Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	00000000	0000000000

Noncommutative Potential Theory 4

Fabio Cipriani

Dipartimento di Matematica Politecnico di Milano

(joint works with U. Franz, D. Guido, T. Isola, A. Kula, J.-L. Sauvageot)

Villa Mondragone Frascati, 15-22 June 2014

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ = - のへで

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
•0	000	0000	00000000	0000000000

Themes.

- Sierpinski Gasket K
- Harmonic structures and Dirichlet forms on K
- Dirac operators and Spectral Triples on K
- Volume functional dimensional spectrum
- Energy functional dimensional spectrum
- Dirichlet form as a residue
- Fredholm modules and pairing with K-theory
- de Rham cohomology and Hodge Harmonic decomposition on K
- Potentials of locally exact 1-forms on the projective covering of K

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
0.	000	0000	00000000	0000000000

References.

- Kigami, J. Analysis on fractals Cambridge Tracts in Mathematics, 143 (2001)
- Guido, D.; Isola, T. *Dimensions and singular traces for spectral triples, with applications to fractals J. Funct. Anal.* 203 (2003)
- A. Jonsson. A trace theorem for the Dirichlet form on the Sierpinski gasket, Math. Z., **250** (2005), 599–609.
- Christensen, E.; Ivan, C.; Lapidus, M. L. Dirac operators and spectral triples for some fractal sets built on curves Adv. Math. 217 (2008)
- Cipriani, F.; Sauvageot, J.-L. Fredholm modules on P.C.F. self-similar fractals and their conformal geometry Comm. Math. Phys. 286 (2009)
- Christensen, E.; Ivan, C.; Schrohe, E. *Spectral triples and the geometry of fractals* J. Noncommut. Geom. 6 (2012)
- Cipriani, F.; Guido, D.; Isola, T.; Sauvageot, J.-L. *Integrals and potentials of differential 1-forms on the Sierpinski gasket* Adv. Math. 239 (2013)

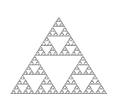
▲ロト ▲ 理 ト ▲ 臣 ト ▲ 臣 ト ○ ○ ○ ○ ○

• Cipriani, F.; Guido, D.; Isola, T.; Sauvageot, J.-L. Spectral triples for the Sierpinski gasket J. Funct. Anal. 266 (2014)

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	●00	0000	00000000	0000000000

Sierpinski gasket $K \subset \mathbb{C}$: self-similar compact set

- vertices of an equilateral triangle {*p*₁, *p*₂, *p*₃}
- contractions $F_i : \mathbb{C} \to \mathbb{C}$ $F_i(z) := (z + p_i)/2$
- *K* ⊂ C is uniquely determined by *K* = *F*₁(*K*) ∪ *F*₂(*K*) ∪ *F*₃(*K*) as the fixed point of a contraction of the Hausdorff distance on compact subsets of C:



Duomo di Amalfi: Chiostro, sec. XIII

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	00000000	0000000000

Geometric and analytic features of the Sierpinski gasket

- K is not a manifold
- the group of homeomorphisms is finite
- *K* is not semi-locally simply connected hence
- K does not admit a universal cover
- K-theory group

$$\mathbb{K}^1(K) = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}$$

K-homology group

$$\mathbb{K}_1(K) = \prod_{i \in \mathbb{N}} \mathbb{Z}$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- Volume and Energy are distributed singularly on K
- existence of localized eigenfunctions

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	00●	0000	00000000	0000000000

Self-similar volume measures and their Hausdorff dimensions

The natural measures on K are the self-similar ones

• for some fixed $(\alpha_1, \alpha_2, \alpha_3) \in (0, 1)^3$ such that $\sum_{i=1}^3 \alpha_i = 1$

$$\int_{K} f \, d\mu = \sum_{i=1}^{3} \alpha_{i} \int_{K} (f \circ F_{i}) \, d\mu \qquad f \in C(K)$$

