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Much information about Riemannian manifolds can be obtained by
analyzing operators associated to them.

For example take the Laplace-Beltrami operator.

Consider a bounded region Ω ⊂ Rn. Denote by N(λ) the number of
(Dirichlet) eigenvalues which are ≤ λ. Then we have (Weyl's law)

lim
λ→∞

N(λ)

λn/2
=

Vn

(2π)n
vol(Ω).

Therefore given the list of eigenvalues {λi}∞i=0 we can tell the
dimension and the volume of the region in consideration.

There is actually much more information than that in the list of
eigenvalues (but still not enough to completely characterize the
geometry, cf. "hearing the shape of a drum").



Moreover a spectral approach is also what we need to describe the
geometry of non-commutative spaces.

As it is well known, non-commutative C∗-algebras provide a natural
notion of non-commutative (topological) spaces.

A C∗-algebra can be represented concretely as a norm closed
subalgebra of B(H) for some Hilbert space H.
The idea is then to consider some (possibly unbounded) operator
that should contain geometric information about the space.



The notion of spectral triple provides the basis for non-commutative
geometry in the sense of Connes.

De�nition

A compact spectral triple (A,H,D) is the data of a unital ∗-algebra A, a
faithful ∗-representation π on a Hilbert space H, and a self-adjoint
operator D such that

[D, π(a)] extends to a bounded operator for all a ∈ A,
(D2 + 1)−1/2 is a compact operator.

For example consider a compact spin manifold M. Then if we take
A = C∞(M), H = L2(S) and D the Dirac operator (with respect to
a �xed metric) we get a spectral triple.

The distance between two points p, q ∈ M can be obtained as

d(p, q) = sup{|f (p)− f (q)| : f ∈ C∞(M), ‖[D, f ]‖ ≤ 1}.



The dimension of a manifold M can be recovered from the spectrum
of the operator D. Indeed consider (assume D invertible)

|D|−z , z ∈ C.

It is trace-class for all Re(z) > n, where n is the dimension of M.

Similarly, we can also recover the integral of a function f ∈ C∞(M).

One way is via the residue of the zeta function associated to this
operator. We de�ne the linear functional ϕ : C∞(M)→ C as

ϕ(f ) = Res
z=n

Tr(f |D|−z).

It turns out that ϕ(f ) coincides with the integral of f (which
includes the volume form), up to a multiplicative constant.



These notions make sense also for non-commutative algebras.

In this more general setting we will refer to them as spectral
dimension and non-commutative integral.

However, it turns out that for some quantum deformations they
behave very di�erently from their commutative counterparts.

For example let us consider the case of q-deformations. Suppose the
spectrum of a classical operator is replaced by q-numbers

[x ]q =
qx − q−x

q − q−1
.

Then we get completely di�erent asymptotics.

It is possible to construct spectral triples which are isospectral
[Neshveyev, Tuset (2010)]. But then other notions of dimension will
di�er (for example the homological dimension).



There are features of the non-commutative world which have no
analogue in the commutative one.

Consider for example the non-commutative integral ϕ. In the
commutative case we have trivially ϕ(ab) = ϕ(ba). Also true for a
spectral triple, but is a non-trivial condition.

For example for SUq(2) there is no faithful trace.

In the case of compact quantum groups the Haar state satis�es
h(ab) = h(ϑ(b)a), for a non-trivial modular group ϑ.

Therefore we might want to take these features into account.



Twisted spectral triples [Connes, Moscovici (2006)].
Require [D, f ]σ = Df − σ(f )D to be bounded, where σ is an
automorphism of A. The non-commutative integral then obeys

ϕ(fg) = ϕ (σn(g)f ) .

Modular spectral triples [Carey, Phillips, Rennie (2010)].
Use a weight Φ instead of the operator trace

ϕ(f ) = Res
z=n

Φ
(
f |D|−z

)
,

where Φ(·) = Tr(∆Φ·). Then we have the modular property

ϕ(fg) = ϕ
(
σΦ
i (g)f

)
where σΦ

t (f ) = ∆it
Φf ∆−itΦ is the modular group of Φ.
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We can take both of these approaches into account to discuss
integration for non-commutative spaces.

The zeta function associated to D and Φ is de�ned by

ζ(z) := Φ(|D|−z) = Tr(∆Φ|D|−z).

If it exists, we de�ne the spectral dimension to be the number

n := inf{s > 0 : ζ(s) = Tr(∆Φ|D|−s) <∞}.

More generally de�ne ζx(z) := Φ(x |D|−z). This is well de�ned if we
assume that σΦ(x) ∈ A for any x ∈ A.
Assume we have a simple pole. Then the non-commutative integral
is the linear functional ϕ : A → C de�ned by

ϕ(x) := Res
z=n

ζx(z) = Res
z=n

Tr(∆Φx |D|−z).



We assume that [D, x ]σ = Dx − σ(x)D is bounded for every x ∈ A,
for a �xed automorphism σ.

We also assume that σ acts diagonally on the generators.

Theorem

Let ϕ be the non-commutative integral as before. Assume furthermore
that D satis�es the following regularity property:

there exists some 0 < r ≤ 1 such that |D|r [|D|s , x ]σs |D|−s is a
bounded operator, for every element x ∈ A and for all s ≥ n.

Then the modular group of ϕ is given by θ = σΦ ◦ σn.

This means that ϕ(xy) = ϕ(θ(y)x) for all x , y ∈ A.
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Given an operator D, we can consider the following general question:
are there any preferred choices for the weight Φ?

In the realm of compact quantum groups a reasonable requirement
is to recover the Haar state.

We analyze this question for the quantum group SUq(2).

We consider the Dirac operator Dq introduced in [Kaad, Senior
(2012)]. It acts on the Hilbert space H = Hh ⊕Hh, where Hh is the
GNS space constructed using the Haar state.



It is de�ned in terms of the generators of Uq(su(2)) as

Dq =

(
(q−1 − q)−1(qK−2 − 1) q−1/2EK−1

q1/2FK−1 (q−1 − q)−1(1− q−1K−2)

)
.

Upon restriction becomes the Dirac operator on the Podle± sphere.

Proposition (Kaad, Senior 2012)

For the Dirac operator Dq we have:

1 [Dq, x ]σL = Dqx − σL(x)Dq is bounded,

2 [|Dq|, x ]σL is bounded (Lipschitz regularity),

3 D2
q = χ−1∆−1L Cq, where Cq is the Casimir and χ =

(
q−1 0
0 q

)
.

Here Cqt
l
ij = [l + 1/2]2qt

l
ij and ∆Lt

l
ij = q2j t lij .



There is an additional interesting feature of the operator Dq.

Given a spectral triple, the Dirac operator D implements a
di�erential calculus. The same is true in the twisted case, with the
appropriate modi�cations.

Proposition

The operator Dq implements a left covariant di�erential calculus on
SUq(2).

In the context of twisted spectral triples, this particular calculus has
been considered previously in the paper [Krähmer, Wagner (2011)],
where it is given as an example of a more general framework.

The operator Dq that we consider here, however, is slightly di�erent
from the one that appears in that paper.



We now de�ne a non-commutative integral in terms of Dq.

In view of the requirement that σΦ(x) ∈ A for every x ∈ A, we
choose ∆Φ such that it implements an automorphism of SUq(2).

It is known that the automorphisms that act diagonally on the
generators can be parametrized by two numbers.

In particular the modular group ϑ of the Haar state is of this form.

Therefore we consider the family of weights given by

Φ(a,b)(·) := Tr(∆−aL ∆b
R ·), a, b ∈ R.



We now compute the corresponding spectral dimension.

The relevant zeta function takes the form

ζ(a,b)(z) := Tr(∆−aL ∆b
R |Dq|−z).

Proposition

1 ζ(a,b)(z) is holomorphic for all z ∈ C such that Re(z) > a + |b|,
provided that a± b > 0,

2 in this case the corresponding spectral dimension is n = a + |b|,
3 ζ(a,b)(z) has a meromorphic extension to the complex plane, with
only simple poles if b 6= 0 and with only double poles if b = 0.



If these conditions are satis�ed we can take the residue, so that the
non-commutative integral makes sense.

The conditions of the theorem previously shown apply to this case,
so we can determine its modular group, which we denote by θ.

We want to compare the non-commutative integral with the Haar
state, which satis�es the property h(xy) = h(ϑ(y)x).

A necessary condition to recover the Haar state from the
non-commutative integral is that θ = ϑ.

Proposition

We have θ = ϑ if and only if b = 1.

It is also possible to show that the non-commutative integral, once
normalized, coincides with the Haar state h independently of a.
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Is there any way to �x the parameter a?

Since the spectral dimension is given by n = a + 1, with the choice
a = 2 we obtain the classical dimension.

We will look at the heat kernel expansion. In the classical case for a
second order operator of Laplace-type we have

Tr(fe−tP) ∼
∞∑
k=0

t(k−n)/2ak(f ,P) ,

The heat kernel coe�cients are related to the zeta function by

ak(f ,P) = Res
z=(n−k)/2

Γ(z)ζ(z , f ,P).



Locally the operator P can be written in the form

P = −(gµν∇µ∇ν + E ).

In three dimensions the �rst two non-trivial coe�cients are

a0(f ,P) = (4π)−n/2
ˆ
M

f
√
gdnx ,

a2(f ,P) = (4π)−n/26−1
ˆ
M

f (6E + R)
√
gdnx .

Consider the operator C obtained in the classical limit from Cq.

For this operator we have that a2(C ) = 0 non-trivially. Indeed for
the 3-sphere the scalar curvature is R = 6, but this is cancelled by E .



In the non-commutative case we can ask for the analogue condition
for D2

q . Then the following residue should vanish

Res
z=n−2

Γ(z)ζ(a,1)(z) = 0.

Proposition

The residue of ζ(a,1)(z) at z = n − 2 is zero if and only if a = 2.

Recall that the spectral dimension is given by n = a + 1. Therefore
for this value it coincides with the classical one.

The parameters a and b control the behaviour of di�erent
coe�cients of the heat kernel expansion. This property is not
obvious from their de�nition.
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We consider the family of spectral triples for quantum projective
spaces introduced in [D'Andrea, D¡browski (2010)].

Their spectral dimension is zero. Here we want to reinterpret them
in the sense of modular spectral triples.

We will consider A(CP`q) with ` ≥ 2, which can be constructed

similarly to the quotient S2`+1/U(1) in the classical case.

A particular element, denoted by K2ρ, will play a central role in the
following. One important property of this element is that it
implements the square of the antipode, in the sense that
S2(x) = K2ρhK

−1
2ρ for any x ∈ Uq(su(`+ 1)).

More importantly for us, it also implements the modular group of
the Haar state of A(SUq(`+ 1)).



There is a non-degenerate pairing 〈·, ·〉 between Uq(su(`+ 1)) and
A(SUq(`+ 1)), which is used to de�ne the canonical left and right
actions as x . a = a(1)〈x , a(2)〉 and a / x = 〈x , a(1)〉a(2).

There is a faithful state on A(SUq(`+ 1)), called the Haar state and
which we denote by h. It generalizes the properties of the Haar
integral in the classical case.

However the Haar state does not satisfy the trace property. In
particular its modular group is implemented by the element K2ρ as

h(ab) = h(bK2ρ . a / K2ρ).

Passing to the quantum projective spaces it becomes

h(ab) = h(bK2ρ . a).



The Hilbert spaces HN are the completion of
⊕`

k=0 Ωk
N . Here Ωk

N

are spaces of (twisted) forms, with N ∈ Z.
The spaces Ωk

N can be decomposed into (vector spaces of)
irreducible representations of Uq(su(`+ 1)), schematically as

Ω0
N =

⊕
m∈N

V(m+c1,0,··· ,0,m+c2),

Ωk
N =

⊕
m∈N

V(m+c3,0,··· ,0,m+c4)+ek
⊕ V(m+c5,0,··· ,0,m+c6)+ek+1

,

Ω`
N =

⊕
m∈N

V(m+c7,0,··· ,0,m+c8).

q-analogues of ∂̄ and ∂̄† are de�ned. By taking suitable linear
combinations we obtain a family of Dolbeault-Dirac operators DN .



On each Ωk
N the square of DN can be written in terms of the

Casimir. Its eigenvalues grow like q−m, with m ∈ N.
The spectral dimension of this spectral triple is zero. Indeed the
eigenvalues grow like q−m while the multiplicities grow polynomially.

We now want to revisit this construction in the sense of modular
spectral triples. Include the element K2ρ as

ϕ(a) = Res
z=n

Tr(K2ρa|DN |−z)

Under suitable assumptions we have

ϕ(ab) = ϕ(bK2ρ . a),

which is the modular property of the Haar state.

We need to determine the spectral dimension.



Given a �nite-dimensional irreducible representation T , its quantum
dimension is de�ned as the number Tr(T (K2ρ)), where the trace is
taken over the vector space that carries the representation T .

In the classical case, that is for q = 1, the quantum dimension is
simply the dimension of this vector space.

For the vector space VΛ of highest weight Λ we can use the Weyl
dimension formula, which reads as

dimVΛ =
∏
α>0

(Λ + ρ, α)

(ρ, α)
,

where the product is over the positive roots and ρ is the Weyl
vector, de�ned as the half-sum of the positive roots.



There is also a q-analogue of this formula which allows to compute
the quantum dimension. We have

dimq VΛ =
∏
α>0

[(Λ + ρ, α̃)]q
[(ρ, α̃)]q

,

where [x ]q is a q-number and α̃ is a normalization of α.

This quantity appears in the computation of the trace of K2ρ|DN |−z .
Indeed D2

N is a multiple of the identity on VΛ.

We compute it for the vector spaces appearing in the decomposition
of the Hilbert spaces HN .

Proposition

For m→∞, the quantum dimension of the vector space VΛ with weight
Λ is dimq(VΛ) = O(q−2`m).



Theorem

The operator K2ρ|DN |−z is trace-class for Re(z) > 2`. The residue at
z = 2` of its trace exists, so that the spectral dimension is 2`.

The results above remain valid if K2ρ is replaced by K−12ρ , by a
property of the quantum dimension.

This implies that the functional on A(CP`q)⊗(2`+1) de�ned by

ψ̃(a0, · · · , a2`) = Res
z=2`

Tr(K−12ρ a0[DN , a1] · · · [DN , a2`]|DN |−z)

is a twisted cocycle with twist ϑ−1.
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This kind of result also seems to hold for quantum Grassmannians
(work in progress). This exhausts the class of quantum irreducible
generalized �ag manifolds corresponding to G = SL(n + 1), for
which the results of [Krähmer (2003)] apply.

In the setting of modular Fredholm modules similar results have
been observed in some examples [Rennie, Sitarz, Yamashita (2013)].
This can be adapted to a larger class of spaces (work in progress).

In a sense our discussion reproduces Weyl's law

lim
λ→∞

N(λ)

λn/2
=

Vn

(2π)n
vol(Ω)

when both sides are interpreted appropriately.
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