Dirac operators on noncommutative principal torus bundles

Ludwik Dąbrowski

SISSA, Trieste, Italy

(based on works with A. Sitarz & A. Zucca)

Plan

- Why?
- Classical
- Quantum:
 - -Projectability
 - -Isometric fibers
 - -Real structure
 - -Dirac calculus
 - -Strong connections
 - -Twisted Dirac
- Examples:
 - -classical
 - -NC torus
 - -theta deormations

Why? NCG marries 'geometric' & 'quantum':

space \leftrightarrow algebra metric & spin \leftrightarrow spectral triple (S.T.)

Prototype: canonical S.T. $(C^{\infty}(M), L^2(\Sigma(M), vol_g), D)$ \exists reconstruction thm Why? NCG marries 'geometric' & 'quantum':

space \leftrightarrow algebra metric & spin \leftrightarrow spectral triple (S.T.)

Prototype: canonical S.T. $(C^{\infty}(M), L^2(\Sigma(M), vol_g), D)$ \exists reconstruction thm

Math: functorial properties, eg. product $(A \otimes A', \mathcal{H} \otimes \mathcal{H}', D \otimes 1 + \gamma \otimes D')$ We've studied real structure J & other properties

Phys: dim regularization, Standard Model of elementary particles

Why? NCG marries 'geometric' & 'quantum':

space \leftrightarrow algebra metric & spin \leftrightarrow spectral triple (S.T.)

Prototype: canonical S.T. $(C^{\infty}(M), L^2(\Sigma(M), vol_g), D)$ \exists reconstruction thm

Math: functorial properties, eg. product $(A \otimes A', \mathcal{H} \otimes \mathcal{H}', D \otimes 1 + \gamma \otimes D')$ We've studied real structure J & other properties

Phys: dim regularization, Standard Model of elementary particles

Envisage more: fibre bundles; start with principal, even with (usual) Lie group, and first $U(1)^n$...

Classics: U(1) [Amman-Bär], many works on G/H await systematic study

Compatible metrics

Let M be a (m + n)-dimensional oriented compact smooth manifold which is the total space of a $principal \mathbb{T}^n - bundle$ over the m-dimensional oriented manifold $N = M/\mathbb{T}^n$. Let K_a be the fundamental vector field of the standard basis T_a , $1 \le a \le n$ of $\mathbb{R}^n := Lie(\mathbb{T}^n)$.

Compatible metrics

Let M be a (m + n)-dimensional oriented compact smooth manifold which is the total space of a $principal \mathbb{T}^n - bundle$ over the m-dimensional oriented manifold $N = M/\mathbb{T}^n$. Let K_a be the fundamental vector field of the standard basis T_a , $1 \le a \le n$ of $\mathbb{R}^n := Lie(\mathbb{T}^n)$.

Assume that $(M, \tilde{g}) \& (N, g)$ are Riemannian, s.t.

- the action of \mathbb{T}^n is isometry of \widetilde{g} ;
- the bundle projection $\pi: M \to N$ is an oriented Riemannian submersion;
- the fibres are isometric one to each other; moreover, $|K_a|$ is constant along M.

Then $\exists !$ principal *connection* 1-form $\omega = \sum_{a=1}^{n} \omega_a \otimes T_a$, s.t. ker $\omega \perp$ fibres.

Compatible classical ST

Assume *M* is spin and spinor bundle ΣM is *projectable*, i.e. admits lift of \mathbb{T}^n . Then the Dirac operators \widetilde{D} on $L^2(\Sigma M, \widetilde{g})$ and D on $L^2(\Sigma N, g)$ are compatible [AB],[DZ] (for simplicity *m* even):

$$\widetilde{D} = D_v + D_h + Z,$$

where:

$$D_v = \sum_{a=1}^n \frac{1}{l_a} \gamma^a \partial_{K_a} = \sum_{a=1}^n \gamma^a \partial_{e_a}, \quad \text{'vertical'},$$

$$Z = -\frac{1}{4} \sum_{a=1}^{n} \gamma(K_a) \gamma(d\omega_a), \quad \text{'order 0'}$$

and

$$D_h = \cdots = \bigoplus_{k \in \mathbb{Z}^n} Q_k \circ (D_k \otimes \mathrm{id}) \circ Q_k^{-1}, \quad \text{'horizontal'}.$$

Here D_k is D twisted by ω_a , and it acts on $\Sigma N \otimes L_k$, where $L_k = M \times_{\mathbb{T}^n} \mathbb{C}$ is the line bundle on N associated with weight k of \mathbb{T}^n . Next,

$$Q_k: L^2(\Sigma N \otimes L_k) \otimes \Sigma_n \to V_k$$

are certain isomorphisms, where we decompose into \mathbb{T}^n -irreps as

$$L^2(\Sigma M) = \bigoplus_{k \in \mathbb{Z}^n} V_k.$$

Noncommutative analogue ? No $\tilde{g}, g \dots$

We extended (part of) [AB] to NC circle [DS], [DAZ] and \mathbb{T}^n -bundles [DZ]

Will present ("growing") ingredients:

Noncommutative principal bundles

Group \rightsquigarrow Hopf algebra H, with coproduct Δ , invertible antipode S and counit ε . Quantum principal bundle \rightsquigarrow a right H-comodule algebra \mathcal{A} , which is *principal*, i.e. \exists *strong connection* (for the universal calculus $\Omega^1 \mathcal{A}$).

Base space $\rightsquigarrow \mathcal{B} := \{a \in \mathcal{A} \mid \Delta_{\mathcal{A}}(a) = a \otimes 1\}.$

It follows [Haj96] that \mathcal{A} is a *Hopf-Galois extension* of \mathcal{B} , and so a quantum principal bundle as in [BrzMaj93], with respect to $\Omega^1 \mathcal{A}$. I'll say what happens for a general differential calculus.

In [Haj96] also strong connection for a general calculus was defined. I'll specify it to *Dirac* calculi, in equivalent form. **Our** *H*: unital * Hopf algebra $H(\mathbb{T}^n)$ of the Lie group $\mathbb{T}^n = U(1)^n$; generated by commuting unitaries z_1, \ldots, z_n , &

$$\Delta(z_i) = z_i \otimes z_i, \qquad S(z_i) = z_i^* = z_i^{-1}, \qquad \varepsilon(z_i) = 1.$$

Notation: for $k \in \mathbb{Z}^n$ we set $z^k := z_1^{k_1} \dots z_n^{k_n}$.

Our *H*: unital * Hopf algebra $H(\mathbb{T}^n)$ of the Lie group $\mathbb{T}^n = U(1)^n$; generated by commuting unitaries z_1, \ldots, z_n , &

$$\Delta(z_i) = z_i \otimes z_i, \qquad S(z_i) = z_i^* = z_i^{-1}, \qquad \varepsilon(z_i) = 1.$$

Notation: for $k \in \mathbb{Z}^n$ we set $z^k := z_1^{k_1} \dots z_n^{k_n}$.

We call *quantum principal* T^n *-bundle* a principal $H(\mathbb{T}^n)$ -comodule algebra \mathcal{A} . It is strongly \mathbb{Z}^n -graded

$$\mathcal{A} = \bigoplus_{k \in \mathbb{Z}^n} \mathcal{A}^{(k)}, \quad \left| \mathcal{A}^{(k)} \mathcal{A}^{(k')} = \mathcal{A}^{(k+k')} \right|,$$

(see e.g. [Sch04]), where

$$a \in \mathcal{A}^{(k)} \quad \Leftrightarrow \quad \Delta_{\mathcal{A}}(a) = a \otimes z^k \quad (\Leftrightarrow \quad \delta_j(a) = k_j a).$$

Spectral triples

In NC Riemannian spin geometry = spectral triple $(\mathcal{A}, \mathcal{H}, D)$

'over' algebra \mathcal{A} with a representation π (often omitted) on the Hilbert space \mathcal{H}

& "Dirac operator" $D = D^*$, s.t. $[D, a] \in B(\mathcal{H})$ for $a \in \mathcal{A}$, and $D^{-1} \in K(\mathcal{H})$.

& Makes Sense

Spectral triples

In NC Riemannian spin geometry = spectral triple $(\mathcal{A}, \mathcal{H}, D)$

'over' algebra \mathcal{A} with a representation π (often omitted) on the Hilbert space \mathcal{H} & "Dirac operator" $D = D^*$, s.t. $[D, a] \in B(\mathcal{H})$ for $a \in \mathcal{A}$, and $D^{-1} \in K(\mathcal{H})$.

& Makes Sense

even if
$$\exists$$
 grading γ , s.t. $\gamma a = a\gamma$, $D\gamma = -\gamma D$.
real if \exists antilinear J s.t. $[JAJ, A] = 0$ and

$$J^2 = \epsilon, \quad JD = \epsilon' DJ, \quad J\gamma = \epsilon'' \gamma J.$$

Here $\varepsilon, \varepsilon', \varepsilon'' = \pm 1$ depend mod 8 on the so-called *KR*-dimension.

We require first order condition

$$[[D, a], Jb^*J^{-1}] = 0, \quad \forall a, b \in \mathcal{A}.$$
 (1)

Then there is right action of $\mathcal A$ on $\mathcal H$

$$\phi \cdot a = Ja^* J^{-1} \phi, \quad \phi \in \mathcal{H}, a \in \mathcal{A}$$

and of Dirac 1-forms

$$\Omega_D^1(\mathcal{A}) := \pi_D(\Omega^1 \mathcal{A}), \quad \pi_D(p \otimes q) := p[D,q],$$

$$\phi a[D,b] := -\varepsilon' J[D,b^*] a^* J^{-1} \phi, \quad \phi \in \mathcal{H}$$
(2)

\mathbb{T}^n -equivariance:

on $\mathcal{H} \exists$ commuting operators $\delta_j^* = \delta_j$, which lift the derivations $\delta_j : \mathcal{A} \to \mathcal{A}$,

$$\delta_j(a\phi) = \delta_j(a)\phi + a\delta_j(\phi),$$

such that

$$[\delta_j, D] = 0, \qquad [\delta_j, \gamma] = 0, \qquad \delta_j J + J \delta_j = 0.$$

Require also that the spec $(\delta_j) = \mathbb{Z}, \forall j$, so it exponentiates to action of \mathbb{T}^n .

\mathbb{T}^n -equivariance:

on $\mathcal{H} \exists$ commuting operators $\delta_j^* = \delta_j$, which lift the derivations $\delta_j : \mathcal{A} \to \mathcal{A}$,

$$\delta_j(a\phi) = \delta_j(a)\phi + a\delta_j(\phi),$$

such that

$$[\delta_j, D] = 0, \qquad [\delta_j, \gamma] = 0, \qquad \delta_j J + J \delta_j = 0.$$

Require also that the spec $(\delta_j) = \mathbb{Z}, \forall j$, so it exponentiates to action of \mathbb{T}^n . Accordingly

$$\mathcal{H} = \bigoplus_{k \in \mathbb{Z}^n} \mathcal{H}_k.$$

We have $D\mathcal{H}_k \subseteq \mathcal{H}_k$ and $\mathcal{A}^{(l)}\mathcal{H}_k \subseteq \mathcal{H}_{k+l}$. In particular \mathcal{H}_0 is stable under D and $\mathcal{B} = \mathcal{A}^{coH} := \mathcal{A}^{(0)}$.

Moreover, since \mathcal{A} is strongly graded, $\mathcal{H}_k = \mathcal{H}_0 \mathcal{A}^{(k)}$ as reps of \mathcal{B} .

DEF: Projectable spectral triples

A \mathbb{T}^n -equivariant real spectral triple $(\mathcal{A}, \mathcal{H}, D, J, \{\delta_j\})$, of *KR*-dimension n+m, is said to be *projectable* if \exists a \mathbb{Z}_2 grading Γ on \mathcal{H} , s.t.

 $[\Gamma, \pi(a)] = 0 \quad \forall a \in \mathcal{A}, \quad [\Gamma, \delta_j] = 0 \quad \forall 1 \le j \le n,$ $J\Gamma = \begin{cases} (-)^{n(n-1)/2} \Gamma J & \text{if } n+m = 1 \pmod{4}, \\ (-)^{n(n+1)/2} \Gamma J & \text{otherwise}, \end{cases}$ $\Gamma\gamma = (-1)^n \gamma \Gamma \quad \text{if } n+m \text{ is even}.$

DEF: Projectable spectral triples

A \mathbb{T}^n -equivariant real spectral triple $(\mathcal{A}, \mathcal{H}, D, J, \{\delta_j\})$, of *KR*-dimension n + m, is said to be *projectable* if \exists a \mathbb{Z}_2 grading Γ on \mathcal{H} , s.t.

$$[\Gamma, \pi(a)] = 0 \quad \forall a \in \mathcal{A}, \quad [\Gamma, \delta_j] = 0 \quad \forall 1 \le j \le n,$$
$$J\Gamma = \begin{cases} (-)^{n(n-1)/2} \Gamma J & \text{if } n+m = 1 \pmod{4}, \\ (-)^{n(n+1)/2} \Gamma J & \text{otherwise}, \end{cases}$$
$$\Gamma\gamma = (-1)^n \gamma \Gamma \quad \text{if } n+m \text{ is even}.$$

We define *horizontal* Dirac operator

$$D_h := \frac{1}{2} \Gamma[\Gamma, D]_{\pm}$$
 for *n* even/odd. (3)

(This is <u>weaker</u> than iterated or n-fold U(1)-projectability).

DEF: Isometric fibres: \exists a selfadjoint operator D_v on \mathcal{H} and a bounded Z, s.t.

$$D = D_v + D_h + Z$$

and:

(a) $D_v|_{\mathcal{H}_k}$ is bounded with finite (uniformly in k) spectrum and $D_v|_{\mathcal{H}_0} = 0$ (b) $[D_v, b] = 0$ for $b \in \mathcal{B}$, and $D_v J = \varepsilon' J D_v$: (c) $[D_v, \delta_i] = 0$ and δ_i are relatively bounded with $D_v, \forall i = 1, \dots, n$.

(c) $[D_v, \delta_i] = 0$ and δ_i are relatively bounded w.r.t D_v , $\forall i = 1, ..., n$; (d) $Z \in A'$. **DEF:** Isometric fibres: \exists a selfadjoint operator D_v on \mathcal{H} and a bounded Z, s.t.

$$D = D_v + D_h + Z$$

and:

(a) $D_v|_{\mathcal{H}_k}$ is bounded with finite (uniformly in k) spectrum and $D_v|_{\mathcal{H}_0} = 0$ (b) $[D_v, b] = 0$ for $b \in \mathcal{B}$, and $D_v J = \varepsilon' J D_v$: (c) $[D_v, \delta_i] = 0$ and δ_i are relatively bounded w.r.t $D_v, \forall i = 1, ..., n$; (d) $Z \in A'$.

This generalizes 'constant length of fibres' of [DS] in the case n = 1, m = 2 but we don't require it for each U(1)-action; <u>neither</u> that $D_v \sim \Gamma \delta$.

Moreover instead of $Z \in \mathcal{A}'' \cap B'$ we require now (d), e.g. $Z \in J\mathcal{A}J$. This (and (a)) assures that D_h and D determine the same calculus on \mathcal{B} :

 $[D_h, b] = [D, b], b \in \mathcal{B}.$

First main result

Denote $D_k := D_h|_{\mathcal{H}_k}$, $J_0 := J|_{\mathcal{H}_0}$ and $\gamma_0 = \Gamma|_{\mathcal{H}_0}$.

PROP: Let $(\mathcal{A}, \mathcal{H}, D, J, \gamma, \{\delta_j\}, \Gamma)$ be a projectable S.T. with isometric fibres. Then, $(\mathcal{B}, \mathcal{H}_k, D_k)$ is a spectral triple (in general reducible).

Proof. Selfadjointness and $[D_k, b] \in B(\mathcal{H}_k)$ follow since $D_k = D_h|_{\mathcal{H}_k}$, and compact resolvent since D_k is a bounded perturbation of $D|_{\mathcal{H}_k}$.

First main result

Denote $D_k := D_h|_{\mathcal{H}_k}$, $J_0 := J|_{\mathcal{H}_0}$ and $\gamma_0 = \Gamma|_{\mathcal{H}_0}$.

PROP: Let $(\mathcal{A}, \mathcal{H}, D, J, \gamma, \{\delta_j\}, \Gamma)$ be a projectable S.T. with isometric fibres. Then, $(\mathcal{B}, \mathcal{H}_k, D_k)$ is a spectral triple (in general reducible).

Proof. Selfadjointness and $[D_k, b] \in B(\mathcal{H}_k)$ follow since $D_k = D_h|_{\mathcal{H}_k}$, and compact resolvent since D_k is a bounded perturbation of $D|_{\mathcal{H}_k}$.

REM: $J|_{\mathcal{H}_0}$ and $\Gamma|_{\mathcal{H}_0}$ yield real even structure on *B* of KR-dimension m + n; however by a tidiuos and scrupulous analysis we constructed j_0, γ_0 , s.t. $(\mathcal{B}, \mathcal{H}_0, D_0, j_0, \gamma_0)$ is a real even spectral triple of *KR*-dimension *m*. Moreover, the first order condition holds and so have right action of \mathcal{B} on \mathcal{H}_0 .

Principal \mathbb{T}^n -bundles with Dirac calculus

PROP: Let $(\mathcal{A}, \mathcal{H}, D, J)$ as above and \mathcal{A} a principal $H(\mathbb{T}^n)$ -comodule algebra. Let $N = \ker \pi_D$ and $Q = (\ker \varepsilon)^2$. Then $(\mathcal{A}, H(\mathbb{T}^n), \Delta_{\mathcal{A}}, N, Q)$ is a quantum principal bundle of [BrzMaj93] iff

(a)

(b)

$$\sum p[D,q] = 0 \qquad \Rightarrow \qquad \sum p \,\delta_i(q) = 0, \quad \forall i \tag{4}$$

$$\sum pq = 0 \text{ and } \sum p \,\delta_i(q) = 0, \forall i \Rightarrow \sum p[D,q] \in \mathcal{A}[D,\mathcal{B}]\mathcal{A}.$$
 (5)

REM: Valid for more general right covariant calculi $\Omega^1(A)$. The compatibility condition (a) appeared in [DS10] for circle bundles; we <u>add</u> (b).

Strong connections

DEF: A family of *n* 1-forms $\{\omega_i\} \subset \Omega^1_D(\mathcal{A})$ is *strong* \mathbb{T}^n -connection on \mathcal{A} iff

(i)
$$[\delta_j, \omega_i] = 0, \forall i, j = 1, ..., n;$$

(ii) if $\omega_i = \sum_j p_j [D, q_j]$, with $p_j, q_j \in \mathcal{A}$,
then $\sum_j p_j \delta_i(q_j) = 1$ and $\sum_j p_j \delta_l(q_j) = 0$ for $l \neq i$;
(iii) $\forall a \in \mathcal{A}, \quad ([D, a] - \sum_i \delta_i(a)\omega_i) \in \Omega_D^1(\mathcal{B})\mathcal{A}.$

& MS: (ii), (iii) meaningful (depend only on ω_i and not p_j, q_j) due to (a), (b).

This Def. (with (a), (b)) is equivalent to strong connection [Haj96], specified to quantum principal \mathbb{T}^n -bundle with calculi $\Omega^1_D(\mathcal{A})$ and $\Omega^1_{dR}(\mathbb{T}^n)$:

Twisted Dirac operators

We want to interpret $D_h|_{\mathcal{H}_k}$ as D_0 coupled (twisted) with connection.

Let $\{\omega_i\} \subset \Omega_D^1(\mathcal{A})$ be a strong \mathbb{T}^n -connection with selfadjoint (operators) ω_i . Using the identification $\mathcal{H}_k = \mathcal{H}_0 \mathcal{A}^{(k)}$ (as reps of \mathcal{B}) and right actions, define

 D^k_ω : (Dom (D_0)) $\mathcal{A}^{(k)} \to \mathcal{H}_k$,

$$D_{\omega}^{k}(\phi a) \equiv (D_{0}\phi)a + \phi \left([D,a] - \sum_{j=1}^{n} k_{j}a\omega_{j} \right), \quad \phi \in \mathcal{H}_{0}, a \in \mathcal{A}^{(k)}.$$
(6)

Twisted Dirac operators

We want to interpret $D_h|_{\mathcal{H}_k}$ as D_0 coupled (twisted) with connection.

Let $\{\omega_i\} \subset \Omega_D^1(\mathcal{A})$ be a strong \mathbb{T}^n -connection with selfadjoint (operators) ω_i . Using the identification $\mathcal{H}_k = \mathcal{H}_0 \mathcal{A}^{(k)}$ (as reps of \mathcal{B}) and right actions, define

 D^k_ω : (Dom (D_0)) $\mathcal{A}^{(k)} \to \mathcal{H}_k$,

$$D_{\omega}^{k}(\phi a) \equiv (D_{0}\phi)a + \phi \left([D,a] - \sum_{j=1}^{n} k_{j}a\omega_{j} \right), \quad \phi \in \mathcal{H}_{0}, a \in \mathcal{A}^{(k)}.$$

REM: D_{ω}^{k} is " D_{0} minimally coupled with ω_{j} "; or with D_{0} -connection [DS10,DSZ13] $\nabla^{\omega} : \mathcal{A}^{(k)} \to \Omega_{D}^{1}(\mathcal{B})\mathcal{A}^{(k)}, \quad \nabla^{\omega}(a) := [D, a] - \sum_{j} k_{j} a \omega_{j} \in \Omega_{D}^{1}(\mathcal{B})\mathcal{A}^{(k)}$

(by (iii) of DEF [DZ]).

$$\diamond$$

Second main result

PROP: D_{ω}^{k} is a well-defined selfadjoint operator on \mathcal{H}_{k} , with compact resolvent. Moreover, it has bounded commutators with \mathcal{B} (acting on the left).