• when $\alpha_i = \frac{1}{3}$ for all i = 1, 2, 3 then μ is the normalized Hausdorff measure on *K* associated to the restriction of the Euclidean metric: its dimension is $d = \frac{\ln 3}{\ln 2}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	●000	00000000	000000000

Harmonic structure

- word spaces: $\sum_0 := \emptyset$, $\sum_m := \{1, 2, 3\}^m$, $\sum := \bigcup_{m \ge 0} \sum_m$
- length of a word $\sigma \in \sum_m : |\sigma| := m$
- iterated contractions: $F_{\sigma} := F_{i_{|\sigma|}} \circ \ldots F_{i_1}$ if $\sigma = (i_1, \ldots, i_{|\sigma|})$
- vertices sets: $V_{\emptyset} := \{p_1, p_2, p_3\}, \quad V_m := \bigcup_{|\sigma|=m} F_{\sigma}(V_0)$
- consider the quadratic form $\mathcal{E}_0 : C(V_0) \to [0, +\infty)$ of the Laplacian on V_0

$$\mathcal{E}_0[a] := (a(p_1) - a(p_2))^2 + (a(p_2) - a(p_3))^2 + (a(p_3) - a(p_1))^2$$

Theorem. (Kigami 1986)

The sequence of quadratic forms on $C(V_m)$ defined by

$$\mathcal{E}^{m}[a] := \sum_{|\sigma|=m} \left(\frac{5}{3}\right)^{m} \mathcal{E}_{0}[a \circ F_{\sigma}] \qquad a \in C(V_{m})$$

is an harmonic structure in the sense that

$$\mathcal{E}^m[a] = \min\{\mathcal{E}^{m+1}[b] : b|_{V_m} = a\} \qquad a \in C(V_m).$$

|▲□▶▲圖▶▲圖▶▲圖▶ = 三 の Q ()

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	00000000	0000000000

Dirichlet form

Theorem 1. (Kigami 1986)

The quadratic form $\mathcal{E} : C(K) \to [0, +\infty]$ defined by

$$\mathcal{E}[a] := \lim_{m \to +\infty} \mathcal{E}^m[a|_{V_m}] \qquad a \in C(K)$$

is a Dirichlet form, i.e. a l.s.c. quadratic form such that

$$\mathcal{E}[a \wedge 1] \leq \mathcal{E}[a] \qquad a \in C(K),$$

which is self-similar in the sense that

$$\mathcal{E}[a] = \frac{5}{3} \sum_{i=1}^{3} \mathcal{E}[a \circ F_i] \qquad a \in C(K)$$

It is closed in $L^2(K, \mu)$ and the associated self-adjoint operator H_{μ} has discrete spectrum with spectral exponent $d_S = \frac{\ln 9}{\ln 5/3}$:

$$\sharp\{\text{eigenvalue of } H_{\mu} \leq \lambda\} \asymp \lambda^{d_{S}/2} \qquad \lambda \to +\infty \,.$$

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	00000000	0000000000

Volume and Energy measures

Theorem. (Kigami-Lapidus 2001)

The self-similar volume measure μ with weights $\alpha_i = 1/3$ can be re-constructed as

$$\int_{K} f \, d\mu = Trace_{Dix}(M_f \circ H_{\mu}^{-d_{S}/2}) = Res_{s=d_{S}}Trace(M_f \circ H_{\mu}^{-s/2})$$

Theorem. (M. Hino 2007)

The energy measures on K defined by

$$\int_{K} b \, d\Gamma(a) := \mathcal{E}(a|ab) - rac{1}{2} \mathcal{E}(a^{2}|b) \qquad a,b \in \mathcal{F}$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

are singular with respect to all the self-similar measures on K.

