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Rieffel

IntrOd UCtIOFI deformations

Joint work in progress with R. Meyer.

o Rieffel deformations: G ~ &7 ~» o7,

Examples and
deformation of the

Recent papers in this direction: s
@ Lechner and Waldmann (2011) Tame smooth
n. GCP
° G=R ' Deformations
e oscillatory integrals; and GCP
e deformation of both algebras and modules. Proofs
@ Brain, Landi and van Suijlkom (2013) .
o G = TN; Conclusion

e functorial deformations.
Our aims:
@ Functorial deformations.
@ Actions of loc. compact Abelian group G.

@ Avoid oscillatory integrals.
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Functorial deformation and categories

In this talk, we take G, loc. compact Abelian Lije group and
oV, W, o, B, M are Fréchet spaces/algebras/modules.

Functorial deformations: certain morphisms are preserved.
@
If o %5 & in “good category”, then o7? Y 9.

e Cat. smooth tempered rep. of G, denoted ST-Rep(G).

~+ char. property ST-Rep: .7 (G)& 4(c)¥ ~ V.

Tensor prod. #1&7> with diag. rep. of G is in ST-Rep(G).
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~~ notions of algebras &/ .o/ = o/ and modules.
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Functorial deformation and categories

In this talk, we take G, loc. compact Abelian Lije group and
oV, W, o, B, M are Fréchet spaces/algebras/modules.

Functorial deformations: certain morphisms are preserved.
@
If o %5 & in “good category”, then o7? Y 9.

e Cat. smooth tempered rep. of G, denoted ST-Rep(G).

~+ char. property ST-Rep: .7 (G)& 4(c)¥ ~ V.

Tensor prod. #1&7> with diag. rep. of G is in ST-Rep(G).
e ST-Rep(G), monoidal category, for proj. tensor prod. &.

~~ notions of algebras &/ .o/ = o/ and modules.

In our case: G-tempered algebras and G-tempered modules.

oA
@ Natural transf. ® ., On algebra &, new prod. m?

@ with associativity m? := mo &% ~ ol ?
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Rieffel

Natural transformations and applications deformations

Natural transformation: family of ®”: ¥ — ¥ s.t.

VYV —W
YV, W, this diagram commutes: i
o7 o7
’7/ _ W Tame smooth
GCP
11 Deformations
Proposition Defornas
The natural transformations 71 &7 — #1&75 are in bijection Proofs
with the multiplier algebra of .7(G x G). e
Conclusion
Proof: next 2 slides.

p((h® B) « (A2 £) = (h @ §) +u(h © ). (Multiplier



Natural transformations: proof — 1 i)

deformations

From natural transformation to multiplier y on (G x G).
w((fo® f5) x (A® f)) = (h@fy)*u(fh @ f). (Multiplier)

Steps: it o e
e Specialize: ¥; = ¥; = .7(G), Tame smooth
° mﬂ)@fg(fi ® f]./) = (ﬁ) ® f(.)/) * (f]_ ® fi/) E:;ogzagions
e Set p1:= &7 (6).7(6), Proofs
mf0®f(; N Conclusion
S(6)® .7(G) (G)&.7(G)
ul i’”
Mo )
S (6)® S(G) ——— F(6)&7(G)

Outcome: p is a multiplier.
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Natural transformations: proof — 2 deformations

From multiplier 1 on .’(G x G) to natural transformations.
We set ®’172 1= ;@ Idy, 295
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Natural transformations: proof — 2 deformations

From multiplier 1 on .’(G x G) to natural transformations.
We set ®"172 1= 1 ® Idy, 295
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Tame smooth

With these definitions, using that p is a multiplier: Gep
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5% o
q;‘f/l)"’zi lcb“’fﬁf%

WM&V ——= W15,
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Natural transformations: proof — 2 deformations

From multiplier 1 on .’(G x G) to natural transformations.
We set ®"172 1= 1 ® Idy; 89,
on <fﬁ(G X G)®y(GXG)%®7/Z ~ %@41/2 ﬁ‘e:oo?:j;ﬁ::the

Tame smooth

With these definitions, using that p is a multiplier: Gep
o ®717 is well-defined on the .7(G?)® (g2 18 75. e
o All commutative diagrams below commute: ':/°°:spf
%8V — H1&%, .
q;‘f/l)“’zi l¢WIxW2
NQYVs —— WEW>.

