atiyah-Patodi-Singer formula**, which expresses ind(P) as the sum of two terms:

- 1. The integral over \overline{M} of an explicit form (local term, depends only on the principal symbol), as for AS.
- 2. A boundary contribution that depends only on $\widehat{P}(\tau)$, the "eta"-invariant, **not local.**

(Also Bismut, Carillo-Lescure-Monthubert, Mazzeo-Melrose, Piazza, Melrose-V.N., ...)

イロン 不得 とくほ とくほう 一日

◊ Exact sequence

Let the fibered product $Symb := C^{\infty}(S^*M) \oplus_{\partial} \Psi^0(\partial \overline{M} \times \mathbb{R})^{\mathbb{R}}$ consists of pairs (f, Q) such that the principal symbol of the \mathbb{R} invariant pseudodifferential operator Q matches the restriction of $f \in C^{\infty}(S^*\overline{M})$ at the boundary.

Let
$$I(P) = \widehat{P} \in \Psi^0(\partial \overline{M} \times \mathbb{R})^{\mathbb{R}}$$
. Since, $r\Psi^{-1}(\overline{M}) = \Psi^0(\overline{M}) \cap \mathcal{K}$,
 $0 \to r\Psi^{-1}(\overline{M}) \to \Psi^0(\overline{M}) \xrightarrow{\sigma_0 \oplus I} \mathcal{C}^\infty(S^*\overline{M}) \oplus_{\partial} \Psi^0(\partial \overline{M} \times \mathbb{R})^{\mathbb{R}} \to 0$

 $0 \to \Psi^{-1}(\overline{M}) \to \Psi^{0}(\overline{M}) \xrightarrow{\sigma_{0}} \mathcal{C}^{\infty}(S^{*}\overline{M}) \to 0 \text{ is not interesting.}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Occupie Cyclic homology

The pair $(\sigma_0(P), I(P)) \in Symb := C^{\infty}(S^*M) \oplus_{\partial} \Psi^0(\partial \overline{M} \times \mathbb{R})^{\mathbb{R}}$ is invertible if, and only if, *P* is Fredholm.

Combining $\partial : K_1(Symb) \to K_0(r\Psi^{-1}(\overline{M}))$ with the boundary map

ind = $Tr_* \circ \partial : K_1(Symb) \to \mathbb{C}$

we see that the APS index formula is also equivalent to the calculation of the class of the cyclic cocycle $\partial Tr \in HP^1(Symb)$.

Important: The **noncommutativity of the algebra of symbols** *Symb* explains the fact that the **APS formula is non-local.**

・ロト ・ 理 ト ・ ヨ ト ・

Summary: Exact sequences and index

$$\begin{split} 0 &\to \Psi^{-1}(M) \to \Psi^{0}(M) \to \mathcal{C}^{\infty}(S^{*}M) \to 0 \,, \quad \text{(AS)} \\ 0 &\to \Psi^{-1}_{\mathcal{F}}(M) \to \Psi^{0}_{\mathcal{F}}(M) \to \mathcal{C}^{\infty}(S^{*}\mathcal{F}) \to 0 \,, \quad \text{(Connes)} \\ 0 &\to r\Psi^{-1}(\overline{M}) \to \Psi^{0}(\overline{M}) \to \mathcal{C}^{\infty}(S^{*}\overline{M}) \oplus_{\partial} \Psi^{0}(\partial \overline{M} \times \mathbb{R})^{\mathbb{R}} \to 0 \,. \end{split}$$

The **index** is given by (*Symb* = the quotient)

ind = $\phi_* \circ \partial = \psi_* : K_1(Symb) \to \mathbb{C}$,

where $\phi = Tr$ in the AS and APS cases and ϕ is a foliation cyclic cocycle in Connes' exact sequence.

Important: $r\Psi^{-1}(\overline{M}) \subset \mathcal{K}$, whereas $\Psi_{\mathcal{F}}^{-1}(M) \not\subset \mathcal{K}$, in general.