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	000●	00000000	000000000

Derivation and Fredholm module on K

Theorem. (FC-Sauvageot 2003)

There exists a symmetric derivation $(\mathcal{F}, \partial, \mathcal{H}, \mathcal{J})$, defined on the Dirichlet algebra \mathcal{F} , with values in a symmetric C(K)-monomodule $(\mathcal{H}, \mathcal{J})$ such that

$$\mathcal{E}[a] = \|\partial a\|_{\mathcal{H}}^2 \qquad a \in \mathcal{F}.$$

In other words, $(\mathcal{F}, \partial, \mathcal{H}, \mathcal{J})$ is a differential square root of H_{μ} :

$$H_{\mu} = \partial^* \circ \partial$$
.

Theorem. (FC-Sauvageot 2009)

Let $P \in Proj(\mathcal{H})$ the projection onto the image $Im\partial$ of the derivation above

$$P\mathcal{H} = \overline{Im\partial}$$

and let $F := P - P^{\perp}$ the associated phase operator. Then (F, \mathcal{H}) is a 2-summable (ungraded) Fredholm module over C(K) and

 $Trace(|[F, a]|^2) \leq const. \mathcal{E}[a] \qquad a \in \mathcal{F}.$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 - のへで

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	● ○ ○○○○○○	000000000

Quasi-circles

We will need to consider on the 1-torus $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ structures of quasi-circle associated to the following Dirichlet forms and their associated Spectral Triples for any $\alpha \in (0, 1)$.

Lemma. Fractional Dirichlet forms on a circle (CGIS 2010)

Consider the Dirichlet form on $L^2(\mathbb{T})$ defined on the fractional Sobolev space

$$\mathcal{E}_{\alpha}[a] := \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{|a(z) - a(w)|^2}{|z - w|^{2\alpha + 1}} \, dz dw \qquad \mathcal{F}_{\alpha} := \left\{ a \in L^2(\mathbb{T}) : \mathcal{E}_{\alpha}[a] < +\infty \right\}.$$

Then $\mathcal{H}_{\alpha} := L^2(\mathbb{T} \times \mathbb{T})$ is a symmetric Hilbert C(K)-bimodule w.r.t. actions and involutions given by

 $(a\xi)(z,w) := a(z)\xi(z,w), \quad (\xi a)(z,w) := \xi(z,w)a(w), \quad (\mathcal{J}\xi)(z,w) := \overline{\xi(w,z)}.$

The derivation $\partial_{\alpha} : \mathcal{F}_{\alpha} \to \mathcal{H}_{\alpha}$ associated to \mathcal{E}_{α} is given by

$$\partial_{\alpha}(a)(z,w) := \frac{a(z) - a(w)}{|z - w|^{\alpha + 1/2}}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	0000000	0000000000

Proposition. Spectral Triples on a circle (CGIS 2010)

Consider on the Hilbert space $\mathcal{K}_{\alpha} := L^2(\mathbb{T} \times \mathbb{T}) \bigoplus L^2(\mathbb{T})$, the left $C(\mathbb{T})$ -module structure resulting from the sum of those of $L^2(\mathbb{T} \times \mathbb{T})$ and $L^2(\mathbb{T})$ and the operator

$$D_{lpha} := \left(egin{array}{cc} 0 & \partial_{lpha} \ \partial^*_{lpha} & 0 \end{array}
ight)$$

Then $\mathcal{A}_{\alpha} := \{a \in C(\mathbb{T}) : \sup_{z \in \mathbb{T}} \int_{\mathbb{T}} \frac{|a(z) - a(w)|^2}{|z - w|^{2\alpha + 1}} < +\infty\}$ is a uniformly dense subalgebra of $C(\mathbb{T})$ and $(\mathcal{A}_{\alpha}, \mathcal{D}_{\alpha}, \mathcal{K}_{\alpha})$ is a densely defined Spectral Triple on $C(\mathbb{T})$.

・ロマ ・ 日マ ・ 日マ ・ 日マ ・ うらつ

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	0000000	0000000000

Dirac operators on *K*.

