Operator algebraic properties for free wreath products by quantum permutation groups -Conférence du GDRE "Noncommutative Geometry and Applications"-

François Lemeux (part. joint work with Pierre Tarrago)

Université de Franche-Comté

francois.lemeux@univ-fcomte.fr

June 2014, 19th - Villa Mondragone

Sommaire

Examples of CQG

Distinguishing Motivations

- Fusion rules for quantum reflection groups
- Operator algebraic properties for CQG

3 Fusion rules for the free wreath products $\widehat{\Gamma} \wr_* S_N^+$

4 Operator algebraic properties for $\widehat{\Gamma} \wr_* S_N^+$

Contents

Examples of CQG

2 Motivations

- Fusion rules for quantum reflection groups
- Operator algebraic properties for CQG

 ${f 3}$ Fusion rules for the free wreath products $\widehat{\sf \Gamma}\wr_*S^+_N$

④ Operator algebraic properties for $\widehat{\Gamma}\wr_*S_N^+$

Definition (Woronowicz 80')

$$\begin{split} \mathbb{G} &= (C(\mathbb{G}), \Delta) \ \textit{GQC} : C(\mathbb{G}) \ \textit{Woronowicz} \ C^* \text{-algebra} \ ; \ \textit{C}(\mathbb{G}) \ \textit{unital}, \\ \Delta : C(\mathbb{G}) \to C(\mathbb{G}) \otimes_{\min} C(\mathbb{G}) \ \textit{s.t.} \end{split}$$

$$(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta,$$

Peter-Weyl theory : Corep. $u \in M_N(C(\mathbb{G})) \simeq M_N(\mathbb{C}) \otimes C(\mathbb{G}),$ $\overline{\Delta(u_{ij})} = \sum_{k=1}^N u_{ik} \otimes u_{kj}.$ • Hom $(u; v) = \{T \in M_{n_v,n_u}(\mathbb{C}) : v(T \otimes 1) = (T \otimes 1)u\},$

- Hom $(u; v) = \{ I \in M_{n_v, n_u}(\mathbb{C}) : v(I \otimes I) = (I \otimes I) \}$
- $u \sim v$, $\exists T$ invertible $T \in Hom(u; v)$,
- u is irreducible if Hom $(u; u) = \mathbb{C}$ id.

Theorem (Woronowicz)

Let $\mathbb{G} = (C(\mathbb{G}), \Delta)$ be a GQC. The corepresentations of $C(\mathbb{G})$ decompose as direct sums of irreducibles.

We consider the unital C^* -algebra defined by generators and relations:

$$egin{aligned} C^*_{com} - \langle s_{ij} : 1 \leq i,j \leq \mathcal{N} : (s_{ij}) ext{ magic unitary} &\simeq \mathcal{C}(\mathcal{S}_\mathcal{N}) \ & s_{ji} \mapsto (\sigma \in \mathcal{S}_\mathcal{N} \subset \mathcal{M}_\mathcal{N}(\mathbb{C}) \mapsto \sigma_{ji}). \end{aligned}$$

Magic unitary: (s_{ij}) unitary matrix whose entries are projections which sum up to 1 on each row and column.

Removing the commutativity:

$$C(S_N^+) := C^* - \langle v_{ij} : 1 \le i, j \le N : (v_{ij}) \text{ magic unitary} \rangle,$$

one obtains a new C*-algebra for $N \ge 4$. We have the coproduct on $C(S_N^+)$:

$$\Delta: C(S_N^+)
ightarrow C(S_N^+) \otimes C(S_N^+), \ \Delta(v_{ij}) = \sum_{k=1}^N v_{ik} \otimes v_{kj}.$$

 $S_N^+ = (C(S_N^+), \Delta)$ is the quantum permutation group (Wang 98).

We denote by NC(k, l) the set of non-crossing partitions on k + l points:

$$p = \begin{cases} \vdots & \vdots & \vdots \\ \mathcal{P} \\ \vdots & \vdots & \vdots \end{cases} \mathcal{P} \text{ non-crossing diagram.}$$

Theorem (Banica 99)

$$\begin{aligned} & Hom_{S_N^+}(v^{\otimes k}; v^{\otimes l}) = span\{T_p : p \in NC(k, l)\}, \ T_p \in \mathcal{B}(\mathbb{C}^{N^{\otimes k}}; \mathbb{C}^{N^{\otimes l}}) : \\ & T_p(e_{i_1} \otimes \cdots \otimes e_{i_k}) = \sum_{j_1, \dots, j_l} \delta_p(\underline{i}, \underline{j}) e_{j_1} \otimes \cdots \otimes e_{j_l}. \end{aligned}$$

Corollaire (Banica 99)

The irreducible corepresentations of S_N^+ can be labeled by $\mathbb N$ with

•
$$v^{(0)} = 1$$
 is the trivial representation and $v = 1 \oplus v^{(1)}$.

•
$$\overline{v^{(k)}} = (v_{ij}^{(k)*})$$
 is equivalent to $v^{(k)}, \forall k \in \mathbb{N}$.

•
$$\forall k, l \in \mathbb{N}, v^{(k)} \otimes v^{(l)} = \bigoplus_{r=0}^{2\min(k,l)} v^{(k+l-r)}$$
 (Clebsch-Gordan).

Definition (Bichon 00')

 $H_N^+(\Gamma) := (C(H_N^+(\Gamma)), \Delta)$ where $C(H_N^+(\Gamma))$ is the C^{*}-algebra generated by the elements $a_{ij}(g), i, j = 1, ..., N$ s.t. $\forall g, h \in \Gamma$,

• $a_{ij}(g)a_{ik}(h) = \delta_{j,k}a_{ij}(gh), \quad a_{ji}(g)a_{ki}(h) = \delta_{j,k}a_{ji}(gh),$

•
$$\sum_{i} a_{ij}(e) = 1 = \sum_{j} a_{ij}(e),$$

•
$$\Delta(a_{ij}(g)) = \sum_{k=1}^{N} a_{ik}(g) \otimes a_{kj}(g).$$

<u>Bichon</u> : $H^+_N(\Gamma) \simeq \widehat{\Gamma} \wr_* S^+_N$ where

$$C(\widehat{\Gamma}\wr_*S_N^+) := C^*(\Gamma)^{*N} * C(S_N^+) / \langle g^{(i)}v_{ij} - v_{ij}g^{(i)} = 0 \rangle$$

via $a_{ij}(g) \mapsto g^{(i)}v_{ij} = v_{ij}g^{(i)}$.

Example

- $\Gamma = \{e\}$ trivial : S_N^+ .
- $\Gamma = \mathbb{Z}/s\mathbb{Z}$: quantum reflection groups H_N^{s+} .

Contents

Examples of CQG

Motivations

- Fusion rules for quantum reflection groups
- Operator algebraic properties for CQG

 ${f 3}$ Fusion rules for the free wreath products $\widehat{\sf \Gamma}\wr_*S^+_N$

 ${\color{black} ④}$ Operator algebraic properties for $\widehat{\mathsf{\Gamma}}\wr_*S_{\mathsf{N}}^+$

Fusion rules for free wreath products Motivations Fusion rules for quantum reflection groups

• Fusion rules for quantum reflection groups

Banica and Vergnioux obtained a combinatorial description of the intertwiner spaces for $H_N^{s+} = H_N^+(\mathbb{Z}/s\mathbb{Z})$ and then deduced the fusion rules:

Theorem (Banica, Vergnioux 08)

The irreducible representations of H_N^{s+} can be labelled by the worlds $(i_1, ..., i_k)$ whose letters are in $\mathbb{Z}/s\mathbb{Z}$, with involution $(i_1, ..., i_k) = (-i_k, ..., -i_1)$ and the fusion rules:

$$\begin{aligned} &(i_1, \ldots, i_k) \otimes (j_1, \ldots, j_l) \\ &= (i_1, \ldots, i_{k-1}, i_k, j_1, j_2, \ldots, j_l) \oplus (i_1, \ldots, i_{k-1}, i_k + j_1, j_2, \ldots, j_l) \\ &\oplus \, \delta_{i_k + j_1, 0[s]}(i_1, \ldots, i_{k-1}) \otimes (j_2, \ldots, j_l) \end{aligned}$$

Fusion rules for free wreath products

Motivations

Operator algebraic properties for CQG

• Operator algebraic properties for CQG

Let $\mathbb{G} = (C(\mathbb{G}), \Delta)$ be a GQC whose Haar state h is a trace.

$$L^{\infty}(\mathbb{G}) := \overline{C_r(\mathbb{G})}^{\sigma_W}, C_r(\mathbb{G}) = \pi_h(C(\mathbb{G})) \simeq C(\mathbb{G})/\ker(\pi_h).$$

Notations:

- Pol(𝔅) ⊂ C(𝔅) sub-*-algebra (dense) generated by the coefficients of irreducible corepresentations,
- $C(\mathbb{G})_0 = C^* \langle \sum_i U_{ii} : U \in Irr(\mathbb{G}) \rangle$ central algebra.

Some results:

- $C_r(U_N^+)$ is simple with unique trace, $N \ge 2$ (Banica 99).
- $C_r(O_N^+)$ is simple with unique trace, $L^{\infty}(O_N^+)$ is a full II_1 factor, $N \ge 3$ (Vaes and Vergnioux 07).
- $C_r(S_N^+)$ is simple with unique trace, $L^{\infty}(S_N^+)$ is a full II_1 factor, $N \ge 8$ (Brannan 13).
- $L^{\infty}(O_N^+), L^{\infty}(U_N^+), L^{\infty}(S_N^+)$ have the Haagerup property, $N \ge 2$ (Brannan 12, 13).

Fusion rules for free wreath products Fusion rules for the free wreath products $\widehat{\Gamma} \wr_* S_N^+$

Contents

Examples of CQG

2 Motivation

- Fusion rules for quantum reflection groups
- Operator algebraic properties for CQG

3 Fusion rules for the free wreath products $\widehat{\mathsf{\Gamma}}\wr_*S_N^+$

4 Operator algebraic properties for $\widehat{\mathsf{\Gamma}}\wr_*S_{\mathsf{N}}^+$

Fusion rules for the free wreath products $\widehat{\Gamma} \wr_* S_N^+$

Intertwiner spaces in $H_N^+(\Gamma)$: Strategy: Find a CQG $\mathbb{G} = (C(\mathbb{G}), \Delta)$,

• s.t. we have a surjective morphisme $\pi : C(\mathbb{G}) \twoheadrightarrow C(H^+_N(\Gamma))$,

- $\bullet\,$ s.t. the intertwiner spaces in $\mathbb G$ have a combinatorial description,
- s.t. the kernel of π admits a combinatorial description.

⇒ The intertwiners in $H_N^+(\Gamma)$ are given by the intertwiners in $\mathbb{G} = *_{i=1}^p(H_N^{\infty+})$ and by the relations in the kernel.

→ Combinatorial description of the intertwiner spaces for tensor products of the corepresentations $a(g) := (a_{ij}(g))_{1 \le i,j \le N}$, $g \in \Gamma$.

Fusion rules for the free wreath products $\widehat{\Gamma} \wr_* S_N^+$

Theorem (L.)

Let Γ be discrete $N \geq 4$.

$$egin{aligned} \mathsf{Hom}_{\mathcal{H}_N^+(\Gamma)}(\mathsf{a}(g_1)\otimes\cdots\otimes\mathsf{a}(g_k);\mathsf{a}(h_1)\otimes\cdots\otimes\mathsf{a}(h_l))\ &=\mathsf{span}\{\, T_p:p\in\mathsf{NC}_\Gamma(g_1,\ldots,g_k;h_1,\ldots,h_l)\} \end{aligned}$$

 $NC_{\Gamma}(g_1, \ldots, g_k; h_1, \ldots, h_l)$: NC part. s.t. in each bloc $\prod g_i = \prod h_j$.

Theorem (L.)

The irreducible corepresentations of $H_N^+(\Gamma)$ can be indexed by the words (g_1, \ldots, g_k) , $g_i \in \Gamma$, with involution $\overline{(g_1, \ldots, g_k)} = (g_k^{-1}, \ldots, g_1^{-1})$ and fusion rules:

$$\begin{aligned} &(g_1,\ldots,g_k)\otimes(h_1,\ldots,h_l)\\ &=(g_1,\ldots,g_{k-1},g_k,h_1,h_2,\ldots,h_l)\oplus(g_1,\ldots,g_{k-1},g_k,h_1,h_2,\ldots,h_l)\\ &\oplus \delta_{g_k,h_1,e}(g_1,\ldots,g_{k-1})\otimes(h_2,\ldots,h_l). \end{aligned}$$

Fusion rules for free wreath products Operator algebraic properties for $\widehat{\Gamma} \wr_* S_M^+$

Contents

1 Examples of CQG

2 Motivation

- Fusion rules for quantum reflection groups
- Operator algebraic properties for CQG

 ${f 3}$ Fusion rules for the free wreath products $\widehat{\sf \Gamma}\wr_*S^+_N$

• Operator algebraic properties for $\widehat{\Gamma} \wr_* S_N^+$

Irreducible + fusion rules for $H_N^+(\Gamma)$: allow to prove several interesting properties for the associated operator algebras.

Theorem (L.)

The von Neumann algebras $L^{\infty}(H_N^+(\Gamma))$ have the Haagerup property for all $N \ge 4$ and all <u>finite</u> groups Γ .

Strategy:

- Construct convolution operators on $L^{\infty}(H_N^+(\Gamma))$ from states on the central algebra $C(H_N^+(\Gamma))_0$ (Brannan 12),
- Understand $\pi: C(H^+_N(\Gamma))_0 \to C(S^+_N)_0 \simeq C([0,N]),$
- Consider the states on C(H⁺_N(Γ))₀, given by ev_x o π + estimates on Tchebytchev polynomials.

Theorem (L.)

The reduced C^{*}-algebra $C_r(H_N^+(\Gamma))$ is simple with unique trace for all $N \ge 8$ and all discrete groups Γ .

Strategy:

- Adapt Powers methods $(C_r^*(F_N)$ is simple),
- Conditional expectation $P : C_r(H_N^+(\Gamma)) \twoheadrightarrow C_r(S_N^+)$,
- Simplicity of $C_r(S_N^+)$ (for $N \ge 8$, Brannan).

Theorem (L.)

 $L^{\infty}(H^+_N(\Gamma))$ is a <u>full</u> II₁ factor for all $N \ge 8$ and all discrete groups Γ .

Strategy:

- Adapt "14- ϵ " (Murray-von Neumann $L(F_N)$ does not have prop Γ),
- $L^{\infty}(H^+_N(\Gamma)) = M \oplus N$, $M \simeq L^{\infty}(S^+_N)$,
- $L^{\infty}(S_N^+)$ is full ($N \ge 8$, Brannan).

Contents

1 Examples of CQG

2 Motivation

- Fusion rules for quantum reflection groups
- Operator algebraic properties for CQG

3) Fusion rules for the free wreath products $\widehat{\mathsf{\Gamma}}\wr_*S^+_{N}$

4) Operator algebraic properties for $\widehat{\Gamma}\wr_*S_N^+$

Let \mathbb{G} be a GQCM of Kac type generated by a unitary $u = (u_{kl})_{kl}$. Let $v = (v_{ij})$ be a magic unitary generating $C(S_N^+)$, $N \ge 4$:

$$C(\mathbb{G})*_w C(S_N^+):=C(\mathbb{G})^{*N}*C(S_N^+)/\langle [u_{kl}^{(i)},v_{ij}]=0
angle$$

Bichon proved:

- G ≥_{*} S⁺_N = (C(G) *_w C(S⁺_N), Δ) is a GQCM of Kac type with a coproduct Δ.
- From representations $\alpha \in Rep(\mathbb{G})$, one can construct representations $r(\alpha) = \left(v_{ij}\alpha_{kl}^{(i)}\right)_{1 \leq i,j \leq N}^{1 \leq k,l \leq d_{\alpha}}$ of $\mathbb{G} \wr_* S_N^+$.

Description of intertwiners:

$$R_{p} \in \operatorname{Hom}_{\mathbb{G}_{\ell*}S_{N}^{+}}(r(\alpha_{1}) \otimes \cdots \otimes r(\alpha_{k}); r(\beta_{1}) \otimes \cdots \otimes r(\beta_{l})) \subset \\ \subset \mathcal{B}\left((\mathbb{C}^{N} \otimes H^{\alpha_{1}}) \otimes \cdots \otimes (\mathbb{C}^{N} \otimes H^{\alpha_{k}}); (\mathbb{C}^{N} \otimes H^{\beta_{1}}) \otimes \cdots \otimes (\mathbb{C}^{N} \otimes H^{\beta_{l}})\right)?$$

Work in progress

$$R_{p} \text{ associated to } p = \begin{cases} \alpha_{1}\alpha_{2} \alpha_{k-1} \alpha_{k} \\ \vdots & \vdots \\ \beta_{1} \beta_{2} \beta_{l} \end{cases} \in NC_{\mathbb{G}}((\alpha_{1}, \dots, \alpha_{k}); (\beta_{1}, \dots, \beta_{l}))$$

where $NC_{\mathbb{G}}$ is the set of non-crossing partitions p s.t.

- the points of p are decorated by the representations of \mathbb{G} ,
- the blocks of $p \in NC_{\mathbb{G}}$ are decorated by the morphisms of \mathbb{G} . Projet: Monoidal equivalence $\mathbb{G} \wr_* S_N^+ \simeq_{mon} \mathbb{H}$ with $\mathbb{H} = (C(\mathbb{H}), \Delta)$:

<u>Projet</u>: Wonoldal equivalence \mathbb{G} (\mathbb{F}) $\simeq_{mon} \mathbb{H}$ with $\mathbb{H} = (\mathbb{C}(\mathbb{H}), \Delta)$

- C(ℍ) ⊂ C(𝔅) * C(SU_q(2)) generated by the coefficients of s(α) = b ⊗ α ⊗ b,
- $\alpha \in \operatorname{Rep}(\mathbb{G})$, $q + q^{-1} = \sqrt{N}$, $0 < q \leq 1$, b if the fundamental representation of $SU_q(2)$.

 \Rightarrow This monoidal equivalence and the work of De Commer, Freslon, Yamashita (13) imply in particular that $L^{\infty}(\mathbb{G} \wr_* S_N^+)$ has the Haagerup property if and only if $L^{\infty}(\mathbb{G})$ has the Haagerup property.