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Introduction

Joint work in progress with R. Meyer.

Rieffel deformations: G y A  A φ.

Recent papers in this direction:
Lechner and Waldmann (2011)

G = Rn;
oscillatory integrals;
deformation of both algebras and modules.

Brain, Landi and van Suijlkom (2013)
G = T N ;
functorial deformations.

Our aims:
Functorial deformations.
Actions of loc. compact Abelian group G .
Avoid oscillatory integrals.
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Functorial deformation and categories

In this talk, we take G , loc. compact Abelian Lie group and
V , W , A , B, M are Fréchet spaces/algebras/modules.

Functorial deformations: certain morphisms are preserved.
If A

ψ−→ B in “good category”, then A φ ψφ−−→ Bφ.

Cat. smooth tempered rep. of G , denoted ST-Rep(G).
 char. property ST-Rep: S (G)⊗̂S (G)V ' V .

Tensor prod. V1⊗̂V2 with diag. rep. of G is in ST-Rep(G).

ST-Rep(G), monoidal category, for proj. tensor prod. ⊗̂.
 notions of algebras A ⊗̂A

m−→ A and modules.

In our case: G-tempered algebras and G-tempered modules.

1 Natural transf. ΦA ,A

2 with associativity
 On algebra A , new prod. mφ

mφ := m ◦ ΦA ,A  A φ.
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Natural transformations and applications
Natural transformation: family of ΦV : V → V s.t.

∀V ,W , this diagram commutes:
V //

ΦV

��

W

ΦW

��
V // W

Proposition
The natural transformations V1⊗̂V2 → V1⊗̂V2 are in bijection
with the multiplier algebra of S (G × G).

Proof: next 2 slides. Skip

µ((f0 ⊗ f ′0) ∗ (f1 ⊗ f ′1)) = (f0 ⊗ f ′0) ∗ µ(f1 ⊗ f ′1). (Multiplier)

Multiplier µφ: take φ ∈ Ĝ × Ĝ → C “regular” and f ∈ S (G2),

µφ(f ) := F−1(φ · F(f )) = F−1(φ) ∗ f ,

then µφ is a multiplier of S (G × G).
6
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Natural transformations: proof – 1

From natural transformation to multiplier µ on S (G × G).
µ((f0 ⊗ f ′0) ∗ (f1 ⊗ f ′1)) = (f0 ⊗ f ′0) ∗ µ(f1 ⊗ f ′1). (Multiplier)

Steps:
Specialize: Vj = Wj = S (G),
mf0⊗f ′0 (f1 ⊗ f ′1) = (f0 ⊗ f ′0) ∗ (f1 ⊗ f ′1).

Set µ := ΦS (G),S (G).

S (G)⊗S (G)
mf0⊗f ′0 //

µ

��

S (G)⊗̂S (G)

µ

��
S (G)⊗S (G)

mf0⊗f ′0 // S (G)⊗̂S (G).

Outcome: µ is a multiplier.
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Natural transformations: proof – 2

From multiplier µ on S (G × G) to natural transformations.

We set ΦV1,V2 := µ⊗ IdV1⊗̂V2
,

on S (G × G)⊗̂S (G×G)V1⊗̂V2 ' V1⊗̂V2.

With these definitions, using that µ is a multiplier:
ΦV1,V2 is well-defined on the S (G2)⊗̂S (G2)V1⊗̂V2.
All commutative diagrams below commute:

V1⊗̂V2 //

ΦV1,V2
��

W1⊗̂W2

ΦW1,W2
��

V1⊗̂V2 // W1⊗̂W2.

Outcome: natural transformation defined by family ΦV1,V2 .