Proof. Uused (d) ($Z \in A'$) and (a) ($D_v|_{\mathcal{H}_0} = 0$) of DEF (isometric fibers) we rewrite (6) in the form

$$D_{\omega}^{k}(\phi a) = (D_{h}\phi)a + \phi \left([D_{h} + D_{v}, a] - \sum_{i=1}^{n} k_{i}\phi a\omega_{i} \right)$$
$$= D_{h}(\phi a) + D_{v}(\phi a) - \sum_{i=1}^{n} k_{i}\phi a\omega_{i} = \left(D - Z + \varepsilon' \sum_{i=1}^{n} J\omega_{i}^{*}J^{-1}k_{i} \right) (\phi a),$$
(7)

Thus D_{ω}^{k} depends only on the product ϕa . The rest follows since $D_{\omega}^{k} - D$ is selfadjoint & bounded. This result gives us a family of spectral triples $(\mathcal{B}, \mathcal{H}_k, D_{\omega}^k)$, $k \in \mathbb{Z}^n$.

PROP: $D_{\omega} := \overline{\bigoplus_k D_{\omega}^k}$ is selfadjoint operator on \mathcal{H} with bounded commutators with $a \in \mathcal{A}$.

Proof. built on (7) + Kato-Rellich theorem

Compatibility

DEF: We say that ω is *compatible* with *D* if D_{ω} and D_h coincide on a dense subset of \mathcal{H} .

Can such D_{ω} be 'projected' from some spectral triple on \mathcal{A} ?

PROP: Let D_v be as in definition and let

$$\mathcal{D}_{\omega} = D_v + D_{\omega}.$$

If D_v anticommutes with D_ω , then $(\mathcal{A}, \mathcal{H}, \mathcal{D}_\omega)$ is a projectable spectral triple with isometric fibres, and the horizontal part of the operator \mathcal{D}_ω coincides with D_ω .

Proof. $\{D_{\omega}, D_{v}\}_{+} = 0$ permits to analyse the spectrum of \mathcal{D}_{ω}

EXAMPLES

Classical II: principal \mathbb{T}^n -bundles

The classical principal \mathbb{T}^n -bundle M over the m-dimensional oriented manifold $N = M/\mathbb{T}^n$, with compatible metrics, constant length, projectable spin bundles, fits our NC refomulation:

It is clear that with $\Gamma = i^{[n/2]}\gamma^1\gamma^2 \dots \gamma^n$, where $\gamma^a, a = 1, \dots, n$ are vertical $(C^{\infty}(M), L^2(\Sigma), \widetilde{D})$ is a projectable spectral triple in our sense, and D_h comes as before.

EXAMPLES

Classical II: principal \mathbb{T}^n -bundles

The classical principal \mathbb{T}^n -bundle M over the m-dimensional oriented manifold $N = M/\mathbb{T}^n$, with compatible metrics, constant length, projectable spin bundles, fits our NC refomulation:

It is clear that with $\Gamma = i^{[n/2]}\gamma^1\gamma^2 \dots \gamma^n$, where $\gamma^a, a = 1, \dots, n$ are vertical $(C^{\infty}(M), L^2(\Sigma), \widetilde{D})$ is a projectable spectral triple in our sense, and D_h comes as before.

Next, with D_v and Z as before the fibres are isometric. In particular, D_v anticommutes with D_h since a principal \mathbb{T}^n connection ω_i is Ad-invariant (=invariant). Moreover, identifying the de Rham calculus with the Dirac calculus $\Omega^1_{\widetilde{D}}(\mathbb{C}^\infty(M), \omega_i$ is indeed a strong connection in our sense.

In addition ω is also compatible with $\mathcal{D}_{\omega} = D_v + D_{\omega}$, which corresponds to a metric connection (but maybe nonzero torsion).

Flat noncommutative tori:

$$D = \sum_{j}^{m+n} \gamma_j \delta_j,$$

where δ_j are the standard derivations implemented on $\mathcal{H} = L^2(\mathbb{T}^k_{\theta}, \tau) \otimes \mathbb{C}^{2^{[k/2]}}$ and τ is the usual trace.

