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Classical Fourier theory and harmonic analysis

f : R → C, 2π-periodic (i.e., a C-valued function on the unit
circle T)

f continuous (in this talk)

cn := 1
2π

∫ π
−π f(t)e

−intdt n-th Fourier coeff. of f (n ∈ Z)

S[f ](t) :=
∑∞
n=−∞ cneint (formal) Fourier series of f

S[f ]N(t) :=
∑N
n=−N cne

int N -partial sum

Question: when does SN [f ] converge to f? In which sense?

Convergence: pointwise, uniform (in this talk), a.-e., absolute,
square mean, mean, ...

Kolmogorov (1923): example of a function in L1 (but /∈ L2)
whose Fourier series diverges a.-e., later improved to divergence
everywhere (1926).

Lusin problem (1920): does the Fourier series of any continuous
function converges a.-e.?

Carleson (1966): the Fourier expansion of any function in L2

converges a.-e. (later generalized by R. Hunt to Lp for any
p > 1)



Pointwise convergence

P. du Bois Reymond (1873) showed the existence of a conti-

nuous function for which CFS fails at a point

Theorem (Kolmogorov): There is a function in L1(T) such

that lim supN→∞ |SN [f ](t)| = ∞ for every t ∈ [−π, π)

Theorem (Carleson): If f ∈ L2(T), then limN→∞ SN [f ](t) =

f(t) for almost every t in [−π, π) (In particular, Lusin con-

jecture is valid: if f ∈ C(T), then its Fourier series converges

to f a.-e. in [−π, π))

Theorem (Kahane and Katznelson) If E ⊂ [−π, π) is a set of

(Lebesgue) measure 0, then there exists an f ∈ C(T) such

that lim supN→∞ |SN [f ](t)| = ∞ for every t ∈ E

Theorem (Hunt): If f ∈ Lp(T), 1 < p < ∞, then one has

limN→∞ SN [f ](t) = f(t) for almost every t in [−π, π)



Norm convergence: a standard result

f piecewise continuous on [a, b] if it is continuous everywhere

except at finitely many points x1, . . . , xk ∈ [a, b] and the

left/right limits of f exist at each xi

f piecewise smooth if f and f ′ are piecewise continuous

Theorem: f : R → R 2π-periodic and piecewise smooth.

Then the Fourier series of f converges to f uniformly in every

interval [c, d] in which f is continuous.

Open Question: characterize the class of continuous f ’s for

which the Fourier series of f converges uniformly to f .



Summability: Abel, Cesáro, Poisson, Fejér, ...

f ∈ C(T), ek(z) = zk (z ∈ T, k ∈ Z), f̂(k) =
∫
T ekfdµ,

µ normalized Haar measure on T,
∑
k∈Z f̂(k)ek (formal) Fou-

rier series of f .

Let (ϕn)n∈N ⊂ `1(Z). For each n ∈ N, define

Mn(f) :=
∑
k∈Z

ϕn(k)f̂(k)ek

(1) the series in the r.h.s. is absolutely convergent w.r.t. the

uniform norm ‖ · ‖∞ on C(T).

(2) ‖Mn(f)‖∞ ≤ ‖ϕn‖1‖f‖∞, thus eachMn is a bounded

linear map on (C(T), ‖ · ‖∞) with ‖Mn‖ ≤ ‖ϕn‖1.

(3) Mn(f) converges uniformly (necessarily to f) iff

(i) ϕn → 1 pointwise on Z
(ii) supn ‖Mn‖ <∞.

In this case, say that C(T) has the summation property

w.r.t. (ϕn).

Many obvious candidates for (ϕn) satisfy (i) and the main

difficulty is to compute (or estimate) ‖Mn‖ !



Examples:

• ϕn(k) = dn(k) := 1 if |k| ≤ n and 0 otherwise. Then

‖Mn‖ → ∞, showing the existence of functions in C(T)

whose Fourier series diverges at some point;

• ϕn(k) = fn(k) := 1− |k|
n if |k| ≤ n−1 and 0 otherwi-

se. Then ‖Mn‖ = 1, ∀n, showing that the Fourier series

of any f ∈ C(T) is uniformly Fejér summable to f ;

• ϕn(k) = pn(k) := rn|k|, where rn ∈ (0,1), rn → 1

as n → ∞. (More generally, consider pr(k) = r|k| for

r ∈ (0,1), introduceMr and let r → 1. Use nets instead

of sequences to accomodate for such situations!) Then

‖Mn‖ = 1(= ‖Mr‖), showing that the Fourier series

of any f ∈ C(T) is uniformly Abel-Poisson summable to

f



Dirichlet kernel Dn(x) =
sin ((n+1

2)x)
sin (x2)

, n ∈ N

Fejér kernel Fn(x) = 1
n+1(

sin ((n+1)x2)
sin (x2)

)2, n ∈ N

Poisson kernel Pr(θ) = 1
2π

1−r2
1−2r cos θ+r2

, r ∈ (0,1)



TERMINOLOGY



Some analytic invariants

Def. A C∗-algebraA is nuclear if there exists a unique C∗-norm

on the algebraic tensor product ofA with any other C∗-algebra

B, namely for any other C∗-algebra B, one has ‖ · ‖min =

‖ · ‖max on A� B.

A Banach space E has the Metric Approximation Property

(M.A.P.) if there exists a net of finite rank contractions on

E approximating the identity map in the SOT on B(E)

(i.e., (Tα) ⊂ B(E), ‖Tα‖ ≤ 1, Tα(E) f.-d. for all α and

limα ‖Tα(x)− x‖ = 0, ∀x ∈ E)

nuclear (⇔ C.P.A.P.) ⇒ M.A.P., but the converse is false

For instance, B(H) does not have the M.A.P. (Thus it is not

nuclear, or equivalently it has not the C.P.A.P.).

C∗r(Γ) nuclear iff Γ amenable

C∗r(Fn) has the M.A.P.



Group cohomology

• σ normalized 2-cocycle on Γ:

σ : Γ× Γ → T,

σ(g, h)σ(gh, k) = σ(h, k)σ(g, hk) (g, h, k ∈ Γ),

σ(g, e) = σ(e, g) = 1 (g ∈ Γ)

• Z2(G,T), the set of normalized 2-cocycles, abelian group

(under pointwise product, inverse σ−1 = σ, identity the

trivial cocycle 1.)

• β ∈ Z2(Γ,T) coboundary if β(g, h) = b(g)b(h)b(gh)
for all g, h ∈ Γ, for some b : Γ → T, b(e) = 1; then

β = db (b uniquely determined up to multiplication by a

character of Γ).

• B2(G,T), the set of all coboundaries, a subgroup of

Z2(G,T).

• H2(G,T) := Z2(G,T)/B2(G,T) quotient group, with

elements [σ]; also write σ̃ ∼ σ when [σ̃] = [σ],
σ, σ̃ ∈ Z2(G,T).



Example:

Γ = ZN , N ∈ N.

Given an N ×N real matrix Θ, define σΘ ∈ Z2(ZN ,T) by

σΘ(x, y) = eix·(Θy).

Then σΘ ∈ B2(ZN ,T) whenever Θ ∈ MN(R) is symme-

tric: indeed, in this case, σΘ = dbΘ where

bΘ(x) := e−i
1
2x·(Θx)

In general, [σΘ] = [σΘ̃] where Θ̃ denotes the skew-symmetric

part of Θ.

Every element inH2(ZN ,T) may be written as [σΩ] for some

skew-symmetric Ω.



Projective regular representations

A σ-projective unitary representation U of Γ on the Hilbert

space H is a map from Γ into the group U(H) of unitaries on

H such that

U(g)U(h) = σ(g, h)U(gh) (g, h ∈ Γ).

Then U(e) = IH (the identity operator on H) and

U(g)∗ = σ(g, g−1)U(g−1), g ∈ Γ.

If we pick b : Γ → T satisfying b(e) = 1 and set Ũ = b U ,

then Ũ becomes a σ̃-projective unitary representation of Γ on

H with 2-cocycle σ̃ ∼ σ given by σ̃ = (db)σ. Such a Ũ is

called a perturbation of U (by b).

If ω ∈ Z2(Γ,T) and V is some ω-projective unitary represen-

tation of Γ on K, can form the tensor product representation

U ⊗ V acting on H ⊗ K in the obvious way, which is then

σω-projective. Further, letting U denote the conjugate of U,

which acts as U on the conjugate Hilbert space H of H, one

sees easily that U is σ-projective.



To each σ ∈ Z2(Γ,T) one may associate a left (resp. right)

regular σ-projective unitary representation λσ (resp. ρσ) of Γ

on `2(Γ) defined by

(λσ(g)ξ)(h) = σ(h−1, g)ξ(g−1h),

(ρσ(g)ξ)(h) = σ(h, g)ξ(hg),

ξ ∈ `2(Γ), g, h ∈ Γ.

Then λσ ∼= ρσ, in fact

ρσ(g) = Uλσ(g)U, g ∈ Γ

where U is the involutive unitary operator on `2(Γ) given by

Uξ(g) = ξ(g−1), ξ ∈ `2(Γ), g ∈ Γ.

Choosing σ = 1 gives the usual left and right regular repre-

sentations of Γ, denoted by λ and ρ.



It is also useful to introduce their unitarily equivalent versions

Λσ and Rσ, still acting on `2(Γ), given by

Λσ(g) = Sσλσ(g)S
∗
σ, Rσ(g) = Sσρσ(g)S

∗
σ, g ∈ Γ,

with Sσ the unitary multiplication operator on `2(Γ)

(Sσξ)(g) = σ(g, g−1)ξ(g), ξ ∈ `2(Γ), g ∈ Γ.

In fact, one could just assume that σ(g, g−1) = 1 for all

g ∈ Γ, which would not be a real loss of generality as this

may be achieved by pertubing with a coboundary. But in some

cases it seems convenient not to “regularize” the given cocycle

in this way.

Letting {δh}h∈Γ denote the canonical basis of `2(Γ), one has

Λσ(g)δh = σ(g, h)δgh, g, h ∈ G

and, in particular, Λσ(g)δe = δg. We also record that

(Λσ(g)ξ)(h) = σ(g, g−1h)ξ(g−1h), ξ ∈ `2(Γ), g, h ∈ Γ

and the following commutation relations

Λσ(g)ρσ(h) = ρσ(h)Λσ(g),

λσ(g)Rσ(h) = Rσ(g)λσ(h),

hold for all g, h ∈ Γ. Hence the “right” companion of Λσ is

ρσ (while Rσ is the one for λσ).