Identifying isometrically the main lacuna ℓ_{\emptyset} of the gasket with the circle \mathbb{T} , consider the Dirac operator $(C(K), D_{\emptyset}, \mathcal{K}_{\emptyset})$ where

- $\mathcal{K}_{\emptyset} := L^2(\ell_{\emptyset} \times \ell_{\emptyset}) \oplus L^2(\ell_{\emptyset})$
- $D_{\emptyset} := D_{\alpha}$
- the action of C(K) is given by restriction $\pi_{\emptyset}(a)b := a|_{\ell_{\emptyset}}$.

Fix c > 1 and for $\sigma \in \sum$ consider the Dirac operators $(C(K), \pi_{\sigma}, D_{\sigma}, \mathcal{K}_{\sigma})$ where

- $\mathcal{K}_{\sigma} := \mathcal{K}_{\emptyset}$
- $D_{\sigma} := c^{|\sigma|} D_{\alpha}$

• the action of C(K) is given by contraction/restriction $\pi_{\sigma}(a)b := (a \circ F_{\sigma})|_{\ell_{\emptyset}} b$. Finally, consider the Dirac operator $(C(K), \pi, D, \mathcal{K})$ where

- $\mathcal{K} := \bigoplus_{\sigma \in \Sigma} \mathcal{K}_{\sigma}$
- $\pi := \oplus_{\sigma \in \Sigma} \pi_{\sigma}$
- $D := \bigoplus_{\sigma \in \sum} D_{\sigma}$

Notice that dim Ker $D = +\infty$ and that D^{-1} will be defined to be zero on Ker D.

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	0000000	000000000

Volume functionals and their Spectral dimensions

Theorem. (CGIS 2010)

The zeta function \mathcal{Z}_D of the Dirac operator $(C(K), D, \mathcal{K})$, i.e. the meromorphic extension of the function $\mathbb{C} \ni s \mapsto Trace(|D|^{-s})$ is given by

$$\mathcal{Z}_D(s) = \frac{4}{1 - 3c^{-s}} z(\alpha s)$$

where z denotes the Riemann zeta function. The dimensional spectrum is given by

$$\mathcal{S}_{dim} = \{\frac{1}{\alpha}\} \cup \{\frac{\ln 3}{\ln c} \left(1 + \frac{2\pi i}{\ln 3}k\right) : k \in \mathbb{Z}\}$$

and the abscissa of convergence is $d_D = \max(\alpha^{-1}, \frac{\ln 3}{\ln c})$. When $1 < c < 3^{\alpha}$ there is a simple pole in $d_D = \frac{\ln 3}{\ln c}$ and the residue of the meromorphic extension of $\mathbb{C} \ni s \mapsto Trace(f|D|^{-s})$ gives the Hausdorff measure of dimension $d = \frac{\ln 3}{\ln 2}$

$$Trace_{Dix}(f|D|^{-s}) = Res_{s=d_D}Trace(f|D|^{-s}) = \frac{4d}{\ln 3} \frac{z(d)}{(2\pi)^d} \int_K f \, d\mu \, .$$

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Notice the complex dimensions and the independence of the residue Hausdorff measure upon c > 1.

· · · · · · · · · · · · · · · · · · ·	
	0000000000

Spectral Triples and Connes metrics on the Sierpinski gasket

Theorem. (CGIS 2010)

 $(C(K), D, \mathcal{K})$ is a Spectral Triple for any $1 < c \le 2$. In particular we have the commutator estimate for Lipschiz functions with respect to the Euclidean metric

$$\|[D,a]\| \leq \frac{(1/2)^{(1-\alpha)}}{(1-\alpha)^{1/2}} \sup_{\sigma \in \Sigma} (\frac{c}{2})^{\sigma} \|a\|_{Lip(l_{\sigma})} \qquad a \in Lip(K).$$

For c = 2 the Connes distance is bi-Lipschitz w.r.t. the geodesic distance on *K* induced by the Euclidean metric

$$(1-\alpha)^{1/2} 2^{(1-\alpha)} d_{geo}(x,y) \le d_D(x,y) \le (1+\alpha)^{-1/2} 2^{(3/2)} 3^{-\alpha} d_{geo}(x,y) \,.$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	000000000	0000000000

Energy functionals and their Spectral dimensions

By the Spectral Triple it is possible to recover, in addition to dimension, volume measure and metric, also the energy form of K

Theorem. (CGIS 2010)

Consider the Spectral Triple $(C(K), D, \mathcal{K})$ for $\alpha \le \alpha_0 := \frac{\ln 5}{\ln 4} - \frac{1}{2} (\frac{\ln 3}{\ln 2} - 1) \sim 0,87$ and assume $a \in \mathcal{F}$. Then the abscissa of convergence of

 $\mathbb{C} \ni s \mapsto Trace(|[D,a]|^2 |D|^{-s})$

is $\delta_D := \max(\alpha^{-1}, 2 - \frac{\ln 5/3}{\ln c}).$

If δ_D > α⁻¹ then s = δ_D is a simple pole and the residue is proportional to the Dirichlet form

$$Res_{s=\delta_D}Trace(|[D,a]|^2|D|^{-s}) = const. \mathcal{E}[a] \qquad a \in \mathcal{F};$$

• if $\delta_D = \alpha^{-1}$ then $s = \delta_D$ is a pole of order 2 but its residue of order 2 is still proportional to the Dirichlet form.

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	000000000	000000000

Pairing with K-Theory

Trying to construct a Fredholm module from the Dirac operator one may consider

• $F := D|D|^{-1}$ to be the phase of the Dirac operator.

•
$$\varepsilon_0 := \bigoplus_{\sigma} \varepsilon_0^{\sigma}$$
 where $\varepsilon_0^{\sigma} := \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$ on $\mathcal{K}_{\sigma} = L^2(\ell_{\emptyset} \times \ell_{\emptyset}) \oplus L^2(\ell_{\emptyset})$
• $\varepsilon_1 := \bigoplus_{\sigma} \varepsilon_1^{\sigma}$ where $\varepsilon_1^{\sigma} := \begin{pmatrix} 0 & -iV_{\sigma} \\ -iV_{\sigma}^* & 0 \end{pmatrix}$ on $\mathcal{K}_{\sigma} = L^2(\ell_{\emptyset} \times \ell_{\emptyset}) \oplus L^2(\ell_{\emptyset})$
where $V_{\sigma} : L^2(l_{\emptyset}) \to L^2(l_{\emptyset} \times l_{\emptyset})$ is the partial isometry between
 $Im(\partial_{\sigma}^* \circ \partial_{\sigma}) \subset L^2(\ell_{\emptyset})$ and $Im(\partial_{\sigma} \circ \partial_{\sigma}^*) \subset L^2(\ell_{\emptyset} \times \ell_{\emptyset})$.

However $(C(K), F, \mathcal{K}, \varepsilon_0, \varepsilon_1)$ is not a 1-graded Fredholm module because

•
$$[F, \pi(a)] \in \mathbb{K}(\mathcal{K})$$
 for all $a \in C(K)$

•
$$F = F^*$$
, $\varepsilon_0 F + F \varepsilon_0 = 0$, but dim Ker $F = +\infty$ and $(F^2 - I) \notin \mathbb{K}(\mathcal{K})$

• ε_0 is unitary but ε_1 is a partial isometry only

•
$$\varepsilon_0 \varepsilon_1 + \varepsilon_1 \varepsilon_0 = 0, \, \varepsilon_0^2 = I \text{ but } \varepsilon_1^2 \neq -I$$

• $[\varepsilon_0, \pi(a)] = 0$ but $[\varepsilon_1, \pi(a)] \notin \mathbb{K}(\mathcal{K})$ in general

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	000000000	0000000000

Theorem. (CGIS 2010)

Consider the operator $F_1 := i\varepsilon_1 F$ and the projection $P := \frac{F_1 + F_1^2}{2}$. Then

- $[F_1, \pi(a)]$ is compact for all $a \in C(K)$
- *PaP* is a Fredholm operator for all invertible $u \in C(K)$
- a nontrivial homomorphism on $\mathbb{K}^1(K)$ is determined by

 $u \mapsto Index PuP$

• the nontrivial element of $\mathbb{K}_1(K) = \prod_{\sigma \in \Sigma} \mathbb{Z}$ determined by F_1 is (1, 1, ...):

Index
$$Pu_{\sigma}P = +1$$
 $\sigma \in \sum$

(日) (日) (日) (日) (日) (日) (日) (日)

where u_{σ} is the unitary associated to the lacuna ℓ_{σ} .