Abstract index theory The Atiyah-Patodi-Singer framework Exact sequences and the APS index formula APS-type operators and beyond

・ロト ・ 理 ト ・ ヨ ト ・

Motivating examples

Laplacian in **polar** coordinates (ρ, θ) in **2D** is a totally characteristic differential operator (ignoring ρ^{-2}) generated by the Lie algebra of vector fields spanned by $\rho \partial_{\rho}$ and ∂_{θ} ,

 $\Delta u = \rho^{-2} \left(\rho^2 \partial_{\rho}^2 u + \partial_{\theta}^2 u \right).$

The Laplacian in **cylindrical** coordinates (ρ, θ, z) in **3D** is

$$\Delta u = \rho^{-2} ((\rho \partial_{\rho})^2 u + \partial_{\theta}^2 u + (\rho \partial_z)^2).$$

It is not totally characteristic, but generated by the Lie algebra of vector fields $\rho \partial_{\rho}$, ∂_{θ} , and $\rho \partial_{z}$. Nonabelian: $[\rho \partial_{\rho}, \rho \partial_{z}] = \rho \partial_{z}$.

Abstract index theory The Atiyah-Patodi-Singer framework Exact sequences and the APS index formula APS-type operators and beyond

ヘロン ヘアン ヘビン ヘビン

Lie algebras of vector fields

In general, motivated by our examples, we shall consider: differential operators generated by a Lie algebra of vector fields on a manifold \overline{M} . This deals with the degeneracies.

Moreover, we see that the manifold \overline{M} is:

• $(\rho, \theta) \in \overline{M} = [0, \infty) \times S^1$ or $\overline{M} = [0, \infty) \times [0, \alpha]$, for Δ in **2D**.

For Δ in dihedral angle in **3D**:

 $(\rho, \theta, \mathbf{Z}) \in [\mathbf{0}, \infty) \times [\mathbf{0}, \alpha] \times \mathbb{R}$.

We are thus lead to consider manifolds \overline{M} locally of the form $[0, 1]^k$: Manifolds with corners. (Kondratiev, Mazya, Melrose).

Definition The "simplest" example: cylindrical ends Metric and the Lie algebroid

Lie manifolds: Notation (manifolds with corners)

Switch gears: more details.

In what follows \overline{M} will denote a compact manifold with corners (locally like $[0, 1]^n$).

A face $H \subset \overline{M}$ of maximal dimension is called a hyperface.

Recall that a **defining function** of a hyperface *H* of \overline{M} is a function *x* such that $H = \{x = 0\}$ and $dx \neq 0$ on *H*.

The hyperface $H \subset \overline{M}$ is called **embedded** if it has a defining function.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

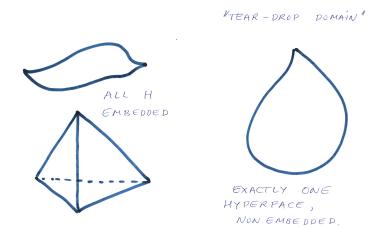
3

Degeneration and singularity Lie manifolds Definition The "simplest" example: cylindrical ends Metric and the Lie algebroid

イロト 不得 とくほと くほとう

ъ

Embedded and non-embedded faces



Degeneration and singularity Lie manifolds Definition The "simplest" example: cylindrical ends Metric and the Lie algebroid

ヘロト ヘアト ヘビト ヘビト

Lie manifolds: more notation

• M = the *interior* of \overline{M} :

 $M = \overline{M} \smallsetminus \cup$ faces.

- $\Gamma(E)$ = space of *smooth sections* of $E \to \overline{M}$, so
- $\Gamma(T\overline{M})$ = the space of *smooth vector fields* on \overline{M} .
- ▶ $\mathcal{V}_b \subset \Gamma(T\overline{M})$ is the set of vector fields *tangent to all faces*.
- $\mathcal{V} \subset \mathcal{V}_b$ is a Lie algebra of vector fields: $[\mathcal{V}, \mathcal{V}] \subset \mathcal{V}$.