NB: nat. transfo. construction replaces oscillatory integrals!
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Equivalence of monoidal categories

Coherence conditions for equivalence of monoidal cat.
1 Φ1,V : 1⊗̂V → 1⊗̂V and ΦV ,1 : V ⊗̂1→ V ⊗̂1 are Id.
2 For all V1,V2 and V3, the following commutes:

V1⊗̂V2⊗̂V3
ΦV1⊗̂V2,V3 //

ΦV1,V2⊗̂V3
��

V1⊗̂V2⊗̂V3

ΦV1,V2 ⊗̂ IdV3
��

V1⊗̂V2⊗̂V3
IdV1 ⊗̂ΦV2,V3

// V1⊗̂V2⊗̂V3

If the gen. multiplier is µφ, above imposes
φ is a normalised cocycle i.e.

1 φ(1, γ̂) = 1 et φ(γ̂, 1) = 1 (Normalisation)
2 φ(γ̂1γ̂2, γ̂3)φ(γ̂1, γ̂2) = φ(γ̂1, γ̂2γ̂3)φ(γ̂2, γ̂3) (Cocycle)
3 F(φ) ∗S (G × G) ⊆ S (G × G) (Regularity)
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Summary of the construction

Starting point:
tame smooth rep. of G , i.e. S (G)⊗̂S (G)Vj ' Vj .
φ : Ĝ × Ĝ → C a normalised cocycle, i.e.

1 φ(1, γ̂) = 1 et φ(γ̂, 1) = 1
2 φ(γ̂1γ̂2, γ̂3)φ(γ̂1, γ̂2) = φ(γ̂1, γ̂2γ̂3)φ(γ̂2, γ̂3)
3 F(φ) ∗S (G × G) ⊆ S (G × G)

Outcome:
G-algebra A : new product mφ := m ◦ ΦA ,A  A φ.
G-module M : new action αφ := α ◦ ΦA ,M  M φ.

Construction possible for general loc. compact Ab. groups G!
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Case of G = S1 × Z

For G = S1 × Z, we have Ĝ = Z× S1 and consider:

φ
(
(n1, ω1), (n2, ω2)

)
= ωn2

1 .

Let G act on a C∗-algebra A by t 7→ αt(a) and σ : A→ A.
Define the Fréchet subalgebra A by:

A := {a ∈ A : t 7→ αt(a) is smooth}.

The representation of G on A is smooth tempered.
Set An := {a ∈ A |αt(a) = ei2πnta}.
For an ∈ An and am ∈ Am, deformed product ×φ:

an ×φ am = σ−m(an)am.

Particular case: A = C(T 2), αt,n(a)(x , y) = a(x + t, y − nθ).
 Recover the NC torus in this way!
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Representation and deformation of the involution

In the case of G = S1 × Z and φ as before.

Enriching the setting: “involutive” Fréchet algebras A ,
with involution inherited from G-cov. rep. π on H .

Introduce V := H ∞ – it has a smooth temperated G-rep.

Deform π into πφ(a)ξm := π(σ−m(a))ξm.

Given a gauge-homogeneous element a with gauge k,

a∗φ := σk(a∗).

13



Rieffel
deformations

O.G.

Functorial
Rieffel
deformations
Construction

Examples and
deformation of the
involution

Tame smooth
GCP

Deformations
and GCP

Proofs
PV-seq. proof

Inv. HP

Conclusion

Outline

1 Functorial Rieffel deformations
Construction
Examples and deformation of the involution

2 Tame smooth Generalized Crossed Products (GCP)

3 Deformations and tame smooth GCP

4 Proofs
PV-sequence in HP∗ and illustration
Invariance of HP∗ under deformations

5 Conclusion

14



Rieffel
deformations

O.G.

Functorial
Rieffel
deformations
Construction

Examples and
deformation of the
involution

Tame smooth
GCP

Deformations
and GCP

Proofs
PV-seq. proof

Inv. HP

Conclusion

Tame smooth Generalized Crossed Products (GCP)
Involutive Fréchet alg. A , with smooth σ and grading Ak .

1 All bimodules Ak admit frames (η
(k)
j )j i.e.∑

j
η

(k)
j (η

(k)
j )∗ = 1.