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	0000000	0000000000

Proofs are based on

- $\bullet\,$ the harmonic structure defining the Dirichlet form ${\cal E}\,$
- a result

A. Jonsson: A trace theorem for the Dirichlet form on the Sierpinski gasket, Math. Z. 250 (2005), no. 3, 599-609

by which the restriction to a lacuna ℓ_{σ} of a finite energy function $a \in \mathcal{F}$ belongs to the fractional Sobolev space \mathcal{F}_{α} , if $\alpha < \alpha_0$.

These properties allow to develop

- integration of 1-forms $\omega \in \mathcal{H}$ in the tangent module associated to $(\mathcal{E}, \mathcal{F})$ along paths $\gamma \subset K$
- characterize exact and locally exact 1-forms in terms of their periods around lacunas
- define a de Rham cohomology of 1-forms and prove a separating duality with the Cech homology group.
- represent the integrals of 1-forms around cycles in K by potentials, i.e. affine functions on the abelian universal projective covering L of K

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	00000000	•00000000

Elementary 1-forms and elementary paths

Let $(\mathcal{E}, \mathcal{F})$ be the standard Dirichlet form on *K* and $(\mathcal{F}, \partial, \mathcal{H})$ the associated derivation with values in the tangent module \mathcal{H} (whose elements are understood as square integrable 1-forms).

- *exact* 1-forms $\Omega_e^1(K) := \operatorname{Im} \partial = \{\partial a \in \mathcal{H} : a \in \mathcal{F}\}$
- elementary 1-forms $\Omega^1(K) := \{\sum_{i=1}^n a_i \partial b_i \in \mathcal{H} : a_i, b_i \in \mathcal{F}\}$
- *locally exact* 1-forms $\Omega_{loc}^{1}(K)$ are those $\omega \in \Omega^{1}(K)$ which admit a *primitive* $U_{A} \in \mathcal{F}$ on a suitable neighborhood $A \subset K$ of a any point of K

$$\omega = \partial U_A$$
 on $A \subset K$.

- *n-exact* 1-forms are those $\omega \in \Omega^1(K)$ which are exact on any cell C_{σ} with $|\sigma|=n$
- an *elementary path* $\gamma \subset K$ is a path which is a finite union of edges of *K*. If it is contained in a cell $C_{\sigma} \subset K$ we say that γ has depth $|\sigma| \in \mathbb{N}$.

Lemma. (CGIS 2010)

A 1-form is locally exact if and only if it is n-exact form some $n \in \mathbb{N}$.

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	00000000	000000000
Universal 1-for	rms on the Dirichlet space			

Universal 1-forms and line integrals

Let $(\mathcal{E}, \mathcal{F})$ be the standard Dirichlet form on *K* and $(\mathcal{F}, \partial, \mathcal{H})$ the associated derivation with values in the tangent module \mathcal{H} (whose elements are understood as square integrable 1-forms).

- Let $\Omega^1(\mathcal{F})$ be the \mathcal{F} -bimodule of universal 1-forms on the Dirichlet algebra \mathcal{F}
- pairing with edges $f, g \in \mathcal{F}$

$$(f \otimes g)(e) := f(e_+)g(e_-) \quad dg(e) := g(e_+) - g(e_-)$$

$$(f(dg))(e) = f(e_+)dg(e) \quad ((dg)f) = f(e_-)dg(e)$$

The integral of the 1-form $\omega = \sum_{\in} If_i dg_i$ along the elementary path $\gamma \subset K$ is defined by

$$I_n(\gamma)(\omega):=\sum_{e\in E_n(\gamma)}\omega(e)\qquad \int_{\gamma}\omega:=\lim_{n
ightarrow\infty}I_n(\gamma)(\omega)$$

(日) (日) (日) (日) (日) (日) (日) (日)

where $E_n(\gamma)$ denotes the set of edges of γ .