Definition The "simplest" example: cylindrical ends Metric and the Lie algebroid

ヘロト 人間 とくほとくほとう

Definition of Lie manifolds

Definition. [Ammann-Lauter-V.N.] A Lie manifold is pair $(\overline{M}, \mathcal{V})$ consisting of a compact manifold with corners \overline{M} and a subspace $\mathcal{V} \subset \mathcal{V}_b$ of vector fields that satisfy:

- ▶ V is closed under the Lie bracket [,];
- ▶ \mathcal{V} is a finitely-generated, projective $\mathcal{C}^{\infty}(\overline{M})$ -module;
- ► the vector fields X₁,..., X_n that locally generate V around an interior point p also give a local basis of T_pM.

Particular cases: Cordes, Melrose's, Parenti, Schulze.

We observe that $\Gamma_c(T\overline{M}) \subset \mathcal{V}$ (equivalent to the last condition).

Definition The "simplest" example: cylindrical ends Metric and the Lie algebroid

First example: cylindrical ends

- ► \overline{M} = a manifold with **smooth boundary** with defining function *x* (so $\partial \overline{M} = \{x = 0\}$).
- ▶ $\mathcal{V} = \mathcal{V}_b$ the space of vector fields on \overline{M} that are **tangent** to the boundary $\partial \overline{M}$.
- ► At the boundary $\partial \overline{M} = \{x = 0\}$, a local basis of \mathcal{V} is given by $x \partial_x$, ∂_{y_2} , ..., ∂_{y_n} .

 $(y_2, \ldots, y_n \text{ are local coordinates on } \partial \overline{M}.)$

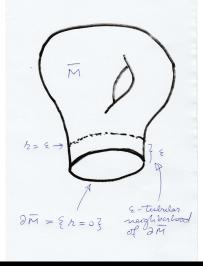
There is no condition on these vector fields in the interior (valid for all Lie manifolds).

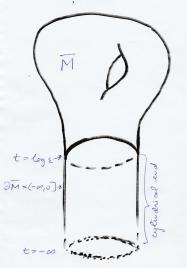
The Riemannian metric of a **manifold with cylindrical ends**. APS: APS, Debord-Lescure, Kondratiev, Melrose, Schulze.

白人又同人又是人又是人。是

Degeneration and singularity Lie manifolds Definition The "simplest" example: cylindrical ends Metric and the Lie algebroid

Kondratiev transform $t = \log r$





Victor Nistor

Analysis on Lie manifolds

The Lie algebroid $A_{\mathcal{V}}$ associated to a Lie manifold

To discuss metrics on Lie manifolds, we need algebroids.

Recall that a Lie algebroid $A \to \overline{M}$ is a vector bundle over \overline{M} together with a Lie algebra structure on $\Gamma(A)$ and a bundle map (anchor) $\varrho: A \to T\overline{M}$ such that

- $\varrho([X, Y]) = [\varrho(X), \varrho(Y)]$ and
- ► $[X, fY] = f[X, Y] + (\varrho(X)f)Y$, where $X, Y \in \Gamma(A)$ and $f \in C^{\infty}(\overline{M})$.

(We extend the anchor map ρ to a map $\varrho : \Gamma(A) \to \Gamma(T\overline{M})$.)

ヘロト 人間 とくほとくほとう

1

The Lie algebroid $A_{\mathcal{V}}$ associated to a Lie manifold

Let $(\overline{M}, \mathcal{V})$ be a Lie manifold. Recall then that \mathcal{V} is a **finitely** generated, projective $\mathcal{C}^{\infty}(\overline{M})$ -module.

The Serre–Swan Theorem implies then that there exists a finite dimensional vector bundle $A_{\mathcal{V}} \to \overline{M}$, uniquely defined up to isomorphism, such that

 $\mathcal{V}\simeq \Gamma(\boldsymbol{A}_{\mathcal{V}}).$

We call $A_{\mathcal{V}} \to \overline{M}$ the **the Lie algebroid associated to** $(\overline{M}, \mathcal{V})$. This leads to the following new definition of a *Lie manifold*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Definition of Lie manifolds using Lie algebroids

The pair $(\overline{M}, \mathcal{V})$ is a Lie manifold if, and only if, there is a Lie algebroid $A_{\mathcal{V}} \to T\overline{M}$ such that:

- ► the anchor map $\varrho : A_{\mathcal{V}} \to T\overline{M}$ is an **isomorphism** over $M := \overline{M} \smallsetminus \partial M$ and
- the Lie algebra of vector fields

 $\mathcal{V} := \Gamma(\mathcal{A}_{\mathcal{V}}) = \varrho(\Gamma(\mathcal{A}_{\mathcal{V}}))$

consists of vector fields **tangent** to all faces of \overline{M} .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Definition The "simplest" example: cylindrical ends Metric and the Lie algebroid

Metric and geometry

Let $(\overline{M}, \mathcal{V})$ be a Lie manifold and $A = A_{\mathcal{V}} \to \overline{M}$ be its associated Lie algebroid, that is

 $\mathcal{V} \simeq \Gamma(\mathbf{A}).$

Then A extends TM to \overline{M} , namely

 $A|_M \simeq TM.$

In particular, a metric on *A* will induce a Riemannian metric on *TM*, i.e. a metric on *M*. (Cylindrical ends for our first example.)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э.

Definition The "simplest" example: cylindrical ends Metric and the Lie algebroid

Connections

The Levi-Civita connection $\nabla : \Gamma(TM) \to \Gamma(TM \otimes T^*M)$, extends to an *A**-valued connection

 $abla : \Gamma(A) \to \Gamma(A \otimes A^*),$

satisfying for all $X, Y, Z \in \mathcal{V} = \Gamma(A)$:

 $abla_X(fY) = X(f)Y + f
abla_X(Y) \text{ and}$ $X\langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle,$

The covariant derivatives $\nabla^k R$ of the curvature *R* extend to \overline{M} , and hence they are **bounded**: **Bounded geometry**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Differential operators

Define Diff(\mathcal{V}) =the algebra of differential operators on M generated by $\mathcal{C}^{\infty}(\overline{M})$ and vector fields $X \in \mathcal{V}$.

We can extend the definition of $\text{Diff}(\mathcal{V})$ to include operators $\text{Diff}(\mathcal{V}; E, F)$ acting between vector bundles $E, F \to \overline{M}$. Then

 $d \in \text{Diff}(\mathcal{V}; \Lambda^{q} A^{*}, \Lambda^{q+1} A^{*}) \text{ and }$ $\nabla \in \text{Diff}(\mathcal{V}; A, A \otimes A^{*}).$

Theorem. (Ammann–Lauter–N.)

 $\Delta \in \mathsf{Diff}(\mathcal{V}).$

Similarly, all **geometric** differential operators on \overline{M} are generated by \mathcal{V} . (Done "by hand" for the first examples.)

The three basic examples

We have already seen that our first example of a Lie manifold (when $\mathcal{V} = \mathcal{V}_b$) recovers the framework of the APS Index Theorem and Diff(\mathcal{V}_b) consists of the totally characteristic operators considered in the first lecture.

The "example zero" can be $\mathcal{V} = \Gamma(TM)$, for *M* compact smooth (no corners). This example of Lie manifold recovers the framework of the AS Index Theorem.

For foliations, the choice $\mathcal{V} = \Gamma(\mathcal{F})$ does not satisfy the assumption that $\Gamma_c(TM) \subset \mathcal{V}$, **unless** we are actually in the AS framework.

ヘロン ヘアン ヘビン ヘビン

Second example: asymptotically hyperbolic manifolds

- As before, \overline{M} with smooth boundary $\partial \overline{M} = \{x = 0\}$.
- ► $\mathcal{V} = \mathbf{x}\Gamma(T\overline{M})$ = the space of vector fields on \overline{M} that vanish on the boundary.
- ► At the boundary $\partial \overline{M} = \{x = 0\}$, a local basis is given by $x \partial_x, x \partial_{y_2}, \dots, x \partial_{y_n}$.
- ► No condition in the interior (all Lie manifolds).

The metric is *asymptotically hyperbolic*.

Pseudodifferential calculus: Lauter, Mazzeo, Schulze.

イロン 不良 とくほう 不良 とうほ