Outcome: natural transformation defined by family ¢”1:72.



Rieffel

Natural transformations: proof — 2 deformations

From multiplier 1 on .’(G x G) to natural transformations.

We set ®"172 1= 1 ® Idy; 89,
on (G X G)Ry(oxc) AR V2 ~ QY5 | Semiass

Tame smooth

With these definitions, using that p is a multiplier: Gep
o ®717 is well-defined on the .7(G?)® (g2 18 75. e
o All commutative diagrams below commute: ':/°°:spf
%8V — H1&%, .
M%i lm’%
NQYVs —— WEW>.

Outcome: natural transformation defined by family ¢”1:72.

NB: nat. transfo. construction replaces oscillatory integrals!
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Natural transformation: family of ®”: ¥ — ¥ s.t.
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o7 o7
’7/ _ W Tame smooth
GCP
11 Deformations
Proposition Defornas
The natural transformations 71 &7 — #1&75 are in bijection Proofs
with the multiplier algebra of .7(G x G). e
Conclusion
Proof: next 2 slides.

p((h® B) « (A2 £) = (h @ §) +u(h © ). (Multiplier



Rieffel

Natural transformations and applications deformations

Natural transformation: family of ®”: ¥ — ¥ s.t.

VYV —W
YV, W, this diagram commutes: i
7 X S of the
’7/ _ W Tame smooth
GCP
11 Deformations
Proposition Deformat
The natural transformations 71 &7 — #1&75 are in bijection Proofs
with the multiplier algebra of .7(G x G). e
Conclusion
Proof: next 2 slides.

o)« (Aef))=(hef)u(hf) (Multplier)
Multiplier py: take ¢ € G x G — © “regular” and f € .#(G?),
polf) = F N0 F(F)) = F 1 (0) # 1.

then p, is a multiplier of .7(G x G).



Rieffel

Equivalence of monoidal categories s

Coherence conditions for equivalence of monoidal cat.
Q oL 1Y — 1&Y and @71 ¥ &1 — ¥ &1 are Id.

@ For all 71, % and 73, the following commutes: Eanpi i
involution
N N ¢7/1®7/27“V3 A ~ Tame smooth
NEV2&Y3 N3 ocP
R Deformations
71,7283 ¢“”1’"Vz®|d4,/3 and GCP
~ ~ |d«;/1 ®¢7/2‘7/3 ~ N Proofs
7/1®7/2®7/3 7/1®7/2 ®7/3 PV-seq. proof
Inv. HP

Conclusion

If the gen. multiplier is 14, above imposes
¢ is a normalised cocycle i.e.

Q #(L,9)=1letg(¥,1)=1 (Normalisation)
Q (7172, V3) (71, 72) = ¢(V1, V273) (V25 ¥3) (Cocycle)
Q@ F(¢)xL(G x G) C (G x G) (Regularity)

10



Rieffel
deformations

Summary of the construction

Starting point:
o tame smooth rep. of G, i.e. S (G)® 4(c)¥; ~ .

e ¢: G x G — C a normalised cocycle, i.e.
Q #(1,9)=1leto(5,1)=1
Q (172, 73) (V1. T2) = &(V1, V273)A(F2, 73)
Q F(¢)*x 7(Gx G) C.¥(G x G)
Outcome:
o G-algebra o7: new product m? ;= mo &9 s o7?.
e G-module .#: new action a® := oo @ s H?.

Construction possible for general loc. compact Ab. groups G!

deformation of the
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GCP
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Conclusion
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Rieffel

Case Of G — 51 X Z deformations

For G = S x Z, we have G = Z x S! and consider:

¢((n1,w1), (m,w2)) = wi”. Comtvir

deformation of the

Let G act on a C*-algebra A by t — «a(a) and o: A — A. T'":r::tmooth
GCP

Define the Fréchet subalgebra o7 by:

Deformations

. and GCP
o ={a€ A:t— aa) is smooth}. -
roots
PV-seq. proof
@ The representation of G on 7 is smooth tempered. o 0
Conclusion

o Set .7, .= {a € o|a:(a) = e?™a}.
e For a, € o7, and a,, € 47,, deformed product x¢:

ap, x® am = o~ ™(an)am.
Particular case: A= C(T?), arn(a)(x,y) = a(x + t,y — nf).

~ Recover the NC torus in this way!

12



Rieffel

Representation and deformation of the involution

In the case of G = S! x Z and ¢ as before.

Enriching the setting: “involutive” Fréchet algebras o7,

with involution inherited from G-cov. rep. m on 7.

@ Introduce ¥ := A — it has a smooth temperated G-rep.

o Deform 7 into 7%(a)¢,, := m(0~™(a))ém.
o Given a gauge-homogeneous element a with gauge k,

a*e .= ogk(a%).

deformations

deformation of the
involution

Tame smooth
GCP

Deformations
and GCP

Proofs
PV-seq. proof
Inv. HP

Conclusion
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Tame smooth Generalized Crossed Products (GCP) | deamasens

Involutive Fréchet alg. o/, with smooth o and grading 7.

@ All bimodules <7 admit frames (n*)); i.e.

j —
fieform.ation of the
(k) (k) _ involution
ZT]J (77_] )jk =1 Tame smooth
j GCP
Deformations
Existence of such frames: principal U(1)-bundle. |2 6cP
Proofs
@ The size of frames is uniformely bounded for k € IN. s oo
© Ordering the frames in lexicographical order of (j, k), Conelusion

for all continuous seminorm p, the (real) sequences
p(&e) and p((&)*) have polynomial growth (in ¢).

Under these conditions, <7 is a tame smooth ppal U(1)-bundle.

15



Tame smooth GCP: main result

Rieffel
deformations

Theorem (G. & Grensing — 2011)
Given a smooth tame GCP (previous slide),
@ Exact sequence in HP*, with 4 := -

HP(B) <~ HPY(#) < HP"(<)

| g

HPY (/) — HPY(%#) — HP\(B).
@ Transfer formula: VK € Kj(#/), Vo € HPIT1(2),

<[K]7 #@) = 2i71'<8[K], 90>'

Remarks:

© is a generalization of results by Nest (1988).
@ relies on previous results by Nistor (1997).

deformation of the
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Outline

Rieffel
deformations

© Deformations and tame smooth GCP

Tame smooth
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Deformations
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Invariance of tame smooth GCP under deform.

Rieffel

Proposition
@ 7 is a smooth tame GCP,
If e with involution inherited from a G-cov. rep.

@ o, polynomial bound for all fixed seminorm p.

then the deformed algebra <7? is also a smooth tame GCP.

The gauge action of &7? is unchanged.
O Given frames (n}k)) for o7, we have:

St % yre =3 o (o () = 1.

@ The size of frames remains the same.
© The growth condition is preserved,
since the Fréchet structure is unaltered and o isom.
Example: quantum Heisenberg manifolds.

4 Def. of tame smooth GCP

deformations

Tame smooth
GCP

Deformations
and GCP

Proofs
PV-seq. proof
Inv. HP

Conclusion
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Tame smooth GCP: stability of HP*

Theorem (G. & Meyer — 2014)

If o/ is a tame smooth GCP
@ with involution inherited from a G-cov. rep.
@ o, polynomial bound for all fixed seminorm p,

e there is a path o, u € [0, 1] with
0o =1d, 01 = 0 and Va € &, u+ o;1(a) smooth map,

then HP/(&/?) = HP/(7).

Steps of the proof:

@ Both o7 and «7¢ are tame smooth GCP
~» PV-sequences for HP.

@ Gauge-invariant subalgebra A left undeformed.
~~ To prove: HP/(%) — HPJ(2), same in both diag.

© Conclude using quasi-homomorphisms and diffeotopy inv.
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Examples and
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@ Proofs
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Tame smooth GCP: commutative case

Rieffel
deformations

Consider
@ a compact manifold X, B := C(X),
@ a Hermitian line bundle £ — X.
Write P — X for the assoc. ppal U(1)-bundle, A := C(P).

Proposition (G.)

The smooth elements &/ of A form a tame smooth GCP for an
. : 0)
explicit family ( v , of frames.

W,

@ The index w correspond to a (finite) trivialisation of L.
@ The Fréchet structure is given by seminorms:

p(a) =01 Onal
for derivations 0, on P.

» More details

Tame smooth
GCP

Deformations
and GCP

Proofs
PV-seq. proof
Inv. HP

Conclusion
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Tame smooth GCP: main result — on the proof ot

deformations

Steps of the proof:

© Define Toeplitz extension of Fréchet algebras:

0-)%-}9%-}%—)0 Tame smooth
GCP
@ Deduce that there is a six-term exact sequence Deformarions

with HP/(€), HP/(.;) and HP/ (7). proots
© Prove Morita equivalence % X B s HPI(€) ~ HPI(%). o e

Conclusion

© Use a quasi-homomorphism ,; — € and € Y Ty
to show HP/(7,,) ~ HPI( ).

End result:
a six-term exact sequence with HP/(#) and HP/(7).

22



Tame smooth GCP: stability of HP*

Theorem (G. & Meyer — 2014)

If o/ is a tame smooth GCP
@ with involution inherited from a G-cov. rep.
@ o, polynomial bound for all fixed seminorm p,

e there is a path o, u € [0, 1] with
0o =1d, 01 = 0 and Va € &, u+ o;1(a) smooth map,

then HP/(&/?) = HP/(7).

Steps of the proof:

@ Both o7 and «7¢ are tame smooth GCP
~» PV-sequences for HP.

@ Gauge-invariant subalgebra A left undeformed.
~~ To prove: HP/(%) — HPJ(2), same in both diag.

© Conclude using quasi-homomorphisms and diffeotopy inv.
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Toeplitz extensions and diagrams

Rieffel
deformations

@ In Toeplitz extension, G-equiv. maps thus preserved:
0= %% = Ty — %0
Difference between <7 and o7 ?:

HPY(%) < HPY(2)

-

HPY(€) < HP%( /) < HP(7)

i T

HPY(o/) —= HPY(Z,/) — HPY(%¥)

-

HPY(%) —— HP(%).

involution

Tame smooth
GCP

Deformations
and GCP

Proofs
PV-seq. proof
Inv. HP

Conclusion
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Toeplitz extensions and diagrams

Rieffel
deformations

@ In Toeplitz extension, G-equiv. maps thus preserved:

06— T — %0

Difference between <7 and «7¢:

HPO(2) HPO(2)

F

HPY(€?) <—— HP%(7,,s) <—— HP®(/?)

| |

HPY(/?) —> HPY(T,,4) —> HPY(%

S

HPY(B) — HP' ().

involution

Tame smooth
GCP

Deformations
and GCP

Proofs
PV-seq. proof
Inv. HP

Conclusion
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Maps HP/(%) — HP/(%) - lifting in q-hom.

Quasi-homomorphism (Cuntz, '83) noted (a,d): & = B > B
e « and @ homomorphisms from &7 to %, containing 4.
o (a—a)()C A, a(H)B C B, Ba() C A.

Such gq-hom. induce maps HP/(/) — HP/(%), j = 0,1.

Original proof PV-sequence in HP (G. & Grensing, '11):
Applying HP/, recover square.

(ﬁvB) A
»B BIKX @ j canonical inclusion.
0 @ Ly induce isom. in HP.
v & o (a, &) explicit g-hom.

T(a,a) @ 6 induce isom. in HP.

@ J 7, (B, B) defined by composition.

Explicitly, B(b) = b ® ego and B(b) = (£;b&)) ® e

Rieffel
deformations

Examples and
deformation of the
involution

Tame smooth
GCP

Deformations
and GCP

Proofs
PV-seq. proof
Inv. HP

Conclusion
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Maps HP/(%) — HP/(2) — invariance under def.

8 and B computed using ambiant algebra .27?: 5(b) = b ® ego
B(b) = (&) x? bx? & @ e = o (b)g @ ey

where &, j=1,..., N frame of 2.

e Given a path o, u € [0, 1] with 09 = Id, 01 = ¢ and
Va € o, u o, 1(a) smooth map,

~ define g-hom. (Z3,ZP): B = ZBRIH > ZB&HK .

o Diffeotopy invariance of HP:

(Bo, Bo) and (B1, F1) induce the same map in HP.

e By construction, (30, 30) and (531, 51) factorise via
€ — Ty and €% — 7,4, respectively.

Consequences:
o HPI(#) — HPI(), invariant under def. &7 ~~ o7/9.

o HP/(7) and HP/(<7?) have the same dimension.
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Examples and
deformation of the
involution

Tame smooth
GCP

Deformations
and GCP

Proofs
PV-seq. proof
Inv. HP

Conclusion

26



o Rieffel
O u tI Ine deformations

Tame smooth
GCP

Deformations
and GCP

Proofs

PV-seq. proof
Inv. HP

Conclusion

© Conclusion
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© Conclusion
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Rieffel

COﬂC' US|On deformations

Summary:
e Functorial deformation for G, locally compact Abelian. i o the
Tame smooth
GCP

@ Application to smooth tame GCP:

Deformations

e Construction of such GCP by deformation. and GCP
Proofs

e Stability of HP* under deformation e et

Conclusion

[ O.G. and R. MEYER
Functorial Rieffel deformations for tempered actions on

bornological algebras
In preparation.
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Rieffel

Thank you for your attention! deformations

Tame smooth
GCP

Deformations
and GCP

Proofs
PV-seq. proof
Inv. HP

Conclusion
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Rieffel

Proof: Definition of Frames v{/) deformations

w

e Trivialise £ by open sets (U, )ucq, Q2 finite. Fix w € Q.

@ Pick a section uy, of £ s.t. (u,|u,)(x) <1 forall x e X
and Vx € Uy, (uy|u,)(x) = 1.

@ Choose () associated to U, s.t. 3. x> =1 and set

vu(f]) = Xwly @ Uy @ -+ & Uy,.

For any fixed ¢, the family (VLSE))W is a frame, i.e.

> v =1

w

First two conditions of “tame smoothness” are satisfied!

Growth: suffices to consider each w € Q separately.
Hence, fix w and write x := xw, U = Uy, ...

31



Rieffel

Proof: Strategy of Evaluation deformations

Aim: evaluate growth in £ of wy = |9y - - - Iyv(O||.
Strategy: separate dependencies on N and on /.
@ Since 0, are derivations, we can expand
O On(xu®@u® - ®u)
as sum over maps j: {1,...,N} = {0,1,...,¢}.

32



Rieffel

Proof: Strategy of Evaluation e

Aim: evaluate growth in £ of wy = |9y - - - Iyv(O||.
Strategy: separate dependencies on N and on /.
@ Since 0, are derivations, we can expand
O On(xu®@u®---®u)

as sum over maps j: {1,...,N} = {0,1,...,¢}.
e j induces a partition P; of {1,..., N} (independant of ¢).
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Rieffel

Proof: Strategy of Evaluation e

Aim: evaluate growth in £ of wy = |9y - - - Iyv(O||.
Strategy: separate dependencies on N and on /.
@ Since 0, are derivations, we can expand
O On(xu®@u®---®u)

as sum over maps j: {1,...,N} = {0,1,...,¢}.
e j induces a partition P; of {1,..., N} (independant of ¢).
o Among j' with P;, j is charact. by values ki, ..., kp,.
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Proof: Strategy of Evaluation e

Aim: evaluate growth in £ of wy = |9y - - - Iyv(O||.
Strategy: separate dependencies on N and on /.
@ Since 0, are derivations, we can expand
O On(xu®@u®---®u)

as sum over maps j: {1,...,N} = {0,1,...,¢}.
e j induces a partition P; of {1,..., N} (independant of ¢).
o Among j' with P;, j is charact. by values ki, ..., kp,.

w2 NTOI< Y > 1L IFeel
J

P ki#ko#Fkp| PEP

CCY Y Y Y T Il

P ki=0ky=0 k|7:v‘:0 pEeP
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Rieffel

Proof: Strategy of Evaluation e

Aim: evaluate growth in £ of wy = |9y - - - Iyv(O||.
Strategy: separate dependencies on N and on /.
@ Since 0, are derivations, we can expand
O On(xu®@u®---®u)

as sum over maps j: {1,...,N} = {0,1,...,¢}.
e j induces a partition P; of {1,..., N} (independant of ¢).
o Among j' with P;, j is charact. by values ki, ..., kp,.

w2 NTOI< Y > 1L IFeel

P kitke##kp| pEP

<CZZ£: XZ: Ze: IT I1F.pll-

P ki=0ky=0 k|7:v‘:0 pEeP

Choice of P: finite set, independent of ¢, thus
if for all p, ||Fi p|| doesn’t depend on k, we are €EED.
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Indexation by maps deformations

O1(xou® u) =
Mh(x)u®@u+ x01(u) ® u+ xu® d1(u)

» Terms T(j)
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Indexation by maps deformations

O1(xou® u) =
Mh(x)u®@u+ x01(u) ® u+ xu® d1(u)

Starting from v(9), recover ¢ terms.

» Terms T(j)
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Rieffel

Indexation by maps deformations

0201 (xou ® u) =
01 (X)u @ u+ 02(x)01(u) @ u+ da(x)u ® 01(u)
01(x)02(u) @ u + x0201(u) ® u + x02(u) ® O1(u)
O (x)u ® Oa(u) 4+ x01(u) @ O2(u) + xu ® 201 (u).

Starting from v(9), recover ¢ x ¢ terms.

» Terms T(j)
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Rieffel

Indexation by maps deformations

0201 (xou ® u) =
01 (X)u @ u+ 02(x)01(u) @ u+ da(x)u ® 01(u)
01(x)02(u) @ u+ x0201(u) @ u+ x02(u) ® 01(u)
O (x)u ® Oa(u) 4+ x01(u) @ O2(u) + xu ® 201 (u).

Starting from v(9), recover ¢ x ¢ terms.

All these terms are characterised by the “position” of the 9;,
ie. byamapj:{1,...,N} = {0,1,... ¢}

» Terms T(j)
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Proof: Term T(j) deformatins

Since the 0; are derivations, for v(® with ¢ terms,

851"'8SN(XU®U®”'®U)

is a sum of terms indexed by the “positions” of the derivations
0j, i.e. by j: {s1,...,sn} = {0,1,... ¢}
Given 1 < k < £, if j71(k) = {t1,..., 15}, we write:

Fk,j—l(k) = 8J~_1(k)u = 0s O,

oy Oy -+ D U

Of course, if j~1(k) =0, dj-1(k) = Id.
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Proof: Term T(j) deformatins

Since the 0; are derivations, for v(® with ¢ terms,

851"'8SN(XU®U®”'®U)

is a sum of terms indexed by the “positions” of the derivations
0j, i.e. by j: {s1,...,sn} = {0,1,... ¢}
Given 1 < k < £, if j71(k) = {t1,..., 15}, we write:

Fk,j—l(k) = 8J~_1(k)u = 0s O,

oy Oy -+ D U

Of course, if j~1(k) =0, dj-1(k) = Id.

For a given j, the associated term T(j) is

T(j) := 0j-1(0)(X)0j1(2) (1) @ - - - ® Oj-1(¢)(u).
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Proof: Term T(j) deformatins

Since the 0; are derivations, for v(® with ¢ terms,

Os;+ Ospy (XU U® -+ - @ u)

is a sum of terms indexed by the “positions” of the derivations
0j, i.e. by j: {s1,...,sn} = {0,1,... ¢}
Given 1 < k < £, if j7Y(k) = {u1,...,t5}, we write:

Fk,j_l(k) = 8J-_1(k)u = 0s O,

oy Oy -+ D U

Of course, if j~1(k) =0, 8j_1(k) — |d.

For a given j, the associated term T(j) is
T() = 0-10)(X)9j-1(2) (1) @ - -+ ® Oj-1()(u).

Since [lull <1, [ TG < CTlemt | Fijriol
where C bounds the term 9;-1)x.
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Proof: Term T(j) deformatins

Since the 0; are derivations, for v(® with ¢ terms,

Os;+ Ospy (XU U® -+ - @ u)
is a sum of terms indexed by the “positions” of the derivations
0j, i.e. by j: {s1,...,sn} = {0,1,... ¢}
Given 1 < k < £, if j7Y(k) = {u1,...,t5}, we write:

Fk,j_l(k) = 8J-_1(k)u = 0s O,

oy O,y - 05, U
Of course, if j~1(k) =0, 8j_1(k) — |d.

For a given j, the associated term T(j) is
T() = 0-10)(X)9j-1(1)(v) @ - - - @ Dj14) (u).
Since [Jull <1, [ TG < € Mt I1Frg100
where C bounds the term 9;-1)x.
Finally, Fx , doesn’t depend on k, so the result follows. @EZED
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Rieffel

Setting: general groups and monoidal categories -

In this talk,
@ G is a locally compact Abelian group;

o ¥V, W, o, A are bornological spaces (algebras).

Work of Bruhat ('61):
Schwartz alg. .#(G) and Fourier transf. . (G) Z, 7(G).

o Central object:
smooth tempered rep. of G, denoted ST-Rep(G).
Characteristic property of ST-9ep: S(G)& 56V ~ V.
o ST-Rep(G) is a symmetric monoidal category, using
projective tensor product &.

Tensor prod. ¥ &7 with diag. rep. of G is in ST-Rep(G).
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