Existence of such frames: principal U(1)-bundle.
2 The size of frames is uniformely bounded for k ∈ N.
3 Ordering the frames in lexicographical order of (j , k),

for all continuous seminorm p, the (real) sequences
p(ξ`) and p

(
(ξ`)

∗
)
have polynomial growth (in `).

Under these conditions, A is a tame smooth ppal U(1)-bundle.

Deformation
15
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Tame smooth GCP: main result

Theorem (G. & Grensing – 2011)
Given a smooth tame GCP (previous slide),

1 Exact sequence in HP∗, with B := A0:

HP0(B)

#
��

HP0(B)oo HP0(A )oo

HP1(A ) // HP1(B) // HP1(B).

#

OO

2 Transfer formula: ∀K ∈ Kj(A ), ∀ϕ ∈ HP j+1(B),

〈[K ],#ϕ〉 = 2iπ〈∂[K ], ϕ〉.

Remarks:
1 is a generalization of results by Nest (1988).
2 relies on previous results by Nistor (1997).
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Invariance of tame smooth GCP under deform.

Proposition

If
A is a smooth tame GCP,
with involution inherited from a G-cov. rep.
σ, polynomial bound for all fixed seminorm p.

then the deformed algebra A φ is also a smooth tame GCP.

The gauge action of A φ is unchanged.
1 Given frames (η

(k)
j ) for A , we have:∑

η
(k)
j ×φ (η

(k)
j )∗φ =

∑
σ(η

(k)
j )σ(η

(k)
j )∗ = 1.

2 The size of frames remains the same.
3 The growth condition is preserved,

since the Fréchet structure is unaltered and σ isom.
Example: quantum Heisenberg manifolds.

Def. of tame smooth GCP
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Tame smooth GCP: stability of HP∗

Theorem (G. & Meyer – 2014)
If A is a tame smooth GCP

with involution inherited from a G-cov. rep.
σ, polynomial bound for all fixed seminorm p,
there is a path σu, u ∈ [0, 1] with
σ0 = Id, σ1 = σ and ∀a ∈ A , u 7→ σ−1u (a) smooth map,

then HP j(A φ) = HP j(A ).

Steps of the proof:
1 Both A and A φ are tame smooth GCP

 PV-sequences for HP.
2 Gauge-invariant subalgebra B left undeformed.

 To prove: HP j(B)→ HP j(B), same in both diag.
3 Conclude using quasi-homomorphisms and diffeotopy inv.
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Tame smooth GCP: commutative case
Consider

a compact manifold X , B := C(X ),
a Hermitian line bundle L → X .

Write P → X for the assoc. ppal U(1)-bundle, A := C(P).

Proposition (G.)
The smooth elements A of A form a tame smooth GCP for an
explicit family

(
v (`)
ω

)
ω,`

of frames.

The index ω correspond to a (finite) trivialisation of L.
The Fréchet structure is given by seminorms:

p(a) = ‖∂1 · · · ∂Na‖

for derivations ∂ι on P.
More details

21



Rieffel
deformations

O.G.

Functorial
Rieffel
deformations
Construction

Examples and
deformation of the
involution

Tame smooth
GCP

Deformations
and GCP

Proofs
PV-seq. proof

Inv. HP

Conclusion

Tame smooth GCP: main result – on the proof

Steps of the proof:
1 Define Toeplitz extension of Fréchet algebras:

0→ C → TA → A → 0.

2 Deduce that there is a six-term exact sequence
with HP j(C ), HP j(TA ) and HP j(A ).

3 Prove Morita equivalence C
M' B  HP j(C ) ' HP j(B).

4 Use a quasi-homomorphism TA → C and C
M' TA

to show HP j(TA ) ' HP j(B).