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	00000000	000000000000000000000000000000000000000

Integration of elementary 1-forms along elementary paths

Theorem. (CGIS 2010)

- The integral of an elementary 1-forms is well defined.
- The energy seminorm on Ω¹(F) specified by fdg → (f∂g|f∂g)_H and the collection of seminorms given integrals along edges have same kernel Ω¹₀
- consequently the quotient Ω¹(K) := Ω¹(F)/Ω¹₀ can be identified with a subspace of the tangent module H and on it integrals make sense

(日) (日) (日) (日) (日) (日) (日) (日)

Proof is a based on an embedding $\mathcal{F} \hookrightarrow H^{\alpha}(\gamma)$ of the Dirichlet space into a fractional Sobolev space with $\alpha > 1/2$.

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	00000000	000000000000

Definition. Potentials (CGIS 2010)

 A continuous function U ∈ C(A) defined on subset A ⊂ K is a *local potential* on A of a 1-form ω ∈ Ω¹(K) if for all elementary path γ ⊂ A

$$\int_{\gamma} \omega = U(\gamma(1)) - U(\gamma(0)) \,.$$

Proposition. (CGIS 2010)

- Local potentials of a 1-form on $A \subset K$ have finite energy on A
- the class of potentials U ∈ C(K) of an exact 1-form ω ∈ Ω¹_e(K) coincides with the class of its primitives U ∈ F on K

$$\int_{\gamma} \omega = U(\gamma(1)) - U(\gamma(0)) \quad \Leftrightarrow \quad \omega = \partial U \, .$$

▲□▶▲□▶▲□▶▲□▶ = ● のへ⊙

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	00000000	0000000000

A system of locally exact 1-forms associated with lacunas

Cells and lacunas

- The lacuna $\ell_{\emptyset} \subset K$ (depth 0) is defined as the boundary of the triangle $K \setminus (F_1(K) \cup F_2(K) \cup F_3(K))$
- the lacunas ℓ_{σ} (depth *n*) are defined as its successive contraction: $\ell_{\sigma} := F_{\sigma}(\ell_{\emptyset})$

Theorem. (CGIS 2010)

For any σ ∈ ∑ there exists only one (|σ| + 1)-exact 1-form dz_σ ∈ Ω¹_{loc}(K) having minimal norm ||ω||_H among those with unit period on the lacuna ℓ_σ

$$\int_{\ell_{\sigma}} \omega = 1$$

• $\exists \omega_{\sigma} \in \text{Lin} \{ dz_{\tau} : |\tau| \le |\sigma| \}$ such that for all elementary paths $\gamma \subset K$

$$\int_{\alpha} \omega_{\sigma} = \text{ winding number of } \gamma \text{ around } \ell_{\sigma}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	00000000	0000000000

Theorem. (a la de Rham) (CGIS 2010)

• Any elementary 1-form $\omega \in \Omega^1(K)$ can be uniquely decomposed as

$$\omega = \partial U + \sum_{\sigma} k_{\sigma} dz_{\sigma}$$

(日) (日) (日) (日) (日) (日) (日) (日)

the convergence taking place in a topology where integrals are continuous

- the coefficients k_{σ} only depend upon the periods $\int_{\ell_{-}} \omega$ around lacunas
- the form is locally exact $\omega \in \Omega^1_{loc}(K)$ iff the k_σ 's are eventually zero
- the form is exact $\omega \in \Omega^1_e(K)$ iff all the periods, hence all k_{σ} 's, are zero

Cells and lacunas

There exist elementary forms which are not closed: $f_0 \partial f_1$.

