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Sierpinski gasket K ⊂ C: self-similar compact set

vertices of an equilateral triangle {p1, p2, p3}
contractions Fi : C→ C Fi(z) := (z + pi)/2

K ⊂ C is uniquely determined by K = F1(K) ∪ F2(K) ∪ F3(K) as the fixed
point of a contraction of the Hausdorff distance on compact subsets of C:

Duomo di Amalfi: Chiostro, sec. XIII
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Geometric and analytic features of the Sierpinski gasket

K is not a manifold

the group of homeomorphisms is finite

K is not semi-locally simply connected hence

K does not admit a universal cover

K-theory group
K1(K) =

⊕
i∈N

Z

K-homology group
K1(K) =

∏
i∈N

Z

Volume and Energy are distributed singularly on K

existence of localized eigenfunctions
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Self-similar volume measures and their Hausdorff dimensions

The natural measures on K are the self-similar ones

for some fixed (α1, α2, α3) ∈ (0, 1)3 such that
∑3

i=1 αi = 1∫
K

f dµ =
3∑

i=1

αi

∫
K
(f ◦ Fi) dµ f ∈ C(K)

when αi = 1
3 for all i = 1, 2, 3 then µ is the normalized Hausdorff measure on

K associated to the restriction of the Euclidean metric: its dimension is d = ln 3
ln 2



Overview Sierpinski gasket Differential calculus on Sierpinski gasket Dirac operator and Spectral triple Potential Theory

Harmonic structure

word spaces:
∑

0 := ∅ ,
∑

m := {1, 2, 3}m ,
∑

:=
⋃

m≥0

∑
m

length of a word σ ∈
∑

m: |σ| := m

iterated contractions: Fσ := Fi|σ| ◦ . . .Fi1 if σ = (i1, . . . , i|σ|)

vertices sets: V∅ := {p1, p2, p3} , Vm :=
⋃
|σ|=m Fσ(V0)

consider the quadratic form E0 : C(V0)→ [0,+∞) of the Laplacian on V0

E0[a] := (a(p1)− a(p2))
2 + (a(p2)− a(p3))

2 + (a(p3)− a(p1))
2

Theorem. (Kigami 1986)

The sequence of quadratic forms on C(Vm) defined by

Em[a] :=
∑
|σ|=m

(5
3

)m
E0[a ◦ Fσ] a ∈ C(Vm)

is an harmonic structure in the sense that

Em[a] = min{Em+1[b] : b|Vm = a} a ∈ C(Vm) .
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Dirichlet form

Theorem 1. (Kigami 1986)

The quadratic form E : C(K)→ [0,+∞] defined by

E [a] := lim
m→+∞

Em[a|Vm ] a ∈ C(K)

is a Dirichlet form, i.e. a l.s.c. quadratic form such that

E [a ∧ 1] ≤ E [a] a ∈ C(K),

which is self-similar in the sense that

E [a] =
5
3

3∑
i=1

E [a ◦ Fi] a ∈ C(K) .

It is closed in L2(K, µ) and the associated self-adjoint operator Hµ has discrete
spectrum with spectral exponent dS = ln 9

ln 5/3 :

]{eigenvalue of Hµ ≤ λ} � λdS/2 λ→ +∞ .
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Volume and Energy measures

Theorem. (Kigami-Lapidus 2001)

The self-similar volume measure µ with weights αi = 1/3 can be re-constructed as∫
K

f dµ = TraceDix(Mf ◦ H−dS/2
µ ) = Ress=dS Trace(Mf ◦ H−s/2

µ )

Theorem. (M. Hino 2007)

The energy measures on K defined by∫
K

b dΓ(a) := E(a|ab)− 1
2
E(a2|b) a, b ∈ F

are singular with respect to all the self-similar measures on K.
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Derivation and Fredholm module on K

Theorem. (FC-Sauvageot 2003)

There exists a symmetric derivation (F , ∂,H,J ), defined on the Dirichlet algebra
F , with values in a symmetric C(K)-monomodule (H,J ) such that

E [a] = ‖∂a‖2
H a ∈ F .

In other words, (F , ∂,H,J ) is a differential square root of Hµ:

Hµ = ∂∗ ◦ ∂ .

Theorem. (FC-Sauvageot 2009)

Let P ∈ Proj(H) the projection onto the image Im∂ of the derivation above

PH = Im∂

and let F := P− P⊥ the associated phase operator.
Then (F,H) is a 2-summable (ungraded) Fredholm module over C(K) and

Trace(|[F, a]|2) ≤ const. E [a] a ∈ F .
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Quasi-circles

We will need to consider on the 1-torus T = {z ∈ C : |z| = 1} structures of
quasi-circle associated to the following Dirichlet forms and their associated Spectral
Triples for any α ∈ (0, 1).

Lemma. Fractional Dirichlet forms on a circle (CGIS 2010)

Consider the Dirichlet form on L2(T) defined on the fractional Sobolev space

Eα[a] :=

∫
T

∫
T

|a(z)− a(w)|2

|z− w|2α+1 dzdw Fα := {a ∈ L2(T) : Eα[a] < +∞} .

ThenHα := L2(T× T) is a symmetric Hilbert C(K)-bimodule w.r.t. actions and
involutions given by

(aξ)(z,w) := a(z)ξ(z,w) , (ξa)(z,w) := ξ(z,w)a(w) , (J ξ)(z,w) := ξ(w, z) .

The derivation ∂α : Fα → Hα associated to Eα is given by

∂α(a)(z,w) :=
a(z)− a(w)

|z− w|α+1/2 .
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Proposition. Spectral Triples on a circle (CGIS 2010)

Consider on the Hilbert space Kα := L2(T× T)
⊕

L2(T), the left C(T)-module
structure resulting from the sum of those of L2(T× T) and L2(T) and the operator

Dα :=

(
0 ∂α
∂∗α 0

)
.

Then Aα := {a ∈ C(T) : supz∈T
∫
T
|a(z)−a(w)|2

|z−w|2α+1 < +∞} is a uniformly dense
subalgebra of C(T) and (Aα,Dα,Kα) is a densely defined Spectral Triple on C(T).
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Dirac operators on K.

Identifying isometrically the main lacuna `∅ of the gasket with the circle T, consider
the Dirac operator (C(K),D∅,K∅) where

K∅ := L2(`∅ × `∅)⊕ L2(`∅)

D∅ := Dα

the action of C(K) is given by restriction π∅(a)b := a|`∅ .

Fix c > 1 and for σ ∈
∑

consider the Dirac operators (C(K), πσ,Dσ,Kσ) where

Kσ := K∅
Dσ := c|σ|Dα

the action of C(K) is given by contraction/restriction πσ(a)b := (a ◦ Fσ)|`∅ b.

Finally, consider the Dirac operator (C(K), π,D,K) where

K := ⊕σ∈∑Kσ
π := ⊕σ∈∑πσ
D := ⊕σ∈∑Dσ

Notice that dim Ker D = +∞ and that D−1 will be defined to be zero on Ker D.



Overview Sierpinski gasket Differential calculus on Sierpinski gasket Dirac operator and Spectral triple Potential Theory

Volume functionals and their Spectral dimensions

Theorem. (CGIS 2010)

The zeta function ZD of the Dirac operator (C(K),D,K), i.e. the meromorphic
extension of the function C 3 s 7→ Trace(|D|−s) is given by

ZD(s) =
4

1− 3c−s z(αs)

where z denotes the Riemann zeta function. The dimensional spectrum is given by

Sdim = { 1
α
} ∪ { ln 3

ln c

(
1 +

2πi
ln 3

k
)

: k ∈ Z}

and the abscissa of convergence is dD = max(α−1, ln 3
ln c ). When 1 < c < 3α there is a

simple pole in dD = ln 3
ln c and the residue of the meromorphic extension of

C 3 s 7→ Trace(f |D|−s) gives the Hausdorff measure of dimension d = ln 3
ln 2

TraceDix(f |D|−s) = Ress=dD Trace(f |D|−s) =
4d
ln 3

z(d)

(2π)d

∫
K

f dµ .

Notice the complex dimensions and the independence of the residue Hausdorff
measure upon c > 1.
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Spectral Triples and Connes metrics on the Sierpinski gasket

Theorem. (CGIS 2010)

(C(K),D,K) is a Spectral Triple for any 1 < c ≤ 2. In particular we have the
commutator estimate for Lipschiz functions with respect to the Euclidean metric

‖[D, a]‖ ≤ (1/2)(1−α)

(1− α)1/2 sup
σ∈

∑(
c
2

)σ‖a‖Lip(lσ) a ∈ Lip(K) .

For c = 2 the Connes distance is bi-Lipschitz w.r.t. the geodesic distance on K
induced by the Euclidean metric

(1− α)1/22(1−α)dgeo(x, y) ≤ dD(x, y) ≤ (1 + α)−1/22(3/2)3−αdgeo(x, y) .
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Energy functionals and their Spectral dimensions

By the Spectral Triple it is possible to recover, in addition to dimension, volume
measure and metric, also the energy form of K

Theorem. (CGIS 2010)

Consider the Spectral Triple (C(K),D,K) for α ≤ α0 := ln 5
ln 4 −

1
2

( ln 3
ln 2 − 1

)
∼ 0, 87

and assume a ∈ F . Then the abscissa of convergence of

C 3 s 7→ Trace(|[D, a]|2|D|−s)

is δD := max(α−1, 2− ln 5/3
ln c ).

If δD > α−1 then s = δD is a simple pole and the residue is proportional to the
Dirichlet form

Ress=δD Trace(|[D, a]|2|D|−s) = const. E [a] a ∈ F ;

if δD = α−1 then s = δD is a pole of order 2 but its residue of order 2 is still
proportional to the Dirichlet form.
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Pairing with K-Theory

Trying to construct a Fredholm module from the Dirac operator one may consider

F := D|D|−1 to be the phase of the Dirac operator.

ε0 := ⊕σεσ0 where εσ0 :=

(
I 0
0 −I

)
on Kσ = L2(`∅ × `∅)⊕ L2(`∅)

ε1 := ⊕σεσ1 where εσ1 :=

(
0 −iVσ
−iV∗σ 0

)
on Kσ = L2(`∅ × `∅)⊕ L2(`∅)

where Vσ : L2(l∅)→ L2(l∅ × l∅) is the partial isometry between
Im (∂∗σ ◦ ∂σ) ⊂ L2(`∅) and Im (∂σ ◦ ∂∗σ) ⊂ L2(`∅ × `∅).

However (C(K),F,K, ε0, ε1) is not a 1-graded Fredholm module because

[F, π(a)] ∈ K(K) for all a ∈ C(K)

F = F∗, ε0F + Fε0 = 0, but dim Ker F = +∞ and (F2 − I) /∈ K(K)

ε0 is unitary but ε1 is a partial isometry only

ε0ε1 + ε1ε0 = 0, ε2
0 = I but ε2

1 6= −I

[ε0, π(a)] = 0 but [ε1, π(a)] /∈ K(K) in general
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Theorem. (CGIS 2010)

Consider the operator F1 := iε1F and the projection P :=
F1+F2

1
2 . Then

[F1, π(a)] is compact for all a ∈ C(K)

PaP is a Fredholm operator for all invertible u ∈ C(K)

a nontrivial homomorphism on K1(K) is determined by

u 7→ Index PuP

the nontrivial element of K1(K) =
∏
σ∈

∑ Z determined by F1 is (1, 1, . . . ):

Index PuσP = +1 σ ∈
∑

where uσ is the unitary associated to the lacuna `σ .
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Proofs are based on

the harmonic structure defining the Dirichlet form E
a result
A. Jonsson: A trace theorem for the Dirichlet form on the Sierpinski gasket,
Math. Z. 250 (2005), no. 3, 599-609
by which the restriction to a lacuna `σ of a finite energy function a ∈ F
belongs to the fractional Sobolev space Fα, if α < α0.

These properties allow to develop

integration of 1-forms ω ∈ H in the tangent module associated to (E ,F) along
paths γ ⊂ K

characterize exact and locally exact 1-forms in terms of their periods around
lacunas

define a de Rham cohomology of 1-forms and prove a separating duality with
the Cech homology group.

represent the integrals of 1-forms around cycles in K by potentials, i.e. affine
functions on the abelian universal projective covering L of K
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Elementary 1-forms and elementary paths

Let (E ,F) be the standard Dirichlet form on K and (F , ∂,H) the associated
derivation with values in the tangent moduleH (whose elements are understood as
square integrable 1-forms).

exact 1-forms Ω1
e(K) := Im ∂ = {∂a ∈ H : a ∈ F}

elementary 1-forms Ω1(K) := {
∑n

i=1 ai∂bi ∈ H : ai, bi ∈ F}
locally exact 1-forms Ω1

loc(K) are those ω ∈ Ω1(K) which admit a primitive
UA ∈ F on a suitable neighborhood A ⊂ K of a any point of K

ω = ∂UA on A ⊂ K .

n-exact 1-forms are those ω ∈ Ω1(K) which are exact on any cell Cσ with |σ|=n

an elementary path γ ⊂ K is a path which is a finite union of edges of K. If it is
contained in a cell Cσ ⊂ K we say that γ has depth |σ| ∈ N.

Lemma. (CGIS 2010)

A 1-form is locally exact if and only if it is n-exact form some n ∈ N.
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Universal 1-forms on the Dirichlet space

Universal 1-forms and line integrals

Let (E ,F) be the standard Dirichlet form on K and (F , ∂,H) the associated
derivation with values in the tangent moduleH (whose elements are understood as
square integrable 1-forms).

Let Ω1(F) be the F-bimodule of universal 1-forms on the Dirichlet algebra F
pairing with edges f , g ∈ F

(f ⊗ g)(e) := f (e+)g(e−) dg(e) := g(e+)− g(e−)

(f (dg))(e) = f (e+)dg(e) ((dg)f ) = f (e−)dg(e)

The integral of the 1-form ω =
∑
∈ Ifidgi along the elementary path γ ⊂ K is

defined by

In(γ)(ω) :=
∑

e∈En(γ)

ω(e)

∫
γ

ω := lim
n→∞

In(γ)(ω)

where En(γ) denotes the set of edges of γ.
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Integration of elementary 1-forms along elementary paths

Theorem. (CGIS 2010)

The integral of an elementary 1-forms is well defined.

The energy seminorm on Ω1(F) specified by fdg 7→ (f∂g|f∂g)H and the
collection of seminorms given integrals along edges have same kernel Ω1

0

consequently the quotient Ω1(K) := Ω1(F)/Ω1
0 can be identified with a

subspace of the tangent moduleH and on it integrals make sense

Proof is a based on an embedding F # Hα(γ) of the Dirichlet space into a
fractional Sobolev space with α > 1/2.
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Definition. Potentials (CGIS 2010)

A continuous function U ∈ C(A) defined on subset A ⊂ K is a local potential
on A of a 1-form ω ∈ Ω1(K) if for all elementary path γ ⊂ A∫

γ

ω = U(γ(1))− U(γ(0)) .

Proposition. (CGIS 2010)

Local potentials of a 1-form on A ⊂ K have finite energy on A

the class of potentials U ∈ C(K) of an exact 1-form ω ∈ Ω1
e(K) coincides with

the class of its primitives U ∈ F on K∫
γ

ω = U(γ(1))− U(γ(0)) ⇔ ω = ∂U .
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A system of locally exact 1-forms associated with lacunas

Cells and lacunas

The lacuna `∅ ⊂ K (depth 0) is defined as the boundary of the triangle
K \ (F1(K) ∪ F2(K) ∪ F3(K))

the lacunas `σ (depth n) are defined as its successive contraction: `σ := Fσ(`∅)

Theorem. (CGIS 2010)

For any σ ∈
∑

there exists only one (|σ|+ 1)-exact 1-form dzσ ∈ Ω1
loc(K)

having minimal norm ‖ω‖H among those with unit period on the lacuna `σ∫
`σ

ω = 1

∃ ωσ ∈ Lin {dzτ : |τ | ≤ |σ|} such that for all elementary paths γ ⊂ K∫
γ

ωσ = winding number of γ around `σ .
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Theorem. (a la de Rham) (CGIS 2010)

Any elementary 1-form ω ∈ Ω1(K) can be uniquely decomposed as

ω = ∂U +
∑
σ

kσdzσ

the convergence taking place in a topology where integrals are continuous

the coefficients kσ only depend upon the periods
∫
`σ
ω around lacunas

the form is locally exact ω ∈ Ω1
loc(K) iff the kσ’s are eventually zero

the form is exact ω ∈ Ω1
e(K) iff all the periods, hence all kσ’s, are zero

Cells and lacunas

There exist elementary forms which are not closed: f0∂f1.
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Theorem. (a la Hodge) (CGIS 2010)

The forms {dzσ : σ ∈
∑
} ⊂ H are pairwise orthogonal

Any 1-form ω ∈ H can be orthogonally decomposed as

ω = ∂U +
∑
σ

kσdzσ

the forms {dzσ.σ ∈
∑
} are co-closed

∂∗(dzσ) = 0 so that ∂∗ω = ∂∗∂U = ∆U
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Theorem. (a de Rham cohomology Theorem) (CGIS 2010)

The pairing 〈γ, ω〉 =
∫
γ
ω between elementary paths γ ⊂ K and locally exact forms

ω ∈ Ω1
loc(K) gives rise to a nondegenerate pairing between the Cech homology group

H1(K,R) and the cohomology group

H1
dR(K) :=

Ω1
loc(K)

Ω1
e(K)

in which the classes of the co-closed forms {dzσ : σ ∈
∑
} ⊂ H is a system of

generators parameterized by lacunas.
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Coverings

Let T ⊂ C the closed triangle envelope of the gasket K and Tn :=
⋃
|σ|=n Fσ(T). The

embedding in : K → Tn give rise to regular coverings (K̃n,K) whose group of deck
transformations can identified with π1(Tn). Its abelianization Γn can be identified
with the homology group H1(Tn). Defining L̃n := K̃n/[Γn,Γn] one has that (L̃n,K)
form coverings whose group of deck transformations can be identified with Γn.

Theorem. () (CGIS 2010)

The family {(L̃n,K) : n ≥ 0} is projective and the group Γ of deck transformations
of its limit L̃ = lim← L̃n can be identified with the Cech homology group of the
gasket

H1(K) w Γ := lim
←

Γn .

The covering L̃ has the unique lifting property.
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Potentials of 1-forms

Definition. Affine functions

A continuous function f ∈ C(L̃) is said to be affine if

f (gx) = f (x) + φ(g) x ∈ L̃ , g ∈ H1(K)

for some continuous group homomorphisms φ : H1(K)→ C. Denote by A(L̃,Γ) the
space of affine functions.

Theorem. (Potentials of locally exact forms) (CGIS 2010)

Any locally exact form ω ∈ Ω1
loc(K) admits a potential U ∈ A(L̃,Γ) in the

sense that ∫
γ

ω = U(γ̃(1))− U(γ̃(0)).

An affine function U ∈ A(L̃,Γ) is a potential of a locally exact form iff it has
finite energy

EΓ[U] := lim
n

(5
3
)n ∑

e∈En

|U(̃e+)− U(̃e−)|2 .
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