End result:
a six-term exact sequence with HP j(B) and HP j(A ).
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Tame smooth GCP: stability of HP∗

Theorem (G. & Meyer – 2014)
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Toeplitz extensions and diagrams

In Toeplitz extension, G-equiv. maps thus preserved:

0→ C φ → TA φ → A φ → 0

Difference between A and A φ:

HP0(B)

'
��

HP0(B)oo

HP0(C )

��

HP0(TA )oo

'

OO

HP0(A )oo

HP1(A ) // HP1(TA ) //

'
��

HP1(C )

OO

HP1(B) // HP1(B).

'

OO
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Maps HP j(B)→ HP j(B) – lifting in q-hom.

Quasi-homomorphism (Cuntz, ’83) noted (α, ᾱ) : A ⇒ B̂ D B

α and ᾱ homomorphisms from A to B̂, containing B.
(α− ᾱ)(A ) ⊆ B, α(A )B ⊆ B, Bα(A ) ⊆ B.

Such q-hom. induce maps HP j(A )→ HP j(B), j = 0, 1.

Original proof PV-sequence in HP (G. & Grensing, ’11):

B
(β,β̄) //

ιC

��

B⊗̂K

C

θ

OO

C
j // TA

(α,α)

OO

Applying HP j , recover square.
j canonical inclusion.
ιC induce isom. in HP.
(α, ᾱ) explicit q-hom.
θ induce isom. in HP.

(β, β̄) defined by composition.

Explicitly, β(b) = b ⊗ e00 and β̄(b) = (ξ∗i bξj)⊗ eij .
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Maps HP j(B)→ HP j(B) – invariance under def.

β and β̄ computed using ambiant algebra A φ: β(b) = b ⊗ e00

β̄(b) = (ξ
∗φ
i )×φ b ×φ ξj ⊗ eij = ξ∗i σ

−1(b)ξj ⊗ eij

where ξj , j = 1, . . . ,N frame of A1.

Given a path σu, u ∈ [0, 1] with σ0 = Id, σ1 = σ and
∀a ∈ A , u 7→ σ−1u (a) smooth map,
 define q-hom. (Zβ,Z β̄) : B ⇒ ZB⊗̂K D ZB⊗̂K .

Diffeotopy invariance of HP:
(β0, β̄0) and (β1, β̄1) induce the same map in HP.

By construction, (β0, β̄0) and (β1, β̄1) factorise via
C → TA and C φ → TA φ , respectively.

Consequences:
HP j(B)→ HP j(B), invariant under def. A  A φ.
HP j(A ) and HP j(A φ) have the same dimension.
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Conclusion

Summary:

Functorial deformation for G , locally compact Abelian.

Application to smooth tame GCP:

Construction of such GCP by deformation.

Stability of HP∗ under deformation

O. G. and R. Meyer
Functorial Rieffel deformations for tempered actions on
bornological algebras
In preparation.
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Thank you for your attention!

...
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Proof: Definition of Frames v (l)
ω

Trivialise L by open sets (Uω)ω∈Ω, Ω finite. Fix ω ∈ Ω.

Pick a section uω of L s.t. (uω|uω)(x) 6 1 for all x ∈ X
and ∀x ∈ Uω, (uω|uω)(x) = 1.

Choose (χω) associated to Uω s.t.
∑
ω χ

2
ω = 1 and set

v (`)
ω := χωuω ⊗ uω ⊗ · · · ⊗ uω.

For any fixed `, the family (v (`)
ω )ω is a frame, i.e.∑

ω
B〈v (`)

ω , v (`)
ω 〉 = 1.

First two conditions of “tame smoothness” are satisfied! Hypo.

Growth: suffices to consider each ω ∈ Ω separately.
Hence, fix ω and write χ := χω, u := uω, ...
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Proof: Strategy of Evaluation
Aim: evaluate growth in ` of w` = ‖∂1 · · · ∂Nv (`)‖.
Strategy: separate dependencies on N and on `.