Using (part of) this action $\mathcal{A} = \mathcal{A}(\mathbb{T}^{n+m}_{\theta})$ becomes a \mathbb{T}^n -bundle. The base $\mathcal{B} = \mathcal{A}(\mathbb{T}^m_{\vartheta})$ is generated by the last m generators U_i , and ϑ is the $m \times m$ submatrix of θ .

Flat noncommutative tori:

$$D = \sum_{j}^{m+n} \gamma_j \delta_j,$$

where δ_j are the standard derivations implemented on $\mathcal{H} = L^2(\mathbb{T}^k_{\theta}, \tau) \otimes \mathbb{C}^{2^{[k/2]}}$ and τ is the usual trace.

Using (part of) this action $\mathcal{A} = \mathcal{A}(\mathbb{T}^{n+m}_{\theta})$ becomes a \mathbb{T}^n -bundle. The base $\mathcal{B} = \mathcal{A}(\mathbb{T}^m_{\vartheta})$ is generated by the last m generators U_i , and ϑ is the $m \times m$ submatrix of θ .

Next, $\Omega_D^1(\mathcal{A})$ and $\Omega_{dR}^1(\mathcal{A}(\mathbb{T}^n))$ are 'derivation based", so "(a), (b)"-compatible. Explicitly, arbitrary strong connection is

$$\omega_i = \sum_{j=m+1}^{m+n} b_{ij} \otimes \gamma^j + 1 \otimes \gamma^i, \quad \text{with} \quad b_{ij} \in \mathcal{B}.$$
(8)

Moreover $(\mathcal{A}, D, \mathcal{H})$ is projectable with $\Gamma = i^{[n/2]} \gamma^1 \gamma^2 \dots \gamma^n$, and D_0 is just the standard Dirac operator on \mathcal{B} .

 \mathbb{T}^3_{θ} as a quantum principal U(1)-bundle over \mathbb{T}^2_{ϑ}

Consider \mathbb{T}^1 -action along U_3 . Four (of eight) spin structures are projectable and $\Gamma = \sigma^3$.

Strong connections are

$$\omega = \sigma^3 + \sigma^2 \omega_2 + \sigma^1 \omega_1, \tag{9}$$

where $\omega_1, \omega_2 \in \mathcal{B}$. Finally, the compatible Dirac operator is

$$\mathcal{D}_{\omega} = D - (\sigma^2 J \omega_2 J^{-1} + \sigma^1 J \omega_1 J^{-1}) \delta_3.$$
 (10)

The only connection, compatible with the flat D (\mathbb{T}^3 -equivariant) is $\omega = \sigma^3$.

$\mathbb{T}^3_{ heta}$ as a quantum principal \mathbb{T}^2 -bundle over \mathbb{T}^1

Consider the \mathbb{T}^2 -action along U_1, U_2 . The flat S.T. is projectable, has isometric fibres with

$$\Gamma = \sigma^3,$$

and

$$D_h = \frac{1}{2} \Gamma[D, \Gamma]_+ = \sigma^3 \delta_3, \quad D_v = \sigma^1 \delta_1 + \sigma^2 \delta_2; \quad Z = 0.$$

Next

$$D'_0 = \Gamma D_0, \quad j_0 = \Gamma J|_{\mathcal{H}_0} = (J_0 \otimes (\sigma^1 \circ c.c.))|_{\mathcal{H}_0}$$

and $(\mathcal{B}, \mathcal{H}_0, D'_0, j_0)$ is a real spectral triple of *KR*-dimension 1.

Twisted Dirac operators

Any selfadjoint strong $\mathbb{T}^2\text{-connection over }\mathcal{A}$ is

$$\omega_i = \sigma^i + \sigma^3 b_i$$
, where $b_i = b_i^* \in \mathcal{B}$.

Then twisted D_h on \mathcal{H} (direct sum of D_{ω}^k on $\mathcal{H}^{(k)}$) is

$$D_{\omega} = \sigma^{3} \delta_{3} - \sigma^{3} J b_{1} J^{-1} \delta_{1} - \sigma^{3} J b_{2} J^{-1} \delta_{2}.$$

Thus D is compatible with (only) ω iff if $b_i = 0$, i.e. $\omega_i = \sigma^i$.

Another "3-dim" Dirac operator (with torsion) is

$$\mathcal{D}_{\omega} = D_v + D_{\omega}.$$

REM: $(\mathcal{B}, \mathcal{H}_k, D_{\omega}^{(k)})$ are reducible since σ^3 commutes with $\mathcal{A} \& D$ (also classically).

Theta deformations

We can combine the two examples to construct a theta deformation of S.T. on principal \mathbb{T}^n -bundles.

Any classical M with isomery group $\mathbb{T}^{n+\ell} = \mathbb{T}^n \times \mathbb{T}^\ell$, $\ell \geq 2$, has a Rieffel quantization M_{θ} and this extends to equivariant S.T. over M [CoLa01].

Theta deformations

We can combine the two examples to construct a theta deformation of S.T. on principal \mathbb{T}^n -bundles.

Any classical M with isomery group $\mathbb{T}^{n+\ell} = \mathbb{T}^n \times \mathbb{T}^\ell$, $\ell \geq 2$, has a Rieffel quantization M_θ and this extends to equivariant S.T. over M [CoLa01]. There is an equivalent but more 'functorial' realization [ConD-V]:

$$C^{\infty}(M_{\theta}) \approx \left(C^{\infty}(M) \widehat{\otimes} C^{\infty}(\mathbb{T}_{\theta}^{n+\ell}) \right)^{\alpha \otimes \beta^{-1}}, \qquad (11)$$
$$\mathcal{H}_{\theta} := \left(L^{2}(M, \Sigma) \widehat{\otimes} L^{2}(\mathbb{T}_{\theta}^{n+\ell}) \right)^{\alpha \otimes \beta^{-1}}$$
$$D_{\theta} := D \otimes I,$$

where on the r.h.s. we have the invariant subalgebra or submodule. Similarly

$$J_{\theta} = J \otimes *.$$

(This spectral triple satisfies all additional 7 axioms of Connes).

Turns out that this behaves also 'functorially' for maps (eg. bundle projection) and respects the properties of principal \mathbb{T}^n -bundles.

Then M_{θ} constructed with the $(n + \ell) \times (n + \ell)$ matrix θ is a principal \mathbb{T}^n -bundle over N_{ϑ} constructed with the $\ell \times \ell$ submatrix ϑ of θ .

The right action of \mathbb{T}^n on M_{θ} is just

 $\alpha\otimes {\rm id}$

and the bundle inclusion $N_{\theta} \hookrightarrow M_{\theta}$ reads

 $p^*\otimes {\rm id},$

where p^* is the pullback bundle projection $p: M \to N$.

Turns out that this behaves also 'functorially' for maps (eg. bundle projection) and respects the properties of principal \mathbb{T}^n -bundles.

Then M_{θ} constructed with the $(n + \ell) \times (n + \ell)$ matrix θ is a principal \mathbb{T}^n -bundle over N_{ϑ} constructed with the $\ell \times \ell$ submatrix ϑ of θ .

The right action of \mathbb{T}^n on M_{θ} is just

 $\alpha\otimes \mathsf{id}$

and the bundle inclusion $N_{\theta} \hookrightarrow M_{\theta}$ reads

 $p^*\otimes {\sf id},$

where p^* is the pullback bundle projection $p: M \to N$. Next $(M_{\theta}, \mathcal{H}_{\theta}, D_{\theta})$ is projectable, with

 $\Gamma_{\theta} = \Gamma \otimes \mathrm{id}$

and $(D_{\theta})_h$ is just $(D_h)_{\theta}$. Moreover $\Omega_{D_{\theta}}^1(M_{\theta})$ is compatible with the de Rham calculus on \mathbb{T}^n and the conditions (a), (b) hold. Finally, the connection compatible with *D* is

$$(\omega_{\theta})_i := \omega_i \otimes 1.$$

APPLICATIONS (?):

- dynamical systems
- Hilbert modules and Kasparov product
- T-duality
- asymmetric quantum tori

REFS:

B. Ammann, C. Bär The Dirac Operator on Nilmanifolds and Collapsing Circle Bundles Ann. Global Anal. Geom. 16, no. 3, 221-253, (1998) arXiv:math/9801091v1 (1998)

L. Dabrowski, A. Sitarz Noncommutative circle bundles and new Dirac operators Comm.Math.Phys, 318, 1, 111-130 (2013) arXiv:1012.3055

L. Dabrowski, A. Sitarz, A. Zucca Dirac operator on noncommutative principal circle bundles Int. J. Geom. Methods Mod. Phys. 11, 1450012 (2014) arXiv:1305.6185

A. Zucca, L. Dabrowski Dirac operators on noncommutative principal torus bundles arXiv:1308.4738