Twisted group operator algebras

Def.: the reduced twisted group C∗-algebra C∗r(Γ, σ) (re-

sp. the twisted group von Neumann algebra L(Γ, σ)) is the

C∗-subalgebra (resp. von Neumann subalgebra) of B(`2(Γ))

generated by the set Λσ(Γ), that is, as the closure in the

operator norm (resp. weak operator) topology of the *-algebra

C(Γ, σ) :=Span(Λσ(Γ)).

Set δ = δe, a cyclic ( = generating) vector for all these alge-

bras.

The (normal) state τ on these algebras given by restricting

the vector state ωδ associated to δ is easily seen to be tracial.

Further, τ is faithful as δ is separating for L(Γ, σ). Hence

L(Γ, σ) is finite as a von Neuman algebra.



Remark:

• L(Γ, σ) is a factor iff the conjugacy class of each non-

trivial σ-regular element in Γ is infinite (by definition, g ∈
Γ is σ-regular whenever σ(g, h) = σ(h, g) for all h ∈ Γ

commuting with g).

• the commutant of L(Γ, σ) is the von Neumann algebra

generated by ρσ(Γ), that is, we have

L(Γ, σ)′ = ρσ(Γ)′′,

or equivalently

L(Γ, σ) = ρσ(Γ)′.

One inclusion follows readily from the commutation rela-

tions, while the converse inclusion can also be shown by

going through some elementary, but somewhat more in-

volved considerations. A cheap way to deduce equality di-

rectly is to apply (pre-)Tomita-Takesaki theory to the pair

(L(Γ, σ), δ) : the J-operator is easily seen to be given by

(Jσξ)(g) = σ(g, g−1)ξ(g−1) and one computes that

JσΛσ(g)Jσ = ρσ(g), g ∈ Γ. Thus

L(Γ, σ)′ = JσL(Γ, σ)Jσ = (JσΛσ(Γ)Jσ)
′′ = ρσ(Γ)′′.



Also, we may consider L(Γ, σ) as a Hilbert algebra w.r.t. the

inner product < x, y >:= τ(y∗x) = (xδ, yδ). Denoting by

‖ · ‖2 the associated norm, the linear map

x→ x̂ := xδ

is then an isometry from (L(Γ, σ), ‖ · ‖2) to (`2(Γ), ‖ · ‖2),
which sends Λσ(g) to δg for each g ∈ Γ. (This map is the

analogue of the Fourier transform when Γ is abelian, σ = 1,

and one identifies L(Γ) with L∞(Γ̂)).

The value x̂(g) is called the Fourier coefficient of x ∈ L(Γ, σ)

at g ∈ Γ. Considering τ as the normalized “Haar functional”

on L(Γ, σ), we have indeed

x̂(g) = (xδ, δg) = (xδ,Λσ(g)δ) = τ(xΛσ(g)
∗).

Further, we have ‖x̂‖∞ ≤ ‖x̂‖2 = ‖x‖2 ≤ ‖x‖.



Fourier Series

The (formal) Fourier series of x ∈ L(Γ, σ) is defined as∑
g∈Γ x̂(g)Λσ(g). This series does not necessarily converge

in the weak operator topology. However, we have

x =
∑
g∈Γ

x̂(g)Λσ(g)

(convergence w.r.t. ‖ · ‖2.)

The Fourier series representation of x ∈ L(Γ, σ) is unique.



Let f ∈ `1(Γ). The series
∑
g∈Γ f(g)Λσ(g) is clearly abso-

lutely convergent in operator norm and we shall denote its sum

by πσ(f). Then we have ‖πσ(f)‖ ≤ ‖f‖1 and

π̂σ(f) = (
∑
g∈Γ

f(g)Λσ(g))δ =
∑
g∈Γ

f(g)δg = f.

Let now x ∈ L(Γ, σ) and assume that x̂ ∈ `1(Γ). Then we

get π̂σ(x̂) = x̂, hence πσ(x̂) = x. Therefore, in this case,

we have ‖x‖ = ‖πσ(x̂)‖ ≤ ‖x̂‖1 and

x =
∑
g∈Γ

x̂(g)Λσ(g) (convergence w.r.t. ‖ · ‖ ),

which especially shows that x ∈ C∗r(Γ, σ). Hence, setting

CF (Γ, σ) := {x ∈ C∗r(Γ, σ) |
∑
g∈Γ x̂(g)Λσ(g) is con-

vergent in operator norm } we have πσ(`1(Γ)) ⊆ CF (Γ, σ).

As in classical Fourier analysis, one may consider other kinds

of decay properties to ensure convergence of Fourier series in

operator norm!



The subspace of `2(Γ) defined by

U(Γ, σ) := {x̂ | x ∈ L(Γ, σ)}

becomes a Hilbert algebra when equipped with the involu-

tion x̂∗ := x̂∗ and the product x̂ ∗ ŷ := x̂y. We have

x̂∗(g) = σ(g, g−1)x̂(g−1). Further, as our notation indica-

tes, the product x̂∗ŷ may be expressed as a twisted convolution

product.

To see this, let ξ, η ∈ `2(Γ). The σ-convolution product ξ ∗η
is defined as the complex function on Γ given by

(ξ ∗ η)(h) =
∑
g∈Γ

ξ(g)σ(g, g−1h)η(g−1h), h ∈ Γ.

As |(ξ ∗ η)(h)| ≤ (|ξ| ∗ |η|)(h), h ∈ Γ, it is straightforward

to check that ξ ∗ η is a well defined bounded function on Γ

satisfying

‖ξ ∗ η‖∞ ≤ ‖|ξ| ∗ |η|‖∞ ≤ ‖ξ‖2‖η‖2.

We notice that δa ∗ δb = σ(a, b)δab, a, b ∈ Γ.

Now, if x ∈ L(Γ, σ) and η ∈ `2(Γ), one has xη = x̂∗η. This

implies that x̂y = xyδ = xŷ = x̂ ∗ ŷ for all x, y ∈ L(Γ, σ),

where the last expression is defined through the σ-convolution

product, thus justifying our comment above.



BTW, U(Γ, σ) may be described as the space of all ξ ∈ `2(Γ)

such that ξ ∗ η ∈ `2(Γ) for all η ∈ `2(Γ) and the resulting

linear map η → ξ ∗ η from `2(Γ) into itself is bounded.

Since π̂σ(f) = f for all f ∈ `1(Γ), we have `1(Γ) ⊆
U(Γ, σ). Further, `1(Γ) is a *-subalgebra of U(Γ, σ) which

becomes a unital Banach *-algebra with respect to the `1-

norm ‖ · ‖1, the unit being given by δ. This Banach *-algebra

is usually denoted by `1(Γ, σ). Its involution is explicitely given

by f∗(g) = σ(g, g−1)f(g−1), g ∈ Γ.

Consider the map πσ : `1(Γ) → C∗r(Γ, σ) ⊆ B(`2(Γ))

defined by f → πσ(f). Clearly we have

πσ(f)η = f ∗ η, f ∈ `1(Γ), η ∈ `2(Γ).

Further, πσ is easily seen to be a faithful *-representation

of `1(Γ, σ) on `2(Γ). Hence, the enveloping C∗-algebra of

`1(Γ, σ) is just the completion of `1(Γ, σ) w.r.t. the norm

‖f‖max := sup
π
{‖π(f)‖}

where the supremum is taken over all non-degenerate *-representations

of `1(Γ, σ) on Hilbert spaces. This C∗-algebra is denoted by

C∗(Γ, σ) and called the full twisted group C∗-algebra asso-

ciated to (Γ, σ). We will identify `1(Γ, σ) with its canonical

image in C∗(Γ, σ), which is then generated as a C∗-algebra

by its canonical unitaries δg.



The twisted group C∗-algebras of the form C∗(ZN , σΘ) are

often called noncommutative N-tori (since C∗(ZN , σΘ) is ∗-
isomorphic to C(ZN) in the case where Θ is symmetric).

Any non-degenerate ∗-representation of `1(Γ, σ) extends un-

iquely to a non-degenerate ∗-representation of C∗(Γ, σ), and

we will always use the same symbol to denote the extensi-

on. There is a bijective correspondence U → πU between

σ-projective unitary representations of Γ and non-degenerate

∗-representations of C∗(Γ, σ) determined by

πU(f) =
∑
g∈G

f(g)U(g), f ∈ `1(Γ),

(the series above being obviously absolutely convergent in ope-

rator norm), the inverse correspondence being simply given by

Uπ(g) = π(δg), g ∈ Γ. As πΛσ = πσ we have

C∗r(Γ, σ) = πσ(`
1(Γ, σ))‖·‖ = πσ(C

∗(Γ, σ)).

When G is amenable, then πσ is faithful.



Summary (case σ = 1):

C∗(Γ)

↓ λ

CΓ(= KΓ) ↪→ `1(Γ) ⊂ C∗r(Γ) ⊂ L(Γ) ↪→ `2(Γ)

and

‖f‖2 ≤ ‖λ(f)‖ ≤ ‖f‖1



The dual space of C∗(Γ, σ) may be identified as a subspace
B(Γ, σ) of `∞(Γ) through the linear injection Φ : φ →
φ̃ where φ̃(g) := φ(δg), g ∈ Γ. Equip B(Γ, σ) with the
transported norm ‖Φ(φ)‖ := ‖φ‖. Now, if φ is a positive
linear functional on C∗(Γ, σ), then φ̃ is σ-positive definite
according to the following definition : a complex function ϕ on
Γ is σ-positive definite (σ-p.d.) whenever we have

n∑
i,j=1

cicjϕ(g
−1
i gj)σ(gi, g

−1
i gj) ≥ 0

for all n ∈ N, c1, . . . cn ∈ C, g1, . . . gn ∈ Γ.
One checks readily that ϕ is σ-p.d. if and only if there exists a
σ-projective unitary representation U of Γ on a Hilbert space
H and ξ ∈ H (which may be chosen to be cyclic for U) s.t.

ϕ(g) = (U(g)ξ, ξ), g ∈ Γ,

which implies that ϕ is then bounded with ‖ϕ‖∞ = ‖ξ‖2 =
ϕ(e). Further, as we then have (πU(f)ξ, ξ) =

∑
g∈G f(g)ϕ(g)

for all f ∈ `1(Γ), we also get an unambiguously defined
positive linear functional Lϕ on C∗(Γ, σ) via Lϕ(x) :=
(πU(x)ξ, ξ), which satisfies that Φ(Lϕ) = ϕ. Denoting by
P (Γ, σ) the cone of all σ-p.d. functions on Γ, then

B(Γ, σ) = Span(P (Γ, σ)).

By considering the universal *-representation of C∗(Γ, σ), one
deduces further that B(Γ, σ) consists precisely of all coeffi-
cient functions associated to σ-projective unitary representati-
ons of Γ.



Remark: if ϕ is σ-p.d. and ψ is ω-p.d. for some ω ∈ Z2(Γ,T)

then ϕψ is σω-p.d. Hence B(Γ, σ)B(Γ, ω) ⊆ B(Γ, σω).

Especially, B(Γ, σ) is not a priori an algebra w.r.t. to point-

wise multiplication (unless we have σ = 1, in which case it is

usually called the Fourier-Stieltjes algebra of Γ). It is not a prio-

ri closed under complex conjugation either : if ϕ ∈ P (Γ, σ),

then ϕ ∈ P (Γ, σ). Similarly, if ϕ̃(g) := σ(g, g−1)ϕ(g−1),

then ϕ̃ ∈ P (Γ, σ). Hence ϕ∗ ∈ P (Γ, σ), where ϕ∗(g) :=

σ(g, g−1)ϕ(g−1). (This just corresponds to the fact that

Lϕ∗ = (Lϕ)∗ is then also positive linear functional onC∗(Γ, σ)).

As C∗r(Γ, σ) is a quotient of C∗(Γ, σ), we may identify its du-

al space as a closed subspace Br(Γ, σ) of B(Γ, σ) consisting

of the span of all σ-p.d. functions on Γ associated to unitary

representations of Γ which are weakly contained in Λσ (that is,

such that the associated representation of C∗(Γ, σ) is weakly

contained in πσ). Further, the predual of L(Γ, σ) can be re-

garded as a closed subspace of the dual of C∗r(Γ, σ), hence

as a closed subspace A(Γ, σ) of Br(Γ, σ), and of B(Γ, σ),

which may be described as the set of all coefficient functions

of Λσ.



Dual Spaces: a summary (untwisted case)

P (Γ) = cone of all pos.def. functions on Γ

A(Γ)(' L(Γ)∗) = set of all matrix coefficients of λ, the

Fourier algebra of Γ

Br(Γ)(' C∗r(Γ)∗) set of all matrix coefficients of unitary

rep’s of Γ weakly contained in λ

B(Γ)(' C∗(Γ)∗) = set of all matrix coefficients of unitary

reps of Γ, the Fourier-Stieltjes algebra of Γ

`2(Γ) ⊆ A(Γ) ⊆ Br(Γ) ⊆ B(Γ) = spanP (Γ)



Amenable groups

Γ is amenable if there exists a (left or/and right) translation

invariant state on `∞(Γ). Amenability of Γ can be formulated

in a huge number of equivalent ways. In particular, TFAE:

1) Γ has a Følner net {Fα}, that is, each Fα is a finite

non-empty subset of Γ and we have

lim
α

|gFα4Fα|
|Fα|

= 0, g ∈ Γ . (1)

2) there exists a net (ϕα) of normalized positive definite

functions on Γ with finite support such that ϕα → 1

pointwise on Γ.

(As usual, a complex function on Γ is called normalized

when it takes the value 1 at e).

3) there exists a net {ψα} of normalized positive definite

functions in `2(Γ) such that ψα → 1 pointwise on Γ.

4) |
∑
g∈Γ f(g) | ≤ ‖

∑
g∈G f(g)λ(g)‖ (= ‖π1(f)‖) for

all f ∈ `1(Γ).



Here, take 1) as the running definition of the amenability of Γ,

and regard 2), 3) and 4) as properties.

Indeed, assume 1) holds and set ξα := |Fα|−1/2χFα, which

is a unit vector in `2(Γ). Then 2) is satisfied with ϕα(g) :=

(λ(g)ξα, ξα) = |gFα∩Fα|
|Fα| : each ϕα is clearly p.d., has finite

support given by supp(ϕα) = Fα · F−1
α and the Følner

condition (1) is equivalent to ϕα → 1 pointwise. Condition 3)

is then trivially satisfied with ψα = ϕα. Further, letting ε being

the state on B(`2(Γ)) obtained by picking any weak*-limit

point of the net of vector states {ωξα}, we get ε(λ(g)) = 1

for all g ∈ Γ, hence

|
∑
g∈Γ

f(g) | = | ε(
∑
g∈Γ

f(g)λ(g)) | ≤ ‖
∑
g∈Γ

f(g)λ(g)‖

for all f ∈ `1(Γ), which shows that 4) holds.



Haagerup property

Γ has the Haagerup property if there exists a net {ϕα} of

normalized positive definite functions on Γ, vanishing at infinity

on Γ (that is, ϕα ∈ c0(Γ) for all α), and converging pointwise

to 1. When Γ is countable, this property is equivalent to the

fact that there exists a negative definite function h : Γ →
[0,∞) which is proper, that is, limg→∞ h(g) = ∞, or,

equivalently, (1+h)−1 ∈ c0(Γ). We will call such a function

h a Haagerup function on Γ.

This class of groups includes all amenable groups (by 3) and

also the nonabelian free groups (Haagerup).



Negative definite functions (case σ = 1)

Recall that a function ψ : Γ → C is called negative definite

(or conditionally negative definite) whenever ψ is Hermitian,

that is ψ(g−1) = ψ(g) for all g ∈ Γ, and

n∑
i,j=1

cicjψ(g−1
i gj) ≤ 0

∀ n ∈ N, g1, . . . , gn ∈ Γ, c1, . . . , cn ∈ C :
∑n
i=1 ci = 0.

By Schoenberg theorem, a function ψ : Γ → C is negative

definite iff e−tψ is p.d. for all t > 0 (equivalently, rψ is p.d

for all 0 < r < 1).

(t + ψ)−1 is p.d. for all t > 0 whenever ψ : Γ → {z ∈
C,<(z) ≥ 0} is negative definite.

If ψ : Γ → {z ∈ C,<(z) ≥ 0} is negative definite and

satisfies ψ(e) ≥ 0, then ψ1/2 is negative definite.



Example: consider a homomorphism b : Γ → H (Hilbert

space H regarded as a group w.r.t. addition). Then ψ(g) :=

‖b(g)‖2 is negative definite on Γ. Especially, |·|2 denoting the

Euclidean norm-function on ZN , N ∈ N, it follows that | · |22,
and therefore also | · |2 (taking the square root), are negative

definite on ZN . The | · |1-norm function on ZN is also negati-

ve definite. Last claim proved by induction : the inductive step

being straightforward, it suffices to show this when N = 1.

Then appeal to Schoenberg’s theorem : it suffices to show that

ϕ(m) := r|m| is p.d. on Z for all 0 < r < 1. Let U denote

the unitary representation of Z on L2(T) associated to the uni-

tary operator on L2(T) given by multiplication with the func-

tion z → z−1, z ∈ T. With ξr :=
∑∞
k=−∞ r|k|ek ∈ L2(T)

for r ∈ (0,1), one has ϕ(k) = r|k| = (U(k)ξr, ξr) for all

k ∈ Z, and the assertion is then clear.



Length

An interesting class of functions on Γ are the so-called length

functions (which are basically left Γ-invariant metrics on Γ).

Definition: A function L : Γ → [0,∞) is a length function if

L(e) = 0,

L(g−1) = L(g)

L(gh) ≤ L(g) + L(h)

for all g, h ∈ Γ.



Examples:

(1) If Γ acts isometrically on a metric space (X, d) and x0 ∈
X, then

L(g) := d(g · x0, x0)

gives a geometric length function on Γ.

(2) If Γ is finitely generated and S is a finite generator set for

Γ, then the obvious word-length function g → |g|S (w.r.t. to

the letters from S∪S−1) is an algebraic length function on Γ.

All such algebraic length functions are equivalent in a natural

way. Any algebraic length function is clearly proper.

Remark: for any t > 0 and any algebraic length function L

on Γ, the “Gaussian” function e−tL
2

is summable (this cor-

responds to the fact that the naturally associated unbounded

Fredholm module (`2(Γ), DL) is θ-summable in Connes’ ter-

minology).



Growth

Length functions may be used to define growth conditions.

Let L be a length function on Γ; look at the ball of radius r

Br,L := {g ∈ Γ|L(g) ≤ r}, r ∈ R, r ≥ 0.

Then Γ is said to be

(i) of polynomial growth (w.r.t. L) if there exist some con-

stants K, p > 0 such that, for all r ≥ 0,

|Br,L| ≤ K(1 + r)p

(ii) exponentially bounded ( w.r.t. L) if for any b > 1, there

is some r0 ∈ R, r0 ≥ 0, such that, for all r ≥ r0,

|Br,L| < br

Clearly, exponential boundedness is weaker than polynomial

growth.

If Γ is finitely generated, one just says that Γ has polynomial

growth (resp. is exponentially bounded) if the property holds

w.r.t. some or, equivalently, any algebraic length on Γ. Any

exponentially bounded group is necessarily amenable.



A famous result of M. Gromov says that Γ is of polynomial

growth if (and only if) Γ is almost nilpotent (the only if part

being due to W. Woess). Further, R. I. Grigorchuk has produced

examples of exponentially bounded groups which are not of

polynomial growth. Finally, if Γ is finitely generated and has

polynomial growth (resp. is exponentially bounded) w.r.t. to

some length function L on Γ, then Γ has polynomial growth

(resp. is exponentially bounded).

Remark: Algebraic length functions on finitely generated groups

have been used to define (formal) growth series of the type∑
g∈G z

LS(g); We consider summability aspects of this kind

of series (for real z between 0 and 1) in the case where the

length function is not necessarily algebraic.



Γ fin. gen., S generator set

Theorem:

1) If Γ has polynomial growth then {Bk,LS}k is a Følner se-

quence for Γ

2) If Γ has subexponential growth then there is a subsequence

of {Bk,LS}k which is a Følner sequence for Γ

3) Γ has polynomial growth iff it is almost nilpotent

4) Γ may have subexponential growth without having polyno-

mial growth



Remark (length functions vs. Haagerup property): assume that

h is a Haagerup function for some (countable) Γ s.t. WLOG

h(e) = 0 and h(g) > 0 for g 6= e. Then L := h1/2 is

negative definite, and it is also a length function on Γ. Hence

L is a Haagerup length function on Γ. This means that a

countable group has the Haagerup property if and only if it

has a Haagerup length function.



In some cases, a Haagerup length function is naturally geome-

trically given: this is for example the case when Γ acts isome-

trically and metrically properly on a tree, or on a R-tree, X

(equipped with its natural metric). In general, one can show

that a countable group Γ has the Haagerup property if and

only if there exists an isometric and metrically proper action

of Γ on some metric space (X, d), a unitary representation U

of Γ on some Hilbert space H and a map c : X × X → H
satisfying the following conditions :

c(x, z) = c(x, y)+c(y, z), c(g ·x, g ·y) = U(g) c(x, y)

‖c(x, y)‖ → ∞ as d(x, y) →∞, for all x, y, z ∈ X, g ∈ G.

In this case, picking any x0 ∈ X, h(g) := d(g · x0, x0)2 is

then a Haagerup function for Γ, while L(g) := d(g · x0, x0)
is a Haagerup length function for Γ.



In the case of finitely generated groups, a Haagerup length

function is sometimes algebraically given : this is at least true

for finitely generated free groups and Coxeter groups.

Remark: let Γ be finitely generated and assume that it has

an algebraic length function L such that L2 is negative defi-

nite (this implies that L itself is negative definite). Then Γ is

amenable: indeed, the “Gaussian” net of functions on Γ defined

by ψt := e−tL
2
, t > 0 consists then of summable functions

which are all normalized and p.d., and it converges pointwise

to 1 on Γ as t→ 0+.



PREPARATION



Fourier series and multipliers

Setup: A = C∗r(Γ, σ) ⊂ B = L(Γ, σ) ⊂ B(`2(Γ))

τ canonical tracial state on B

To each x ∈ B, attach its (formal) Fourier series∑
g∈Γ

x̂(g)Λσ(g) ,

where Λσ(g) is the (left) σ-projective regular representation
of Γ on `2(Γ) and x̂(g) = τ(xΛσ(g)∗) is the Fourier coef-
ficient of x at g

This series is trivially convergent in the ‖ · ‖2 norm, but it is
not necessarily convergent in the WOT on B (even if σ = 1).

Main Goal: set up a general framework for discussing norm
convergence of Fourier series in twisted group C∗-algebras of
discrete groups

However, in general, for x ∈ A, the Fourier series will not
always be convergent to x in norm: for abelian Γ (say Z) and
σ trivial one has C∗r(Γ,1) ' C(Γ̂) and recover the classical
situation!

Way out: summation properties of Fejér, resp. Abel-Poisson
type!

Tool: multipliers (Haagerup, 1982)



Let ϕ : Γ → C be positive definite. Then there exists a unique
completely positive map Mϕ ∈ B(C∗r(Γ)) s.t., for all g ∈ Γ,

Mϕ(λ(g)) = ϕ(g)λ(g)

Also, ‖Mϕ‖ = ϕ(e).

In particular, such a ϕ is a “multiplier” on Γ.

Haagerup’s results (1982): although Fn is not amenable,C∗r(Fn)
has the M.A.P. (n ≤ ∞).

Let Γ = F2

| · | the word length function w.r.t. S = {a, b, a−1, b−1}

• The function F2 3 g 7→ e−λ|g| is (vanishing at infinity
and) positive definite, for every λ > 0

By Schoenberg theorem, | · | is (proper) negative definite

• ‖λ(f)‖ ≤ 2(
∑
g∈Γ |f(g)|2(1 + |g|)4)1/2, ∀f ∈ CΓ

• Let ϕ : Γ → C be s.t.

K := sup
g∈Γ

|ϕ(g)|(1 + |g|)2 <∞ .

Then ϕ is a multiplier with ‖ϕ‖ ≤ 2K.



a-T-menable groups

A discrete group Γ has the Haagerup property (or is a-T-

menable) if there exists a proper conditionally negative type

function d on Γ (in that case, one can choose d to be a length

function)

Bekka-Cherix-Jolissaint-Valette:

For a second countable, l.c. group G, TFAE:

(1) there exists a continuous function d : G → R+ which is

of conditionally negative type and proper, that is,

limg→∞ d(g) = ∞

(2) G has the Haagerup approximation property, in the sense

of C.A. Akemann and M. Walter or M. Choda, or property

C0 in the sense of V. Bergelson and J. Rosenblatt: the-

re exists a sequence (ϕn)n∈N of continuous, normalized

(i.e., ϕn(e) = 1) positive definite functions on G, va-

nishing at infinity on G, and converging to 1 uniformly on

compact subsets of G. (In other words, C0(G) has an ap-

proximate unit of continuous normalized positive definite

functions).



(3) G is a-T-menable, as Gromov meant it in 1986: there

exists a (strongly continuous, unitary) representation of

G, weakly containing the trivial representation, whose ma-

trix coefficients vanish at infinity on G (a representation

with matrix coefficients vanishing at infinity will be called

a C0-representation)

(4) G is a-T-menable, as Gromov meant it in 1992: there

exists a continuous, isometric action α of G on some

affine Hilbert space H, which is metrically proper (that

is, for all bounded subsets B of H, the set {g ∈ G :

αg(B) ∩B 6= ∅} is relatively compact in G).

Moreover, if these conditions hold, one can choose in (1) a pro-

per, continuous, conditionally negative definite function d such

that d(g) > 0 for all g 6= e, and similarly the representation

π in (3) may be chosen such that, for all g 6= e, there exists

a unit vector ξ ∈ H with |(ξ, π(g)ξ)| < 1. In particular, π is

faithful.



Jolissaint’s Property RD

For any s ≥ 0, define the s-Sobolev spaceHs
` (Γ) := (CΓ)‖·‖`,s,

where

‖f‖`,s =
√ ∑
g∈Γ

|f(g)|2(1 + `(g))2s = ‖f(1+`)s‖2, f ∈ CΓ

is the weighted `2-norm associated with the length `.

A discrete group Γ has property RD (rapid decay) w.r.t. some

length function ` if there exists positive reals C, s such that,

for all f ∈ CΓ,

‖λ(f)‖ ≤ C‖f‖`,s .

A group Γ has property RD if it satisfies property RD w.r.t.

some length function `.

[Roughly, RD w.r.t. ` means that 1
(1+`)s : `2(Γ) ↪→ C∗r(Γ)]

Rem. if Γ is amenable, then it has RD (w.r.t. `) iff Γ has

polynomial growth (w.r.t. `).



The functions in the intersection of all Sobolev spaces

H∞
` (Γ) =

⋂
s≥0

Hs
` (Γ)

are called rapidly decaying functions, as their decay at infinity is

faster than any inverse of a polynomial in `. Property RD w.r.t.

` is equivalent to having H∞
` (Γ) ⊆ C∗r(Γ), which somehow

explains the terminology.

Example: Γ = Z, under Fourier transform C∗r(Z) is isomor-

phic to C(T), and H∞
` (Γ) corresponds to smooth functions.



Decay properties

Let L be a linear space s.t. KΓ ⊂ L ⊂ `2Γ.

Say that (G, σ) has the L-decay property if there exists a norm

‖ · ‖′ on L such that

i) ∀ε > 0 there exists a finite F0 ⊂ Γ such that ‖ξχF‖′ < ε

for all finite F ⊂ Γ disjoint from F0

ii) the map f 7→ πσ(f) from (KΓ, ‖·‖′) to (C∗r(Γ, σ), ‖·‖)
is bounded.

Under very mild conditions, if (G,1) has L-decay then (G, σ)

has L-decay, too.

Theorem: Suppose that (G, σ) has L-decay. Then

(1) Given ξ ∈ L, the series
∑
g∈Γ ξ(g)Λσ(g) converges in

operator norm to some a ∈ C∗r(Γ, σ) such that â = ξ.

Set a =: π̃σ(ξ).

(2) π̃σ(L) = {x ∈ L(Γ, σ) | x̂ ∈ L)} ⊂ CF (Γ, σ).



Clearly L = `1(Γ) always works

For other examples, look at the weighted spaces

Lpκ := {ξ : Γ → C | ξκ ∈ `p(Γ)} ⊆ `p(Γ) ,

1 ≤ p ≤ ∞, equipped with the norm ‖ξ‖p,κ = ‖ξκ‖p.
Here, κ :∈ Γ → [1,+∞).

Note that Lpκ ⊂ Lqκ, 1 ≤ p ≤ q ≤ +∞.



Def. Say that (G, σ) is κ-decaying if it has the L2
κ-decay pro-

perty (w.r.t. ‖ · ‖2,κ).

Examples:

(i) Γ fin.gen., L algebraic length function. For t > 0, set

κt = etL
2
, then (κt)−1 ∈ `2Γ and Γ is κt-decaying

(ii) any Γ with subexponential growth is aL-decaying, for all

a > 1.

(iii) Γ has RD-property (w.r.t. length L) iff there exists s0 > 0

s.t. Γ is (1 + L)s0-decaying.



Haagerup content and H-growth

Let ∅ 6= E ⊂ Γ be finite. Set

c(E) := sup {‖πλ(f)‖ | f ∈ KΓ, supp(f) ⊆ E, ‖f‖2 = 1}

Then 1 ≤ c(E) ≤ |E|1/2.

If G is amenable, c(E) = |E|1/2 for all E.

Def. For Γ countable and L : Γ → [0,+∞) a proper functi-

on, set Br,L = {g ∈ Γ | L(g) ≤ r}. Then

Γ has polynomial H-growth (w.r.t. L) if there exist K, p > 0

such that

c(Br,L) ≤ K(1 + r)p, r ∈ R+ .

Γ has subexponential H-growth if, for any b > 1, there exists

r0 ∈ R+ such that

c(Br,L) < br, r ≥ r0 .

(For Γ amenable with length function L, these definitions re-

duce to the usual ones)



Examples:

(i) Fn has polynomial H-growth w.r.t. word-length.

(ii) More generally, the same holds for any Gromov hyperbolic

group.

(iii) Any Coxeter group has polynomial H-growth.

(iv) Under mild assumptions, polynomial H-growth is stable

under amalgamated free products Γ1 ∗A Γ2 with finite A.

(v) Γ fin. gen., with subexponential but not polynomial growth,

then Γ×F2 has subexponential (but not polynomial) H-growth

w.r.t. L(g1, g2) = L1(g1) + L2(g2)



Fundamental Lemma: any countably infinite Γ is κ-decaying,

for a suitable κ : Γ → [1,+∞).

Theorem: Γ countably infinite, L : Γ → [0,+∞) proper.

1) Suppose that Γ has polynomial H-growth (w.r.t. L). Then

there exists s0 > 0 such that (Γ, σ) is (1 + L)s0-decaying.

In particular, if L is a length function, then Γ has the σ-twisted

RD-property.

(2) Suppose that Γ has subexponential H-growth. Then (Γ, σ)

is aL-decaying for any a > 1.



Corollary: Let L : Γ → [0,+∞) be a proper function.

(1) If Γ has polynomial H-growth (w.r.t. L), then there exists

some s > 0 such that the Fourier series of x ∈ C∗r(Γ, σ)
converges to x in operator norm, whenever∑

g∈Γ

|x̂(g)|2(1 + L(g))s < +∞ .

(2) If Γ has subexponential H-growth, then the Fourier series

of x ∈ C∗r(Γ, σ) converges to x in operator norm, whenever

there exists some t > 0 such that∑
g∈Γ

|x̂(g)|2etL(g) < +∞ .



Intermezzo: Twisted Haagerup’s Lemma

σ ∈ Z2(Γ,T), V proj. unitary repr. of Γ with 2-cocycle ω

Twisted Fell Absorbing Property: Λσ ⊗ V ∼= Λσω ⊗ IH

Twisted Haagerup Lemma: ω ∈ Z2(Γ,T), ϕ ∈ P (Γ, ω), V
ω-projective repr. on H, η ∈ H s.t. ϕ(g) = (V (g)η, η).
Then there exists a c.p. normal map M̃ϕ : L(Γ, σω) →
L(Γ, σ) s.t.

M̃ϕ(Λσω(g)) = ϕ(g)Λσ(g), g ∈ Γ .

By restriction, get a c.p. map Mϕ : C∗r(Γ, σω) → C∗r(Γ, σ).
Moreover,

‖M̃ϕ‖ = ‖Mϕ‖ = ϕ(e) = ‖η‖2H

In particular, if ϕ is p.-d. (i.e., ω = 1) then get a c.p. map

Mϕ ∈ B(C∗r(Γ, σ)).

Byproduct: elementary proof of

Theorem (Zeller-Meier, 1968): Γ amenable, ω ∈ Z2(Γ,T).
Then C∗(Γ, ω) ' C∗r(Γ, ω), canonically (it also holds for

certain twisted crossed products)

Question: is the converse true ?



Remark (about twisted Haagerup Lemma): Likewise, get twi-

sted analogues of results about ω-projective uniformly bounded

representation of Γ on a Hilbert space by invertible operators



Twisted Multipliers

Consider ϕ : Γ → C, σ, ω ∈ Z2(Γ,T)

Let Mϕ : C(Γ, ω) → C(Γ, σ) be the linear map given by

Mϕ(πω(f)) = πσ(ϕf), f ∈ CΓ.

Definition: (1) ϕ is a (σ, ω)-multiplier if Mϕ is bounded w.r.t.

the operator norms on C(Γ, ω) and C(Γ, σ).

In that case, denote by Mϕ the (unique) extension of Mϕ to

an element in B(C∗r(Γ, ω), C∗r(Γ, σ)). Note thatMϕ is then

the unique element in this space satisfying

Mϕ(Λω(g)) = ϕ(g)Λσ(g), g ∈ Γ.

(2) MA(Γ, σ, ω) := the set of all (σ, ω)-multipliers ϕ on Γ

(a subspace of `∞(G) containing KΓ and a Banach space

equipped with the norm ‖ϕ‖MA = ‖Mϕ‖)

(3) MA(Γ, σ) := MA(Γ, σ, σ), MA(Γ) := MA(Γ,1).

ThenB(Γ, ω) ⊆MA(Γ, σ, σω) and ‖ϕ‖MA ≤ ‖ϕ‖, ∀ϕ ∈
B(Γ, ω); if ω = 1 then B(Γ) ⊂MA(Γ, σ); if ϕ ∈ P (Γ),

then ‖ϕ‖MA = ‖ϕ‖ = ϕ(e).



Remark: Γ amenable ⇒ B(Γ, ω) = MA(Γ,1, ω)

(but B(Γ) = MA(Γ, σ) ? True in the case σ = 1)

`2(Γ) ⊂ MA(Γ, σ, ω); for ϕ ∈ `2(Γ), ‖ϕ‖MA ≤ ‖ϕ‖2.

Moreover, for every x ∈ C∗r(Γ, ω),

Mϕ(x) =
∑
g∈Γ

ϕ(g)x̂(g)Λσ(g)

(sum convergent in operator norm)



Thm (twisted Haagerup-de Cannière, case σ = ω): a function

ϕ : Γ → C is in MA(Γ, σ) iff there exists a (unique) normal

operator M̃ϕ : L(Γ, σ) → L(Γ, σ) s.t.

M̃ϕ(Λσ(g) = ϕ(g)Λσ(g), g ∈ Γ

In this case, ‖Mϕ‖ = ‖M̃ϕ‖ and (MA(Γ, σ), ‖| · ‖|) is a

Banach space w.r.t. the norm ‖|ϕ‖| := ‖Mϕ‖.

Rem. the predual L(Γ, σ)∗ identifies with a certain space

A(Γ, σ) of functions on Γ (corresponding to the Fourier alge-

bra in the untwisted setting). MA(Γ, σ) multiplies A(Γ, σ)

into itself.



Completely bounded multipliers

Def. M0A(Γ, σ) = {ϕ ∈ MA(Γ, σ) | Mϕ c.b. map},
equipped with the norm ‖ϕ‖cb = ‖Mϕ‖cb.

M0A(Γ) := M0A(Γ,1)

The existence of cb-multipliers is well-known in the untwisted

setting:

`2(Γ) ⊂ B(Γ) = spanP (Γ) ⊂M0A(Γ) ⊂MA(Γ)

Also, for ϕ ∈ B(Γ), ‖|ϕ‖| ≤ ‖ϕ‖cb ≤ ‖ϕ‖ (the latter is the

norm of ϕ as an element C∗(Γ)∗)

For ϕ ∈ P (Γ), ‖|ϕ‖| = ‖ϕ‖cb = ‖ϕ‖ = ϕ(e) .

For ϕ ∈ `2(Γ), ‖ϕ‖cb ≤ ‖ϕ‖2.

Rem. in case σ = 1, Γ is amenable iff B(Γ) = MA(Γ), iff

B(Γ) = M0A(Γ) (Bozejko, Nebbia)

Rem. c.b. multipliers closely related to (Herz-)Schur multipliers.

Prop. M0A(Γ, σ) = M0A(Γ)

(and the cb-norm of ϕ ∈M0A(Γ, σ) is indep. of σ)

Question: MA(Γ, σ) = MA(Γ)?



For ϕ ∈ MA(Γ, σ), x ∈ C∗r(Γ, σ) it holds M̂ϕ(x) = ϕx̂.

That is, the Fourier series of Mϕ(x) is∑
g∈Γ

ϕ(g)x̂(g)Λσ(g)

(not necessarily convergent in operator norm; but it does, if

ϕ ∈ `2(Γ), since then ϕx̂ ∈ `1(Γ)).

Define MCF (Γ, σ) =

{ϕ : Γ → C |
∑
g∈Γ

ϕ(g)x̂(g)Λσ(g) norm-convergent, x ∈ C∗r(Γ, σ)}

Prop. `2(Γ) ⊂MCF (Γ, σ) ⊂MA(Γ, σ).

Moreover,

MCF (Γ, σ) = {ϕ ∈MA(Γ, σ) |Mϕ(C
∗
r(Γ, σ)) ⊂ CF (Γ, σ)}

If ϕ ∈MCF (Γ, σ) then, for all x ∈ C∗r(Γ, σ),∑
g
ϕ(g)x̂(g)Λσ(g) = Mϕ(x)

(norm convergent sums)

Rem. Other elements in MCF (Γ, σ) can be obtained by con-

sidering suitable κ-decaying subspaces (building over RD pro-

perty).



Summation Processes

Def: A net (ϕα) in MA(Γ, σ) is an approximate multiplier unit
whenever Mϕα → id in the SOT on B(C∗r(Γ, σ)). Such a
net (ϕα) is bounded if (Mϕα) is uniformly bounded (that is,
supα ‖Mϕα‖ <∞)

Remark: a net (ϕα) in MA(Γ, σ) is a bounded approximate
multiplier unit iff ϕ→ 1 pointwise on Γ and (ϕα) is bounded.

Example: a net of normalized p.-d. functions on Γ converging
pointwise to 1 is a bounded approximate multiplier unit.
(Such nets always exist if Γ has the Haagerup property)

Definition: Let (ϕα) be a net of complex functions on Γ.
Say that C∗r(Γ, σ) has the Summation Property (S.P.) w.r.t.
(ϕα), or, equivalently, that (ϕα) is a Fourier summing net for
(Γ, σ), if (ϕα) is an approximate multiplier unit s.t. ϕα ∈
MCF (Γ, σ) for all α.

In this case, the series
∑
g∈Gϕα(g)x̂(g)Λσ(g) is convergent

in operator norm for all α, and we have∑
g∈G

ϕα(g)x̂(g)Λσ(g) →α x

for all x ∈ C∗r(Γ, σ) (convergence in operator norm).

Question: given (Γ, σ), is it always possible to find a Fourier
summing net?



Classical Examples:

1) Fejér summation theorem can be restated by saying that

C∗r(Z,1) has the S.P. w.r.t. (fn) ⊂ KZ.

2) For each 0 < r < 1, let ψr(k) = r|k|, k ∈ Z. Then the

Abel-Poisson summation theorem corresponds to the fact that

C∗r(Z,1) has the S.P. w.r.t. (ψr)0<r<1 ⊂ `2(Z) (letting

r → 1).

In order to produce Fourier summing nets, look for (ϕα) ⊂
`2(Γ) or satisfying a suitable decay property.



Definition: Say that (Γ, σ) has

(1) the Fejér property (resp. the Abel-Poisson property) if there

exists a net (ϕα) in CΓ (resp. in `2(Γ)) such that C∗r(Γ, σ)
has the S.P. w.r.t. (ϕα);

(2) the bounded Fejér property (resp. the bounded Abel-Poisson

property) if the net (ϕα) can be chosen to be bounded;

(3) metric Fejér property (resp. the metric Abel-Poisson pro-

perty), if this net can be chosen to satisfy supα ‖Mϕα‖ = 1.

If (Γ, σ) metric Fejér then C∗r(Γ, σ) has the M.A.P.

Haagerup actually showed that Fn has the metric Fejér property



Examples of groups with the metric Fejér property include Z
and, more generally all amenable groups (see below), but also

Fn,0 < n <∞ (Haagerup).

Problem: when does (Γ, σ) have the metric Fejér/Abel-Poisson

property?

In particular, if Γ has the Haagerup property does (Γ, σ) have

the metric Fejér property?

(So far, all known examples of groups with the metric Fejér

property have the Haagerup property)



Corollary (cf. Zeller-Meier, 1968) Let Γ be amenable. Then

(Γ, σ) has the metric Fejér property.

Indeed, if (ϕα) is any net of normalized positive definite func-

tions in CΓ converging to 1 pointwise on Γ, C∗r(Γ, σ) has the

S.P. w.r.t. (ϕα) and ‖Mϕα‖ = 1 for all α.

Any net (ϕα) as in the last Corollary gives a net (Mϕα) of

finite rank completely positive maps on C∗r(Γ, σ) converging

to the identity in the SOT. Hence we recover: if Γ is amenable,

then C∗r(Γ, σ) has the so-called C.P.A.P., a property which is

known to be equivalent to nuclearity. Actually,

Proposition: TFAE:

1) Γ is amenable.

2) C∗(Γ, σ) is nuclear.

3) C∗r(Γ, σ) is nuclear.

4) L(Γ, σ) is injective.



Example (About Følner and Fejér): suppose that Γ is amenable,

and pick a a Følner net (Fα) for Γ. Set

ϕα(g) =
|gFα ∩ Fα|

|Fα|
, g ∈ Γ.

(E.g., When Γ = Z, one may choose Fn = {0,1, . . . , n−1},
which gives ϕn(g) = 1− |g|

n if |g| ≤ n− 1 and 0 otherwise,

that is, we get the Fejér functions on Z used in the classical

Fejér summation theorem.)

We have ϕα(g) = (ξα, λ(g)ξα), with ξα = |Fα|−1/2χFα
and supp(ϕα) = Fα ·F−1

α . Hence the following analogue of

Fejér’s summation theorem holds : for all x ∈ C∗r(G, σ),∑
g∈Fα·F−1

α

|gFα ∩ Fα|
|Fα|

x̂(g)Λσ(g) →α x

(in operator norm).

Example: the following analogue of the Abel-Poisson summati-

on theorem holds: for all x ∈ C∗r(ZN , σΘ) we have∑
m∈ZN

r
|m|kj x̂(m)Λσ(m) →r→1− x

(in operator norm), j = 1,2, 1 ≤ k ≤ j.



Other analogues of the Abel Poisson summation theorem hold

for finitely generated free groups and for Coxeter groups (re-

placing the `2-condition with suitable decaying conditions).

Indeed, in both cases, the natural word-length LS is a Haagerup

function and the group has polynomial H-growth w.r.t. LS so

point (1) of the result below applies:

Theorem: Γ countable group with Haagerup function L.

(1) Assume that Γ has polynomial H-growth (w.r.t. L). Then

there exists q ∈ N s.t. ((1 + tL)−q)t→0+ is a bounded

Fourier summing net for (Γ, σ).

(2) Assume that Γ has subexponential H-growth (w.r.t. L).

Then {rL}r→1− is a bounded Fourier summing net for (Γ, σ).



A generalized Haagerup theorem

Theorem: Suppose that the following three conditions hold:

(1) There exists an approximate multiplier unit (ϕα) inMA(Γ, σ)

satisfying ‖Mϕα‖ = 1 for all α.

(2) For each α there exists a function κα : Γ → [1,+∞)

such that (Γ, σ) is κα-decaying.

(3) We have ϕακα ∈ c0(Γ) for all α.

Then (Γ, σ) has the metric Fejér property.

Corollary: Γ countable with subexponential H-growth w.r.t. a

Haagerup function, then (Γ, σ) has the metric Fejér property.

Corollary: If there exists a Haagerup length function L on Γ

s.t. Γ has the R.D. property w.r.t. L, then C∗r(Γ, σ) has the

M.A.P.

(cf. Jolissaint-Valette, 1991; Brodzki-Niblo 2004, case σ = 1)



Def. A group Γ is weakly amenable if there exists a net {ϕi}
of finitely supported functions converging pointwise to 1, s.t.

supi ‖Mϕi‖ < +∞.



Cowling Conjecture: Any countable group Γ with the Haage-
rup property is weakly amenable with CH constant 1, i.e. the-
re exists a net {ϕα} ⊂ KΓ, converging pointwise to 1, s.t.
supα ‖ϕα‖cb = 1. (True in a number of cases)

The latter groups are said to have the complete metric appro-
ximation property (CMAP)

Converse fails: de Cornulier, Stalder and Valette (2008) con-
struct certain wreath products which are a-T-menable but do
not have the CMAP

Ozawa (2007): all Gromov hyperbolic groups are weakly amena-
ble, hence they have the bounded Fejér property.

However, not all groups have the bounded Fejér property:

Haagerup: H := Z2 oSL(2,Z) (does not have the bounded
Fejér property and thus) is not weakly amenable.

Still,H has the Fejér property, as it has property AP (Haagerup
and Kraus), stronger than Fejér.

Γ weakly amenable ⇒ Γ has AP ⇒ Γ exact

(opposite implications false)

Lafforgue, de la Salle (2011): SL(3,Z) (linear, thus exact but)
fails to have AP. Not known if it has Fejér property.



C∗-dynamical systems and covariant representations

We consider a unital, discrete, twisted C∗-dynamical system

Σ = (A,G, α, σ) .

So A is a C∗-algebra with 1, G is a discrete group, and the

maps

α : G→ Aut(A) (= the group of ∗-automorphisms of A)

σ : G×G→ U(A) (= the unitary group of A)

satisfy

αg αh = Ad(σ(g, h))αgh

σ(g, h)σ(gh, k) = αg(σ(h, k))σ(g, hk)

σ(g, e) = σ(e, g) = 1

where e denotes the unit of G.

(sometimes also called a cocycle G-action)



All the C∗-algebras we consider are assumed to be unital, and

homomorphisms between these are assumed to be unit- and
∗-preserving.

A covariant homomorphism of Σ is a pair (φ, u), where φ is

a homomorphism from A into a C∗-algebra C and u is a map

from G into U(C), satisfying

u(g)u(h) = φ(σ(g, h))u(gh)

and the covariance relation

φ(αg(a)) = u(g)φ(a)u(g)∗ .

If X is a (right) Hilbert C∗-module (e.g. a Hilbert space) and

C = L(X) (the adjointable operators on X), then (φ, u) is

called a covariant representation of Σ on X.



The vector space Cc(Σ) of functions fromG into A with finite

support becomes a (unital) ∗-algebra when equipped with the

operations

(f1 ∗ f2) (h) =
∑
g∈G

f1(g)αg(f2(g
−1h))σ(g, g−1h),

f∗(h) = σ(h, h−1)∗αh(f(h
−1))∗ .

The full C∗-algebra C∗(Σ) is generated by (a copy of) Cc(Σ)

and has the universal property that whenever (φ, u) : A→ C

is a covariant homomorphism of Σ, then there exists a unique

homomorphism φ× u : C∗(Σ) → C such that

(φ× u)(f) =
∑
g∈G

φ(f(g))u(g), f ∈ Cc(Σ) .



As is well known, any representation π of A on some Hilbert

B-module Y induces a covariant representation (π̃, λ̃π) of Σ

on the B-module

Y G = {ξ : G→ Y |
∑
g∈G

〈ξ(g), ξ(g)〉 is norm-convergent in B}

Considering A itself as a (right) Hilbert A-module in the ob-

vious way and letting ` : A→ L(A) denote left multiplication,

we may form the regular covariant representation of Σ

Λ = ˜̀× λ̃` : C∗(Σ) → L(AG)

The reduced C∗-algebra of Σ is then be defined as the C∗-

subalgebra of L(AG) given by

C∗r(Σ) = Λ(C∗(Σ)) .



It is convenient to consider also the Hilbert A-module AΣ =

{ξ : G→ A |
∑
g∈G

α−1
g (ξ(g)∗ ξ(g)) is norm-convergent in A}

where

〈ξ, η〉α =
∑
g∈G

α−1
g (ξ(g)∗η(g)) ,

(ξ · a)(g) = ξ(g)αg(a) .

A covariant representation (`Σ , λΣ) of Σ on AΣ is given by

[`Σ(a) ξ](h) = a ξ(h)

[λΣ(g) ξ ](h) = αg(ξ(g−1h))σ(g, g−1h) .

Identifying A with `Σ(A) (acting on AΣ) gives

ΛΣ(f) =
∑
g∈G

f(g)λΣ(g), f ∈ Cc(Σ) .

As ΛΣ = `Σ × λΣ is unitarily equivalent to Λ, we have

C∗r(Σ) ' ΛΣ(C∗(Σ)) .



Let ξ0 ∈ AΣ be defined as 1� δe, i.e.

ξ0(e) = 1 , ξ0(g) = 0 g 6= e .

Then

ΛΣ(f) ξ0 = f , f ∈ Cc(Σ) .

Hence, setting x̂ = x ξ0 ∈ AΣ for x ∈ C∗r(Σ), we have

Λ̂Σ(f) = f , f ∈ Cc(Σ) .

The (injective) linear map x → x̂ from C∗r(Σ) into AΣ is

called the Fourier transform. The canonical conditional expec-

tation E from C∗r(Σ) onto A is simply given by

E(x) = x̂(e) , x ∈ C∗r(Σ) ,

and we have

x̂(g) = E(xλΣ(g)∗) .

Note: ΛΣ(f) ξ = f ∗ ξ , f ∈ Cc(G,A), ξ ∈ AΣ .

(where ∗ = twisted convolution).

Especially: if ξ0 = 1A � δe ∈ AΣ, then ΛΣ(f) ξ0 = f .



Some useful properties of Fourier coefficients:

Λ̂Σ(f) = f , f ∈ Cc(Σ) .; in particular,

`̂Σ(a) = a� δe, λ̂Σ(g) = 1� δg.

xξ = x̂ ∗ ξ, x ∈ C∗r(Σ), ξ ∈ Cc(G,A) ⊂ AΣ

For all x ∈ C∗r(Σ),

‖x̂‖∞ ≤ ‖x̂‖α ≤ ‖x‖

where

‖x̂‖∞ := supg ‖x̂(g)‖
‖x̂‖α = ‖

∑
g α

−1
g (x̂(g)∗x̂(g))‖1/2

(cf. the Riemann-Lebesgue Lemma)

x̂y = x̂ ∗ ŷ, for all x ∈ C∗r(Σ), y ∈ Λ(Cc(Σ))

x̂∗ = x̂∗, i.e.

x̂∗(g) = σ(g, g−1)αg(x̂(g
−1))∗



Moreover,

E(ΛΣ(f)) = f(e), f ∈ Cc(Σ); in particular,

E(`Σ(a)) = a and E(λΣ(g)) = 0 for g 6= e

E(xλΣ(g)∗) = x̂(g), g ∈ G

E(x∗x) = 〈x̂, x̂〉α, for any x ∈ C∗r(Σ)

E(λΣ(g)xλΣ(g)∗) = αg(E(x)) (equivariance), g ∈ G, x ∈
C∗r(Σ)



Lemma (Rørdam-Sierakowski, 2010) A C∗-algebra, G a coun-

table discrete group acting on A by automorphisms. For each

g ∈ G set xg = E(xu∗g). Then, for all x ∈ Aor G,

E(xx∗) =
∑
g
xg(xg)

∗ , E(x∗x) =
∑
g
αg(x

∗
g−1xg−1)

and the sums are norm-convergent.

(an application of Dini’s theorem to obtain norm-convergence

from convergence on states)



Given x ∈ C∗r(Σ), its (formal) Fourier series is defined as∑
g∈G

x̂(g)ΛΣ(g)

Remark: there are left/right Fourier series

CF (Σ) =

{x ∈ C∗r(Σ) |
∑
g∈G

x̂(g)ΛΣ(g) convergent w.r.t.‖ · ‖}

Look for some nice decay subspaces of AΣ, e.g. `1(G,A)...



Theorem: Let L : G→ [0,+∞) be a proper function.

If G has polynomial H-growth (w.r.t. L) then there exists some

s > 0 s.t. the Fourier series of x ∈ C∗r(Σ) converges to x in

operator norm whenever∑
g∈G

‖x̂(g)‖2(1 + L(g))s < +∞

If G has subexponential H-growth (w.r.t. L) then there exists

some s > 0 s.t. the Fourier series of x ∈ C∗r(Σ) converges

to x in operator norm whenever there exists some t > 0 s..t.∑
g∈G

‖x̂(g)‖2etL(g) < +∞



Remark: the proof requires `2κ(G,A)-decay, where

`2κ(G,A) = {ξ : G→ A |
∑
g
‖ξ(g)‖2κ2(g) <∞} ⊂ AΣ

is the weighted version of `2(G,A) and κ is scalar-valued)

However, in general, it is not clear that x̂ ∈ `2κ(G,A). It would

be better to deal with the weaker AΣ
κ -decay, where AΣ

κ =

{ξ : G→ A |
∑
g
α−1
g (ξ(g)∗ξ(g))κ2(g) norm-convergent inA}



Problem: find conditions on Σ implying AΣ
κ -decay, i.e.

‖
∑
g∈G

f(g)λΣ(g)‖ ≤ C‖fκ‖α , f ∈ Cc(G,A)

for some C > 0 and κ : G→ [1,+∞).

Remark: we can do this when A is commutative and α is trivial.

In this case, C∗r(Σ) is a reduced central twisted transformation

group algebra.



Equivariant representations of Σ = (A,G, α, σ)

An equivariant representation of Σ on a Hilbert A-module X
is a pair (ρ, v) where

• ρ : A→ L(X) is a representation of A on X,

• v : G → I(X ) (= the group of all C-linear, invertible,
bounded maps from X into itself),

satisfying

(i) ρ(αg(a)) = v(g) ρ(a) v(g)−1 , g ∈ G , a ∈ A

(ii) v(g) v(h) = adρ(σ(g, h)) v(gh) , g, h ∈ G

(iii) αg(〈x , x′〉) = 〈v(g)x , v(g)x′〉 , g ∈ G , x, x′ ∈ X

(iv) v(g)(x·a) = (v(g)x)·αg(a) , g ∈ G, x ∈ X, a ∈ A.

In (ii) above, adρ(σ(g, h)) ∈ I(X ) is defined by

adρ(σ(g, h))x = (ρ(σ(g, h))x) · σ(g, h)∗ .



Some examples

• ` : A→ L(A) and α : G→ Aut(A) ⊂ I(A) give the

trivial equivariant representation (`, α) of Σ.

• Let (ρ, v) be an equivariant representation of Σ on X.

The induced equivariant representation (ρ̌, v̌) on XG is

given by

(ρ̌(a) ξ)(h) = ρ(a) ξ(h), (v̌(g)ξ)(h) = v(g) ξ(g−1h) .

• More generally, if w is a unitary representation of G on

some Hilbert spaceH, then (ρ⊗ι, v⊗w) is an equivariant

representation of Σ on X ⊗H.

• (ˇ̀, α̌) is called the regular equivariant representation of

Σ. It acts on AG via

[ˇ̀(a) ξ](h) = a ξ(h)

[α̌(g) ξ](h) = αg(ξ(g−1h)) .



Tensoring an equivariant rep. with a covariant rep.

Consider

• an equivariant rep. (ρ, v) of Σ on a Hilbert A-moduleX ,

• a covariant rep. (π, u) of Σ on a Hilbert B-module Y .

One may then form the covariant representation (ρ⊗̇π , v⊗̇u)
of Σ on the internal tensor product Hilbert B-moduleX ⊗πY .

It acts on simple tensors in X ⊗πY as follows:

[(ρ⊗̇π)(a)] (x⊗̇ y) = ρ(a)x ⊗̇ y

[(v⊗̇u)(g)] (x⊗̇ y) = v(g)x ⊗̇u(g)y .



Some properties

Let (ρ, v) and (π, u) be as before.

• (`⊗̇π)× (α⊗̇u) ' π × u

• Fell absorption principle (I):

(ρ⊗̇`Σ) × (v⊗̇λΣ) ' ρ̃ × λ̃ρ .

• Fell absorption principle (II):

Let π′ : L(XG) → L(XG⊗π Y ) denote the amplifica-

tion map, so

ρ̌⊗̇π = π′ ◦ ρ̌ : A→ L(XG ⊗π Y ) .

Then

(ρ̌⊗̇π)× (v̌⊗̇u) ' π′ ◦ (ρ̃× λ̃ρ) .



Equivariant representations and multipliers

Let T : G × A → A be a map that is linear in the second

variable.

For each g ∈ G, let Tg : A→ A be the linear map given by

Tg(a) = T (g, a) , a ∈ A .

For each f ∈ Cc(Σ), define T · f ∈ Cc(Σ) by

(T · f)(g) = Tg(f(g)) , g ∈ G .

We say that T is a (reduced) multiplier of Σ whenever there

exists a bounded linear map MT : C∗r(Σ) → C∗r(Σ) such

that

MT (ΛΣ(f)) = ΛΣ(T · f) , that is,

MT (
∑
g∈G

f(g)λΣ(g)) =
∑
g∈G

Tg(f(g))λΣ(g)

for all f ∈ Cc(Σ). We then set ‖|T‖| = ‖MT‖ .

For any x ∈ C∗r(Σ), M̂T (x)(g) = Tg(x̂(g)), g ∈ G.



SetMA(Σ) = all (reduced) multipliers of Σ and letM0A(Σ)

denote the subspace ofMA(Σ) consisting of completely boun-

ded multipliers.

Example: consider ϕ : G → C and set Tϕ(g, a) = ϕ(g)a.

If Tϕ ∈MA(Σ) then ϕ ∈MA(G). Also, Tϕ ∈M0A(Σ)

iff ϕ ∈ M0A(G) and, in this case, ‖|Tϕ‖| ≤ ‖MTϕ‖cb ≤
‖Mϕ‖cb.

Theorem 1 Let (ρ, v) be an equivariant representation of

Σ on a Hilbert A-module X and let x, y ∈ X. Define T :

G×A→ A by

T (g, a) = 〈x , ρ(a) v(g) y〉 .

Then T ∈M0A(Σ), with ‖|T‖| ≤ ‖MT‖cb ≤ ‖x‖ ‖y‖.

Moreover, if x = y, then MT is completely positive and

‖|T‖| = ‖MT‖cb = ‖x‖2 .

The proof relies on the Fell absorption principle (I). With the

help of this result one may construct Fejér-like summation pro-

cesses for Fourier series of elements in C∗r(Σ) in many cases.



Remarks

Let T be as in the previous theorem.

• Set Z = {z ∈ X | ρ(a) z = z · a, a ∈ A} . Then we

have

T (g, a) = 〈x, v(g)y〉 a if y ∈ Z,

while

T (g, a) = a 〈x, v(g)y〉 if x ∈ Z.

• Let w be a unitary representation of G on a Hilbert space

H and ξ, η ∈ H.

Considering (ρ, v) = (` ⊗ ι, α ⊗ w) on X = A ⊗ H
and x = 1⊗ ξ , y = 1⊗ η gives

T (g, a) = 〈1 , a αg(1)〉 〈ξ, w(g)η〉 = 〈ξ, w(g)η〉 a .

and we recover a result of U. Haagerup.



Coefficients functions of equivariant representations of Σ may

also be shown to give (completely bounded) full multipliers

of Σ. The sets of all these functions may be organized as an

algebra, analogous to the Fourier-Stieltjes algebra of a group,

which we are presently studying.

Using the Fell absorption principle (II), we can prove:

Theorem 2 Let (ρ, v) be an equivariant representation of Σ

on a Hilbert A-module X and let ξ, η ∈ XG. Define Ť :

G×A→ A by

Ť (g, a) = 〈 ξ, ρ̌(a) v̌(g) η 〉 .

Then Ť is a completely bounded rf-multiplier of Σ, that is, the-

re exists a completely bounded map ΦT : C∗r(Σ) → C∗(Σ)

such that

ΦT (ΛΣ(f)) = T · f

for all f ∈ Cc(Σ), satisfying ‖ΦT‖cb ≤ ‖ξ‖ ‖η‖ .



The weak approximation property

Σ is said to have the weak approximation property if there exist

an equivariant representation (ρ, v) of Σ on some A-module

X and nets {ξi}, {ηi} in XG, both having finite support,

satisfying

• there exists some M > 0 s.t. ‖ξi‖ · ‖ηi‖ ≤M for all i;

• for all g ∈ G and a ∈ A we have

lim
i
‖〈ξi , ρ̌(a)v̌(g)ηi〉 − a‖ = 0 .

Note that if (ρ, v) can be chosen as (`, α), one recovers Exel’s

approximation property for Σ. This property is known to im-

ply that Σ is regular, that is, Λ : C∗(Σ) → C∗r(Σ) is an

isomorphism.

From our previous theorem, one can deduce that

Theorem 3 If Σ has the weak approximation property, then

Σ is regular (i.e., Λ : C∗(Σ) → C∗r(Σ) is an isomorphism).

Moreover, C∗(Σ) ' C∗r(Σ) is nuclear iff A is nuclear.



Theorem: Assume that A is abelian. TFAE:

(a) Σ has the approximation property

(b) α is amenable in the sense of Delaroche

(c) Σ has the central weak approximation property

If σ is scalar-valued, they are also equivalent to

(d) Σ has the weak approximation property

Rem. Exel-Ng (2002) showed equivalence of (a) and (b) in the

untwisted case.



A permanence result

Assume

• Σ has the weak approximation property

• B is a C∗-subalgebra of A containing the unit of A

• B is invariant under each αg, g ∈ G

• σ takes values in U(B)

• there exists an equivariant conditinal expectationE : A→
B.

Then (B,G, α|B, σ) has the weak approximation property.

Example. Let G be an exact group, H be an amenable sub-

group of G, σ ∈ Z2(G,T). Let α denote the action of G on

A = `∞(G) by left translations. Then it is well-known that

α is amenable, so that Σ has the approximation property. Let

β denote the natural action of G on B = `∞(G/H). Then

(B, β,G, σ) has the weak approximation property.



Summation processes for Fourier series in crossed products

MCF (Σ) = {T ∈MA(Σ) |MT (x) ∈ CF (Σ), ∀x ∈ C∗r(Σ)}

These are all the maps T : G× A→ A, linear in the second

variable, s.t. ∑
g∈G

Tg(x̂(g))λΣ(g)

converges w.r.t. ‖ · ‖, for all x ∈ C∗r(Σ)

Def. (1) A Fourier summing net for Σ is a net {Ti} ⊂MCF (Σ)

s.t.

lim
i
‖MTi(x)− x‖ = 0 , ∀x ∈ C∗r(Σ)

(2) A bounded Fourier summing net satisfies, in addition,

sup
i
‖|Ti‖| <∞

Question: for which Σ there exists a Fourier summing net?

( unclear even for trivial A and σ)



A Fourier summing net {Ti} for Σ preserves the invariant ideals

of A if, for every α-invariant ideal J ⊂ A,

(Ti)g(J) ⊂ J , ∀i, g ∈ G

Useful notion to study the ideal structure of C∗r(Σ), cf.

- Zeller-Meier (for G amenable)

- Exel (for Σ with the approximation property)

Prop. Assume that there exists a Fourier summing net {Ti} for

Σ that preserves the invariant ideals of A. Then Σ is exact

and C∗r(Σ) is exact iff A is exact.



For an invariant ideal J ⊂ A, set

〈J〉 := the ideal generated by J in C∗r(Σ)

J̃ := {x ∈ C∗r(Σ) | x̂(g) ∈ J, ∀g ∈ G}
(Here, x̂(g) = E(xλ(g)∗)).

Then E(〈J〉) = J and 〈J〉 ⊂ J̃ .

Def. (Sierakowski 2010) Σ is exact whenever

〈J〉 = J̃

for all invariant ideals J of A.

Let J be an ideal of C∗r(Σ). Then J := E(J ) is an invariant

ideal of A s.t. J ⊂ J̃ . Hence, if Σ is exact, J ⊂ 〈J〉.



An ideal J of C∗r(Σ) is

- induced, whenever it is generated by an invariant ideal of A;

- E-invariant, whenever

E(J ) ⊂ J

(equivalently, E(J ) = J ∩A).

In this case, E(J ) is a (closed) invariant ideal of A;

- δΣ-invariant, whenever

δΣ(J ) ⊂ J ⊗ C∗r(G)

where δΣ : C∗r(Σ) → C∗r(Σ) ⊗ C∗r(G) denotes the (redu-

ced) dual coaction of G on Σ

Remark: induced ⇒ δΣ-invariant ⇒ E-invariant



Prop. (cf. Exel, 2000) Assume that G is exact or that there

exists a Fourier summing net for Σ that preserves the invariant

ideals of A.

Then an ideal of C∗r(Σ) is E-invariant iff it is δΣ-invariant,

iff it is induced.

Hence, the map J 7→ 〈J〉 is a bijection between the set of all

invariant ideals of A and the set of all E-invariant ideals of

C∗r(Σ).

Rem. Indeed, under the given assumption, if J is E-invariant

one has

J = 〈E(J )〉



Def. (1) Σ has the Fejér property if there exists a Fourier

summing net {Ti} for Σ s.t. each Ti has finite G-support;

(2) Σ has the bounded Fejér property if, in addition, such net

can be chosen to be bounded

Remark. Zeller-Meier showed that Σ has the bounded Fejér

property whenever G is amenable and σ is central. (In David-

sons’ book can find a short proof for G = Z and σ trivial)

Theorem (E. Bédos, RC 2014): Assume that G is amenable.

Then Σ has the bounded Fejér property.

What about non-amenable groups?

Theorem (E. Bédos, RC 2014): Assume thatG is weakly amena-

ble, or that Σ has the weak approximation property. Then Σ

has the bounded Fejér property.



On maximal ideals in twisted crossed products

Def. A discrete group Γ is called C∗-simple if its reduced C∗-
algebra C∗r(Γ) is simple.

Many classes of groups are known to be C∗-simple!

Theorem (de la Harpe-Skandalis, 1986) If Γ is a Powers group

acting on the C∗-algebra A and A is Γ-simple then Aor Γ is

simple.

(later generalized to weak Powers groups and twisted actions)

More generally, what can be said about the ideal structure of

C∗r(Γ) and of Aor Γ?



Theorem (E. Bedos, RC, 2014): Σ discrete twistedC∗-dynamical

system. If Σ is exact and has property (DP) then there are one-

to-one correspondences between:

- the set of maximal ideals of C∗r(Σ) and the set of maximal

invariant ideals of A;

- the set of all tracial states of C∗r(Σ) and the set of invariant

tracial states of A



Rem. Σ is exact whenever Γ is exact. Also, Σ is exact whe-

never there exists a Fourier summing net for Σ preserving the

invariant ideals of A. The latter condition is satisfied when Σ

has Exel approximation property, e.g. when the associated acti-

on of Γ on the center Z(A) is amenable (as in Brown-Ozawa

book).



Def. Σ has property DP if

0 ∈ co{vyv∗ | v ∈ U(C∗r(Σ))}

for every y = y∗ ∈ C∗r(Σ) with E(y) = 0

Remark. If C∗r(Σ) as the Dixmier property then it has (DP).



Let (P) be the class of groups consisting of Promislow PH

groups and groups satisfying the property (Pcom) of Bekka-

Cowling-de la Harpe (1994).

Theorem (E. Bédos, RC): If Γ belongs to (P) the associated

system Σ has (strong) DP.

Remark: Powers groups are weak Powers group, which in turn

are PH groups.



Def. a group Γ has Powers property if, for any finite subset

F ⊂ Γ \1 and for any integer N ≥ 1, there exists a partition

Γ = C ∪D and elements g1, . . . , gN ∈ Γ s.t. fC ∩ C = ∅
for all f ∈ F and giD ∩ gjD = ∅ for all i, j ∈ {1, . . . , N},
i 6= j.

A group Γ is a weak Powers group if the above holds only for

every finite subset F in a nontrivial conjugacy class of Γ.

A group Γ has property (Pcom) if, for any non-empty subset

G ⊂ Γ \ {e}, there exists N ≥ 1, g0 ∈ Γ and subsets

U,D1, . . . , DN of Γ, s.t.

(i) Γ \ U ⊂ D1 ∪ . . . ∪DN

(ii) gU ∩ U = ∅ for all g ∈ F

(iii) g−j0 Dk ∩Dk = ∅ for all j ≥ 1 and k = 1, . . . , N



Applications/examples:

a description of the unique simple quotient of the twisted Roe

algebra C∗r(`
∞(Γ),Γ, lt, σ) for Γ exact in (P) and scalar σ

an explicit description of maximal ideals/simple quotients of

C∗r(Γ) for Γ = Z3 o SL(3,Z);

a description of the ideals of C∗r(Γ), where Γ is an exact group

s.t. G := Γ/Z ∈ (P); e.g. Γ = SL(2n,Z), n ≥ 1, Pn
(pure braid group on n strands), B3.
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