Since ∂ι are derivations, we can expand

∂1 · · · ∂N (χu ⊗ u ⊗ · · · ⊗ u)

as sum over maps j : {1, . . . ,N} → {0, 1, . . . , `}. More

j induces a partition Pj of {1, . . . ,N} (independant of `).
Among j ′ with Pj , j is charact. by values k1, . . . , k|Pj |.

wl 6
∑

j
‖T (j)‖ 6 C

∑
P

∑
k1 6=k2 6=···6=k|P|

∏
p∈P
‖Fkp ,p‖

6 C
∑
P

∑̀
k1=0

∑̀
k2=0
· · ·

∑̀
k|P|=0

∏
p∈P
‖Fkp ,p‖.

Choice of P: finite set, independent of `, thus
if for all p, ‖Fk,p‖ doesn’t depend on k, we are done .
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Indexation by maps

∂2

∂1(χσu ⊗ u) =

∂1(χ)u ⊗ u + χ∂1(u)⊗ u + χu ⊗ ∂1(u)

∂1(χ)∂2(u)⊗ u + χ∂2∂1(u)⊗ u + χ∂2(u)⊗ ∂1(u)

∂1(χ)u ⊗ ∂2(u) + χ∂1(u)⊗ ∂2(u) + χu ⊗ ∂2∂1(u)

.

Starting from v (`), recover `

× `

terms.

All these terms are characterised by the “position” of the ∂j ,
i.e. by a map j : {1, . . . ,N} → {0, 1, . . . , `}.

Back Terms T (j)
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Proof: Term T (j)
Since the ∂j are derivations, for v (`) with ` terms,

∂s1 · · · ∂sN (χu ⊗ u ⊗ · · · ⊗ u)

is a sum of terms indexed by the “positions” of the derivations
∂j , i.e. by j : {s1, . . . , sN} → {0, 1, . . . , `}.
Given 1 6 k 6 `, if j−1(k) = {ι1, . . . , ιβ}, we write:

Fk,j−1(k) := ∂j−1(k)u = ∂sι1∂sι2 · · · ∂sιβ u

Of course, if j−1(k) = ∅, ∂j−1(k) = Id.
For a given j , the associated term T (j) is

T (j) := ∂j−1(0)(χ)∂j−1(1)(u)⊗ · · · ⊗ ∂j−1(`)(u).

Since ‖u‖ 6 1, ‖T (j)‖ 6 C
∏`

k=1 ‖Fk,j−1(k)‖
where C bounds the term ∂j−1(0)χ.

Finally, Fk,p doesn’t depend on k, so the result follows. Back
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is a sum of terms indexed by the “positions” of the derivations
∂j , i.e. by j : {s1, . . . , sN} → {0, 1, . . . , `}.
Given 1 6 k 6 `, if j−1(k) = {ι1, . . . , ιβ}, we write:

Fk,j−1(k) := ∂j−1(k)u = ∂sι1∂sι2 · · · ∂sιβ u

Of course, if j−1(k) = ∅, ∂j−1(k) = Id.
For a given j , the associated term T (j) is

T (j) := ∂j−1(0)(χ)∂j−1(1)(u)⊗ · · · ⊗ ∂j−1(`)(u).

Since ‖u‖ 6 1, ‖T (j)‖ 6 C
∏`

k=1 ‖Fk,j−1(k)‖
where C bounds the term ∂j−1(0)χ.

Finally, Fk,p doesn’t depend on k, so the result follows. Back
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Setting: general groups and monoidal categories

In this talk,
G is a locally compact Abelian group;
V , W , A , B are bornological spaces (algebras).

Work of Bruhat (’61):
Schwartz alg. S (G) and Fourier transf. S (G)

F−→ S (Ĝ).

Central object:
smooth tempered rep. of G , denoted ST-Rep(G).

Characteristic property of ST-Rep: S (G)⊗̂S (G)V ' V .

ST-Rep(G) is a symmetric monoidal category, using
projective tensor product ⊗̂.

Tensor prod. V1⊗̂V2 with diag. rep. of G is in ST-Rep(G).
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