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	00000000	00000000000

Theorem. (a la Hodge) (CGIS 2010)

- The forms $\{dz_{\sigma} : \sigma \in \Sigma\} \subset \mathcal{H}$ are pairwise orthogonal
- Any 1-form $\omega \in \mathcal{H}$ can be orthogonally decomposed as

$$\omega = \partial U + \sum_{\sigma} k_{\sigma} dz_{\sigma}$$

• the forms
$$\{dz_{\sigma}.\sigma \in \Sigma\}$$
 are *co-closed*

 $\partial^*(dz_{\sigma}) = 0$ so that $\partial^*\omega = \partial^*\partial U = \Delta U$

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	00000000	00000000000

Theorem. (a de Rham cohomology Theorem) (CGIS 2010)

The pairing $\langle \gamma, \omega \rangle = \int_{\gamma} \omega$ between elementary paths $\gamma \subset K$ and locally exact forms $\omega \in \Omega^1_{loc}(K)$ gives rise to a nondegenerate pairing between the Cech homology group $H_1(K, \mathbb{R})$ and the cohomology group

$$H^1_{\mathrm{dR}}(K) := rac{\Omega^1_{\mathrm{loc}}(K)}{\Omega^1_e(K)}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

in which the classes of the co-closed forms $\{d_{z\sigma} : \sigma \in \sum\} \subset \mathcal{H}$ is a system of generators parameterized by lacunas.

Potential Theory
000000000

Coverings

Let $T \subset \mathbb{C}$ the closed triangle envelope of the gasket K and $T_n := \bigcup_{|\sigma|=n} F_{\sigma}(T)$. The embedding $i_n : K \to T_n$ give rise to regular coverings (\widetilde{K}_n, K) whose group of deck transformations can identified with $\pi_1(T_n)$. Its abelianization Γ_n can be identified with the homology group $H_1(T_n)$. Defining $\widetilde{L}_n := \widetilde{K}_n/[\Gamma_n, \Gamma_n]$ one has that (\widetilde{L}_n, K) form coverings whose group of deck transformations can be identified with Γ_n .

Theorem. () (CGIS 2010)

The family $\{(\tilde{L}_n, K) : n \ge 0\}$ is projective and the group Γ of deck transformations of its limit $\tilde{L} = \lim_{\leftarrow} \tilde{L}_n$ can be identified with the Cech homology group of the gasket

$$H_1(K) \simeq \Gamma := \lim_{\leftarrow} \Gamma_n.$$

ション (日本) (日本) (日本) (日本) (日本)

The covering \tilde{L} has the unique lifting property.

Overview	Sierpinski gasket	Differential calculus on Sierpinski gasket	Dirac operator and Spectral triple	Potential Theory
00	000	0000	00000000	000000000

Potentials of 1-forms

Definition. Affine functions

A continuous function $f \in C(\widetilde{L})$ is said to be affine if

$$f(gx) = f(x) + \phi(g)$$
 $x \in \tilde{L}$, $g \in H_1(K)$

for some continuous group homomorphisms $\phi : H_1(K) \to \mathbb{C}$. Denote by $A(\tilde{L}, \Gamma)$ the space of affine functions.

Theorem. (Potentials of locally exact forms) (CGIS 2010)

• Any locally exact form $\omega \in \Omega^1_{loc}(K)$ admits a potential $U \in A(\widetilde{L}, \Gamma)$ in the sense that

$$\int_{\gamma} \omega = U(\widetilde{\gamma}(1)) - U(\widetilde{\gamma}(0)).$$

 An affine function U ∈ A(L̃, Γ) is a potential of a locally exact form iff it has finite energy

$$\mathcal{E}_{\Gamma}[U] := \lim_{n} \left(\frac{5}{3}\right)^{n} \sum_{e \in E_{n}} |U(\widetilde{e}_{+}) - U(\widetilde{e}_{-})|^{2}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで