Differentiable absorption of Hilbert C*-modules Inter Gravissimas...

Jens Kaad

June 20, 2014

Jens Kaad Differentiable absorption of Hilbert C*-modules

同 ト イ ヨ ト イ ヨ ト

Table of Contents

- 2 Differentiable structures
- 3 The differentiable absorption theorem
- Application 1: Graßmann connections
- 5 Application 2: Lifts of unbounded operators

Hilbert C*-modules

Setting

X is a countably generated Hilbert C*-module over a C*-algebra A. Thus, exists a sequence {ξ_n} such that

$$\operatorname{span}\{\xi_n \cdot a \mid n \in \mathbb{N}, a \in A\}$$

is dense in X.

< ロ > < 同 > < 回 > < 回 >

Kasparov's absorption theorem

Theorem (Kasparov)

There exists a bounded adjointable isometry $W : X \rightarrow H_A$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Kasparov's absorption theorem

Theorem (Kasparov)

There exists a bounded adjointable isometry $W: X \to H_A$.

Corollary

X is unitarily isomorphic to PH_A , where $P := WW^* : H_A \rightarrow H_A$ is an orthogonal projection.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Unbounded derivations 1

Setting

- Y Hilbert C*-module.
- **2** $\rho : A \to \mathscr{L}(Y)$ injective *-homomorphism.
- **③** $D: \mathscr{D}(D) \to Y$ unbounded selfadjoint and regular operator.

< 日 > < 同 > < 三 > < 三 >

Unbounded derivations 1

Setting

- Y Hilbert C*-module.
- **2** $\rho : A \to \mathscr{L}(Y)$ injective *-homomorphism.
- **3** $D: \mathscr{D}(D) \to Y$ unbounded selfadjoint and regular operator.

Remark

 $D: \mathscr{D}(D) \to Y$ is selfadjoint and regular if and only if $D: \mathscr{D}(D) \to Y$ is selfadjoint and $D \pm i : \mathscr{D}(D) \to Y$ are surjective.

イロン イロン イヨン イヨン

Unbounded derivations 2

Assumption

There exists a dense *-subalgebra $\mathscr{A} \subseteq A$ such that

- 4 同 6 4 日 6 4 日 6

Unbounded derivations 2

Assumption

There exists a dense *-subalgebra $\mathscr{A} \subseteq A$ such that

2 $[D, \rho(a)] : \mathscr{D}(D) \to Y$ extends to a bounded operator $\delta(a) : Y \to Y$.

Remark

$$\delta:\mathscr{A} o \mathscr{L}(Y)$$
 is a closed derivation with $\delta(a^*) = -\delta(a)^*$

(a)

Questions

Question

• What can be said about the derivative $\delta(P) = \{\delta(P_{ij})\}$?

< 日 > < 同 > < 三 > < 三 >

Questions

Question

- What can be said about the derivative $\delta(P) = \{\delta(P_{ij})\}$?
- Obes it exist at all?

< 日 > < 同 > < 三 > < 三 >

Questions

Question

- What can be said about the derivative $\delta(P) = \{\delta(P_{ij})\}$?
- Ooes it exist at all?
- Is it bounded?

Questions

Question

- What can be said about the derivative $\delta(P) = \{\delta(P_{ij})\}$?
- Ooes it exist at all?
- Is it bounded?

Remark

In general $\delta(P)$ is not bounded. One counter example comes from the Hopf fibration $S^3 \rightarrow S^2$.

イロト イ団ト イヨト イヨト

Differentiable compact operators

Definition

The differentiable compact operators is the completion of $M_{\infty}(\mathscr{A})$ in the norm

$$\|\{a_{ij}\}\|_{\delta} := \|\{a_{ij}\}\| + \|\{\delta(a_{ij})\}\|$$

This Banach *-algebra is denoted by $\mathscr{K}(H_A)_{\delta}$.

伺 と く ヨ と く ヨ と

Differentiable compact operators

Definition

The differentiable compact operators is the completion of $M_\infty(\mathscr{A})$ in the norm

$$\|\{a_{ij}\}\|_{\delta} := \|\{a_{ij}\}\| + \|\{\delta(a_{ij})\}\|$$

This Banach *-algebra is denoted by $\mathcal{K}(H_A)_{\delta}$.

Remark

The differentiable compact operators form a dense *-subalgebra of the compact operators $\mathcal{K}(H_A)$ on the standard module.

Differentiability of generators

Assumption

There exists a sequence $\{\xi_n\}_{n=1}^{\infty}$ in X such that

• $\{\xi_n\}$ generates X as a Hilbert C^{*}-module.

$$(\xi_n,\xi_m) \in \mathscr{A}.$$

Differentiable absorption theorem

Theorem (K.)

There exists a bounded adjointable isometry $W : X \to H_A$ and a positive selfadjoint bounded operator $K : H_A \to H_A$ such that KP = PK.

伺 ト イ ヨ ト イ ヨ ト

Differentiable absorption theorem

Theorem (K.)

There exists a bounded adjointable isometry $W : X \to H_A$ and a positive selfadjoint bounded operator $K : H_A \to H_A$ such that

2
$$W^*KW: X \to X$$
 has dense image.

伺 ト イヨト イヨト

Differentiable absorption theorem

Theorem (K.)

There exists a bounded adjointable isometry $W : X \to H_A$ and a positive selfadjoint bounded operator $K : H_A \to H_A$ such that

$$I KP = PK.$$

2
$$W^*KW : X \to X$$
 has dense image.

$$I \in \mathscr{K}(H_A).$$

伺 ト イ ヨ ト イ ヨ ト

Differentiable absorption theorem

Theorem (K.)

There exists a bounded adjointable isometry $W : X \to H_A$ and a positive selfadjoint bounded operator $K : H_A \to H_A$ such that

$$I KP = PK.$$

2
$$W^*KW : X \to X$$
 has dense image.

$$I \in \mathcal{K}(H_A).$$

$$PK^2 \in \mathscr{K}(H_A)_{\delta}.$$

伺 ト イ ヨ ト イ ヨ ト

Application: Graßmann connections

Definition

The continuous δ -forms is the smallest C*-subalgebra of $\mathscr{L}(Y)$ which contains all $\delta(a)$ and $\rho(a)$. This C*-algebra is denoted by $\Omega_{\delta}(A)$.

- 4 同 6 4 日 6 4 日 6

Application: Graßmann connections

Definition

The continuous δ -forms is the smallest C*-subalgebra of $\mathscr{L}(Y)$ which contains all $\delta(a)$ and $\rho(a)$. This C*-algebra is denoted by $\Omega_{\delta}(A)$.

Remark

There is a well-defined pairing

$$(\cdot, \cdot): X imes X \widehat{\otimes}_A \Omega_\delta(A) o \Omega_\delta(A)$$

such that $(\xi, \eta \otimes \omega) := \rho(\langle \xi, \eta \rangle) \cdot \omega$

・ロト ・同ト ・ヨト ・ヨト

Application: Graßmann connections 2

Theorem (K.)

There exists a dense \mathscr{A} -submodule $\mathscr{X} \subseteq X$ and a \mathbb{C} -linear map $\nabla_{\delta} : \mathscr{X} \to X \widehat{\otimes}_A \Omega_{\delta}(A)$ such that

< 日 > < 同 > < 三 > < 三 >

Application: Graßmann connections 2

Theorem (K.)

There exists a dense \mathscr{A} -submodule $\mathscr{X} \subseteq X$ and a \mathbb{C} -linear map $\nabla_{\delta} : \mathscr{X} \to X \widehat{\otimes}_A \Omega_{\delta}(A)$ such that **1** $\nabla_{\delta}(\xi \cdot a) = \nabla_{\delta}(\xi) \cdot a + \xi \otimes \delta(a).$

(人間) ト く ヨ ト く ヨ ト

Application: Graßmann connections 2

Theorem (K.)

There exists a dense \mathscr{A} -submodule $\mathscr{X} \subseteq X$ and a \mathbb{C} -linear map $\nabla_{\delta} : \mathscr{X} \to X \widehat{\otimes}_A \Omega_{\delta}(A)$ such that

- 4 同 6 4 日 6 4 日 6

Differentiable absorption theorem

Theorem

There exists a bounded adjointable isometry $W : X \to H_A$ and a positive selfadjoint bounded operator $K : H_A \to H_A$ such that

$$I KP = PK.$$

2
$$W^*KW : X \to X$$
 has dense image.

$$I \in \mathscr{K}(H_A).$$

•
$$PK^2 \in \mathscr{K}(H_A)_{\delta}$$
.

伺 ト イ ヨ ト イ ヨ ト

Symmetric lifts of unbounded operators 1

Remark

• The isometry $W : X \to H_A$ induces an isometry $W : X \widehat{\otimes}_A Y \to H_Y$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Symmetric lifts of unbounded operators 1

Remark

- The isometry $W : X \to H_A$ induces an isometry $W : X \widehat{\otimes}_A Y \to H_Y$.
- Interpretation Provided Anticipation Provided Activity of the second second

 $\mathsf{diag}(D): \mathscr{D}(\mathsf{diag}(D)) \to H_Y \qquad \{y_n\} \mapsto \{Dy_n\}$

is selfadjoint and regular.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Symmetric lifts of unbounded operators 2

Definition

The symmetric lift of $D : \mathscr{D}(D) \to Y$ is the composition

 $W^* \operatorname{diag}(D)W : \mathscr{D}(\operatorname{diag}(D)W) \to X \widehat{\otimes}_A Y$

The symmetric lift is denoted by $1 \otimes_{\nabla} D$.

- 同 ト - ヨ ト - - ヨ ト

Symmetric lifts of unbounded operators 2

Definition

The symmetric lift of $D: \mathscr{D}(D) \to Y$ is the composition

 $W^* \operatorname{diag}(D)W : \mathscr{D}(\operatorname{diag}(D)W) \to X \widehat{\otimes}_A Y$

The symmetric lift is denoted by $1 \otimes_{\nabla} D$.

Proposition

 $1\otimes_{
abla} D$ is densely defined and symmetric. Furthermore,

$$(1\otimes_{\nabla}D)(x\otimes y)=
abla_{\delta}(x)(y)+x\otimes D(y)$$

for all $x \in \mathscr{X}$ and all $y \in \mathscr{D}(D)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Questions

Question

• What can be said about the symmetric lift $1 \otimes_{\nabla} D$?

< 日 > < 同 > < 三 > < 三 >

Questions

Question

- What can be said about the symmetric lift $1 \otimes_{\nabla} D$?
- Is it selfadjoint?

- 4 同 ト 4 ヨ ト 4 ヨ ト

Questions

Question

- What can be said about the symmetric lift $1 \otimes_{\nabla} D$?
- Is it selfadjoint?
- Is it regular?

- 4 同 ト 4 ヨ ト 4 ヨ ト

Counterexample: Selfadjointness

Setting

• $X := C_0((0,\infty))$ as a Hilbert C^{*}-module over $A := C_0(\mathbb{R})$.

2 $\rho: C_0(\mathbb{R}) \to \mathscr{L}(L^2(\mathbb{R}))$ given by pointwise multiplication.

$$D := i \frac{d}{dt} : H^1(\mathbb{R}) \to L^2(\mathbb{R})$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Counterexample: Selfadjointness

Setting

•
$$X := C_0((0,\infty))$$
 as a Hilbert C*-module over $A := C_0(\mathbb{R})$.

$${\it O}$$
 $\rho: C_0(\mathbb{R}) \to \mathscr{L}(L^2(\mathbb{R}))$ given by pointwise multiplication.

$$D := i \frac{d}{dt} : H^1(\mathbb{R}) \to L^2(\mathbb{R})$$

Proposition

 $1 \otimes_{\nabla} D \text{ is a symmetric extension of } i\frac{d}{dt} : C_c^{\infty}((0,\infty)) \to L^2((0,\infty)).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Selfadjoint and regular lifts

Remark

The selfadjoint and positive bounded operator

$$\Delta := W^* K^2 W \otimes 1 : X \widehat{\otimes}_A Y \to X \widehat{\otimes}_A Y$$

has dense image.

・ 同 ト ・ ヨ ト ・ ヨ ト

Selfadjoint and regular lifts

Remark

The selfadjoint and positive bounded operator

$$\Delta := W^* K^2 W \otimes 1 : X \widehat{\otimes}_A Y \to X \widehat{\otimes}_A Y$$

has dense image.

Theorem (K.)

The unbounded operator

$$\Delta(1\otimes_{\nabla} D)\Delta: \mathscr{D}((1\otimes_{\nabla} D)\Delta) \to X\widehat{\otimes}_{A}Y$$

is densely defined and essentially selfadjoint and regular.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >