Overview	Carré du champ	Dirac operator in DS	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms
0	0	0	000	00000000	00000000

Noncommutative Potential Theory 3

Fabio Cipriani

Dipartimento di Matematica Politecnico di Milano

(joint works with U. Franz, D. Guido, T. Isola, A. Kula, J.-L. Sauvageot)

Villa Mondragone Frascati, 15-22 June 2014

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Overview	Carré du champ	Dirac operator in DS	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms
•	0	0	000	00000000	00000000

Themes.

- Noncommutative potential theory: carré du champ, potentials, finite energy states, multipliers
- Dirac operator, Spectral triple on Lipschiz algebra of Dirichlet spaces
- Closable derivations on algebras of finite energy multipliers

References.

- Cipriani-Sauvageot Variations in noncommutative potential theory: finite energy states, potentials and multipliers TAMS 2014
- V.G. Maz'ya, T.O. Shaposhnikova, *Theory of Sobolev multipliers. With applications to differential and integral operators* Grundlehren der Mathematischen Wissenschaften 337, Springer Verlag 2009.
- J. Ferrand-Lelong *Invariants conformes globaux sur les varietes Riemannien* J. Diff. Geom. (8) 1973.

▲ロト ▲ 理 ト ▲ 臣 ト ▲ 臣 ト ○ ○ ○ ○ ○

Overview Carré du champ	Dirac operator in DS	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms
0	0	000	0000000	00000000

One of the main subject of potential theory of Dirichlet spaces $(\mathcal{E}, \mathcal{F})$ on C^{*}-algebras with trace (A, τ) , is the following class of functionals

Definition. (Carré du champ)

The carré du champ of $a \in \mathcal{F}$ is the positive functional $\Gamma[a] \in A_+^*$

 $\Gamma[a]: A \to \mathbb{C} \qquad \langle \Gamma[a], b \rangle := (\partial a | (\partial a) b)_{\mathcal{H}} \qquad b \in A$

defined using the derivation $(\mathcal{B}, \partial, \mathcal{H}, \mathcal{J})$ representing $(\mathcal{E}, \mathcal{F})$. Alternatively, whenever $a \in \mathcal{B}$ we can set

$$\langle \Gamma[a],b
angle:=rac{1}{2}\{\mathcal{E}(ab^*|a)+\mathcal{E}(a|ab)-\mathcal{E}(a^*a|b)\} \qquad b\in\mathcal{B}\,.$$

When $\mathcal{E}[a]$ represents the energy of a configuration $a \in \mathcal{F}$ of a system, $\Gamma[a]$ may be interpreted as its energy distribution.

Example. In case of the Dirichlet integral on \mathbb{R}^n , the carré du champ are absolutely continuous with respect to the Lebesgue measure *m* and reduces to

$$\Gamma[a] = |\nabla a|^2 \cdot m \qquad a \in H^1(\mathbb{R}^n).$$

In general the energy distribution $\Gamma[a]$ is not comparable with the volume distribution represented by τ .

Overview	Carré du champ	Dirac operator in DS	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms
0	0	•	000	00000000	00000000

Let $(\mathcal{E}, \mathcal{F})$ be a Dirichlet form on (A, τ) , $(\mathcal{F}, \partial, \mathcal{H}, \mathcal{J})$ its differential square root and $(\mathcal{F}^*, \partial^*, \mathcal{H}, \mathcal{J})$ its adjoint. Recall that $(\mathcal{B}, \partial, \mathcal{H}, \mathcal{J})$ is a derivation.

Definition. (Dirac operator)

The Dirac operator (D, \mathcal{H}_D) of the Dirichlet space is the densely defined, self-adjoint operator acting on $\mathcal{H}_D := L^2(A, \tau) \oplus \mathcal{H}$ as

$$D := \left(egin{array}{cc} 0 & \partial^* \ \partial & 0 \end{array}
ight) \qquad \operatorname{dom}(D) := \mathcal{F} \oplus \mathcal{F}^* \subseteq \mathcal{H}_D$$

or more explicitly

$$D\left(\begin{array}{c}a\\\xi\end{array}\right) = \left(\begin{array}{c}0&\partial^*\\\partial&0\end{array}\right)\left(\begin{array}{c}a\\\xi\end{array}\right) = \left(\begin{array}{c}\partial^*\xi\\\partial a\end{array}\right) \qquad \left(\begin{array}{c}a\\\xi\end{array}\right) \in \mathcal{F} \oplus \mathcal{F}^*\,.$$

By definition, the operator is anticommuting with involution $\gamma := \begin{pmatrix} -I & 0 \\ 0 & I \end{pmatrix}$:

$$D\gamma + \gamma D = 0$$

 $D^2=\left(egin{array}{cc} \partial^*\partial & 0\ 0 & \partial\partial^* \end{array}
ight)\,.$

Notice that

Overview	Carré du champ	Dirac operator in \mathcal{DS}	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms		
0	0	0	●00	00000000	00000000		
Lipschiz algebra							

Consider below $L^2(A, \tau)$, \mathcal{H} and \mathcal{H}_D as left A-modules.

Lemma. (Bounded commutators)

For $a \in \mathcal{B}$, the following properties are equivalent

- [D, a] is bounded on \mathcal{H}_D
- $[\partial, a]$ is bounded from $L^2(A, \tau)$ to \mathcal{H}
- $\Gamma[a]$ is absolutely continuous w.r.t. τ with bounded Radon-Nikodym derivative

 $h_a \in L^{\infty}(A, au) \qquad \langle \Gamma[a], b
angle = au(h_a b) \qquad b \in L^1(A, au);$

for a ∈ B ∩ dom_M(L), these are also equivalent to a^{*}a ∈ dom_M(L).

Definition. (Lipschiz algebra)

The *-subalgebra $\mathcal{L}(\mathcal{F}) \subseteq \mathcal{B}$ of elements satisfying the first three properties above, is called the *Lipschiz algebra* of the Dirichlet space.

Example. In case of the Dirichlet integral $\mathcal{L}(H^1(\mathbb{R}^n))$ coincides with the algebra $\text{Lip}(\mathbb{R}^n)$ of Lipschiz functions of the Euclidean metric. Example. In a next lecture, we will see that on p.c.f. fractals, as a rule, the Lipschiz algebra reduces to constants functions.

Overview	Carré du champ	Dirac operator in DS	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms			
0	0	0	000	00000000	00000000			
Spectral tripl	Spectral triple, Fredholm module							

Define the phase $F_D := D|D|^{-1}$ of the Dirac operator to be zero on ker(D).

Theorem. (Spectral triple and Fredholm module of \mathcal{DS})

Assume the spectrum of $(\mathcal{E}, \mathcal{F})$ on $L^2(A, \tau)$ to be discrete. Then $(\mathcal{L}(\mathcal{F}), D, \mathcal{H}_D)$ is spectral triple in the sense

- [D, a] is bounded on \mathcal{H}_D for all $a \in \mathcal{L}(\mathcal{F})$
- $\operatorname{sp}(D)$ is discrete away from zero.

Moreover, setting $F := F_D + P_{\text{ker}(D)}$, then $(\mathcal{L}(\mathcal{F}), F, \mathcal{H}_D)$ is a Fredholm module

(日) (日) (日) (日) (日) (日) (日) (日)

- $F = F^*$, $F^2 = I$
- [F, a] is compact on \mathcal{H}_D for all $a \in \mathcal{L}(\mathcal{F})$.

- $H := -\Delta + V$ be a semibounded Hamiltonian with potential V on $L^2(\mathbb{R}^n, m)$
- assume the spectrum to be discrete $sp(H) = \{E_0 < E_1 < \dots\},\$
- $\psi_0 \in L^2(\mathbb{R}^n, m)$ the ground state with lowest eigenvalue $E_0: H\psi_0 = E_0\psi_0$
- $U: L^2(\mathbb{R}^n, m) \to L^2(\mathbb{R}^n, |\psi_0|^2 \cdot m)$ ground state transformation

$$U(f) := \psi_0^{-1} f \qquad f \in L^2(\mathbb{R}^n, m)$$

- H_{ϕ_0} the ground state representation of $H: H_{\phi_0} := U(H E_0)U^{-1}$
- e^{-tH} positivity preserving on $L^2(\mathbb{R}^n, m) \Rightarrow e^{-tH_{\psi_0}}$ Markovian on $L^2(\mathbb{R}^n, |\psi_0|^2 \cdot m)$
- Dirichlet form on $L^2(\mathbb{R}^n, |\psi_0|^2 \cdot m)$

$$\mathcal{E}_{\psi_0}[a] = \|\sqrt{H_{\psi_0}a}\|_2^2 = \int_{\mathbb{R}^n} |\nabla a|^2 \cdot |\psi_0|^2 \cdot m \qquad a \in \mathcal{F}_{\psi_0}$$

- derivation $\partial : \mathcal{F}_{\psi_0} \to L^2(\mathbb{R}^n, m) \qquad \partial a = \nabla a$
- Lipschiz algebra *L*(*F*_{ψ0}) = *L*(ℝⁿ)
- harmonic oscillator $V(x) := |x|^2$: spectral dimension of $(C_b(\mathbb{R}^n) \cap \operatorname{Lip}(\mathbb{R}^n), D_{\psi_0}, L^2(\mathbb{R}^n, |\psi_0|^2 \cdot m) \oplus L^2(\mathbb{R}^n, |\psi_0|^2 \cdot m)) = 2n$

Overview	Carré du champ	Dirac operator in DS	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms
0	0	0	000	• 0 000000	00000000

Potentials, Finite energy functionals

Finer properties of the differential calculus underlying a Dirichlet spaces rely on properties of the basic objects of the Potential Theory of Dirichlet forms.

Consider the Dirichlet space with its Hilbertian norm $||a||_{\mathcal{F}} := \sqrt{\mathcal{E}[a] + ||a||_{L^2(A,\tau)}^2}$.

Definition. Potentials, Finite Energy Functionals (CS TAMS 2014)

• $p \in \mathcal{F}$ is called a potential if

$$(p|a)_{\mathcal{F}} \ge 0 \qquad a \in \mathcal{F}_+ := \mathcal{F} \cap L^2_+(A,\tau)$$

Denote by $\mathcal{P} \subset L^2(A, \tau)$ the closed convex cone of potentials.

• $\omega \in A_+^*$ has finite energy if for some $c_\omega \ge 0$

$$|\omega(a)| \le c_{\omega} \cdot ||a||_{\mathcal{F}} \qquad a \in \mathcal{F}.$$

Example. In a *d*-dimensional Riemannian manifold (V, g), the volume measure μ_W of a (d-1)-dimensional compact submanifold $W \subset V$ has finite energy.

Overview	Carré du champ	Dirac operator in \mathcal{DS}	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms
0	0	0	000	0000000	00000000

Theorem. (CS TAMS 2014)

Let $(\mathcal{E}, \mathcal{F})$ be a Dirichlet form on (A, τ) .

- Potentials are positive: $\mathcal{P} \subset L^2_+(A, \tau)$
- Given a finite energy functional $\omega \in A_+^*$, there exists a unique potential

$$G(\omega) \in \mathcal{P}$$
 $\omega(a) = (G(\omega)|a)_{\mathcal{F}}$ $a \in \mathcal{F}$.

Example. If $h \in L^2_+(A, \tau) \cap L^1(A, \tau)$ then $\omega_h \in A^*_+$ defined by

$$\omega_h(a) := \tau(ha) \qquad a \in A$$

is a finite energy functional whose potential is given by $G(\omega_h) = (I + L)^{-1}h$.

Example. Let \mathcal{E}_{ℓ} be the Dirichlet form on $A := C_r^*(\Gamma)$, associated to a negative definite function ℓ on a countable, discrete group Γ . Then ω is a finite energy functional iff

$$\sum_{t\in\Gamma} \frac{|\omega(\delta_s)|^2}{1+\ell(s)} < +\infty \quad \text{with potential} \quad G(\omega)(s) = \frac{\omega(\delta_s)}{1+\ell(s)} \qquad s\in\Gamma \; .$$

(日) (日) (日) (日) (日) (日) (日) (日)

Since $\varphi_{\ell} := (1 + \sqrt{\ell})^{-1}$ is a positive definite, normalized function, there exists a state $\omega_{\ell} \in A^*_+$ such that $\varphi_{\ell}(s) = \omega_{\ell}(\delta_s)$ for all $s \in \Gamma$. Thus ω has finite-energy iff

$$\sum_{s\in\Gamma}\frac{|\omega(\delta_s)|^2}{(1+\sqrt{\ell}(s))^2} = \sum_{s\in\Gamma}|\varphi_\ell(s)\cdot\varphi_\omega(s)|^2 < +\infty\,.$$

Notice that $\varphi_{\ell} \cdot \varphi_{\omega}$ is a coefficient of a sub-representation of the product $\pi_{\omega_{\ell}} \otimes \pi_{\omega}$ of the representations $(\pi_{\ell}, \mathcal{H}_{\ell}, \xi_{\ell})$ and $(\pi_{\omega}, \mathcal{H}_{\omega}, \xi_{\omega})$ associated to ω_{ℓ} and ω . Hence if ω has finite-energy, $\pi_{\omega_{\ell}} \otimes \pi_{\omega}$ and λ_{Γ} are not disjoint.

Moreover, as ω has finite energy simultaneously with respect to \mathcal{E}_{ℓ} and $\mathcal{E}_{\lambda^{-2}\ell}$ for $\lambda > 0$, the family of normalized, positive definite functions

$$\varphi_{\lambda}(s) = \frac{\lambda}{\lambda + \sqrt{\ell(s)}} \cdot \varphi_{\omega}(s) \qquad s \in \Gamma,$$

generates a family of cyclic representations $\{\pi_{\lambda} : \lambda > 0\}$ contained in λ_{Γ} , deforming the cyclic representation π_{ω} associated to the finite energy state ω to the left regular representation λ_{Γ} . In fact

$$\lim_{\lambda \to 0^+} \varphi_{\lambda} = \delta_e \,, \qquad \lim_{\lambda \to +\infty} \varphi_{\lambda} = \varphi_{\omega} \,.$$

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → つ Q (~

Overview	Carré du champ	Dirac operator in \mathcal{DS}	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms
0	0	0	000	00000000	00000000

Theorem. Deny's embedding (CS TAMS 2014)

Let $\omega \in A_+^*$ be a finite energy functional with bounded potential

$$G(\omega) \in \mathcal{P} \cap L^{\infty}(A, \tau).$$

Then

$$\omega(b^*b) \leq ||G(\omega)||_{\mathcal{M}} ||b||_{\mathcal{F}}^2 \qquad b \in \mathcal{B}.$$

The embedding $\mathcal{F} \hookrightarrow L^1(A, \omega)$ is thus upgraded to an embedding $\mathcal{F} \hookrightarrow L^2(A, \omega)$.

Example. Let \mathcal{E}_{ℓ} be the Dirichlet form associated to a negative type function ℓ on a countable discrete group Γ . Deny's embedding applies whenever

• $\sum_{s} \frac{1}{1+\ell(s)} |\omega(\delta_s)|^2 < +\infty$ ω has finite energy • $\sum_{s} \frac{\omega(\delta_s)}{1+\ell(s)} \lambda(s) \in \lambda(\Gamma)''$ ω has bounded potential.

It is possible, in concrete examples, to find ω which is a coefficient of $C^*(G)$, but not a coefficient of the regular representation (i.e. ω is singular with respect to τ).

Overview	Carré du champ	Dirac operator in DS	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms
0	0	0	000	00000000	00000000

Theorem. Deny's inequality (CS TAMS 2014)

For any finite energy functional $\omega \in A_+^*$ with potential $G(\omega) \in \mathcal{P}$, the following inequality holds true

$$\omega \Big(b^* rac{1}{G(\omega)} b \Big) \leq ||b||_{\mathcal{F}}^2 \qquad b \in \mathcal{F} \,.$$

In the noncommutative setting, since, in general, the finite energy functional ω is not a trace, the proof requires considerations of KMS-symmetric Dirichlet forms on standard forms of von Neumann algebras, illustrated in Lecture 1.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Theorem. (CS TAMS 2014)

Let $G \in \mathcal{P} \cap \mathcal{M}$ be a bounded potential. Then

- $\langle G, b^*b \rangle_{\mathcal{F}} \le \|G\|_{\mathcal{M}} \cdot \|b\|_{\mathcal{F}}^2 \qquad b \in \mathcal{B}$
- $\Gamma[G] \in A_+^*$ is a finite finite energy functional.

Overview	Carré du champ	Dirac operator in DS	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms
0	0	0	000	000000000	00000000

Multipliers of Dirichlet spaces

The following is another central subject of Potential Theory: its properties reveal geometrical aspects.

On the Dirichlet space \mathcal{F} consider its Hilbertian norm $||a||_{\mathcal{F}} := \sqrt{\mathcal{E}[a] + ||a||_{L^2(A,\tau)}^2}$.

Definition. (C-Sauvageot '12 arXiv:1207.3524)

An element of the von Neumann algebra $b \in L^{\infty}(A, \tau)$ is a multiplier of \mathcal{F} if

$$b \cdot \mathcal{F} \subseteq \mathcal{F}, \qquad \mathcal{F} \cdot b \subseteq \mathcal{F}.$$

Denoting the algebra of multipliers by $\mathcal{M}(\mathcal{F})$, by the Closed Graph Theorem, multipliers are bounded operators on $\mathcal{F}: \mathcal{M}(\mathcal{F}) \subset \mathbb{B}(\mathcal{F})$.

Example. Let \mathcal{F}_{ℓ} be the Dirichlet space associated to a negative type function ℓ on a discrete group Γ . Then the unitaries $\delta_t \in \lambda(\Gamma)''$ are multipliers and

$$\|\delta_t\|_{\mathbb{B}(\mathcal{F}_\ell)} = \sup_{s \in \Gamma} \sqrt{\frac{1 + \ell(st)}{1 + \ell(s)}} \le \sqrt{2}\sqrt{1 + \ell(t)} \qquad t \in \Gamma.$$

(日) (日) (日) (日) (日) (日) (日) (日)

Overview	Carré du champ	Dirac operator in \mathcal{DS}	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms				
0	0	0	000	000000000	00000000				
Sobolev alg	Sobolev algebra of multipliers on Riemannian manifolds								

Example. In case of the Dirichlet integral of a compact Riemannian manifold (V, g)

$$\mathcal{E}[a] = \int_{V} |\nabla a|^2 \, dm_g \qquad a \in H^{1,2}(V) \,,$$

from the Sobolev embedding

$$\|b\|_{rac{2d}{d-2}}^2 \le c \cdot \|b\|_{\mathcal{F}}^2 \qquad b \in H^{1,2}(V,g) \,,$$

one derives an embedding of the Sobolev algebra

$$H^{1,d}_{\infty}(V,g):=H^{1,d}(V,g)\cap L^{\infty}(V,m_g)$$

into the multipliers algebra

$$H^{1,d}_{\infty}(V,g) \hookrightarrow \mathcal{M}(\mathcal{F}) \qquad \|a\|_{\mathbb{B}(\mathcal{F})} \leq c \cdot \|a\|_{H^{1,d}_{\infty}(V,g)}.$$

Recall that the *d*-Dirichlet integral $\int_{V} |\nabla a|^{d} dm_{g}$ and the norm of the Sobolev algebra $H^{1,d}_{\infty}(V,g)$ are the conformal invariants of (V,g) (Gehering, Royden, J. LeLong-Ferrand, Mostow).

Overview	Carré du champ	Dirac operator in DS	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms		
0	0	0	000	0000000	00000000		
Existence of multipliers							

Theorem. *Existence and abundance of multipliers* (CS TAMS 2014)

Let $I(A, \tau) \subset L^{\infty}(A, \tau)$ be the norm closure of the ideal $L^{1}(A, \tau) \cap L^{\infty}(A, \tau)$. Then

• $(I+L)^{-1}h$ is a multiplier for any $h \in I(A, \tau)$

$$||(I+L)^{-1}h||_{\mathbb{B}(\mathcal{F})} \le 2\sqrt{5}||h||_{\infty} \qquad h \in I(A,\tau)$$

• bounded L^p-eigenvectors of the generator L, are multipliers

 $h \in L^p(A, \tau) \cap L^{\infty}(A, \tau)$ $Lh = \lambda h \Rightarrow ||h||_{\mathbb{B}(\mathcal{F})} \le 2\sqrt{5}(1+\lambda)||h||_{\infty}$

- the algebra of finite energy multipliers $\mathcal{M}(\mathcal{F}) \cap \mathcal{F}$ is a form core
- the Dirichlet form is regular on the C^* -algebra $\overline{\mathcal{M}(\mathcal{F}) \cap \mathcal{F}}$
- $\overline{\mathcal{M}(\mathcal{F}) \cap \mathcal{F}} = A$ provided the resolvent is strongly continuous on A

$$\lim_{\varepsilon \downarrow 0} \| (I + \varepsilon L)^{-1} a - a \|_{\mathcal{M}} = 0 \qquad a \in A \,.$$

Remark. The definition of multiplier of a Dirichlet space \mathcal{F} does not involve properties of the quadratic form \mathcal{E} other than that to be closed. Proofs of existence and large supply of multipliers are based on the properties of potentials and finite energy states developed in noncommutative potential theory.

Overview	Carré du champ	Dirac operator in DS	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms		
0	0	0	000	00000000	00000000		
Multipliers characterizations							

• How to replace the seminorm on the Lipschiz algebra of a Dirichlet space

$$\mathcal{L}(\mathcal{F}) \ni a \to \|[D,a]\|_{\mathcal{H}_D} = \|[\partial,a]\|_{L^2 \to \mathcal{H}}$$

when the Lipschiz algebra is reduced or trivializes $\mathcal{L}(\mathcal{F}) \simeq \mathbb{C}$?

• Is there the possibility to define a distance when energy is distributed singularly w.r.t. volume, i.e. when an iconal equation is not more at hand?

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem. (CS TAMS 2014)

For elements of the Dirichlet algebra $a \in \mathcal{B} = A \cap \mathcal{F}$, we have equivalently

- $a \in \mathcal{M}(\mathcal{F}) \cap \mathcal{F}$ (finite energy multiplier)
- the commutator $[\partial, a]$ is a bounded operator on from \mathcal{F} to \mathcal{H}
- $\|(\partial a)b\|_{\mathcal{H}} \leq c_a \cdot \|b\|_{\mathcal{F}}$ $b \in \mathcal{B}$, for some $c_a \geq 0$
- $\mathcal{F} \hookrightarrow L^2(A, \Gamma[a])$

Overview	Carré du champ	Dirac operator in DS	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms		
0	0	0	000	00000000	00000000		
Multipliers modules							

Definition. (CS TAMS 2014)

The multipliers subspace $\mathcal{M}(\mathcal{H}) \subseteq \mathcal{H}$ is defined requiring its vectors satisfy

$$\|\xi b\|_{\mathcal{H}} \le c_{\xi} \cdot \|b\|_{\mathcal{F}} \qquad b \in \mathcal{B}, \text{ for some } c_{\xi} \ge 0$$

or, equivalently, that the following multiplication operator is bounded from $\mathcal F$ to $\mathcal H$

 $M_{\xi}: \mathcal{B} \to \mathcal{H}$ $M_{\xi}(b) := \xi b$ $b \in \mathcal{B}$

and it is normed by $\|\xi\|_{\mathcal{M}(\mathcal{H})} := \|M_{\xi}\|_{\mathcal{F} \to \mathcal{H}}$.

Clearly, for $a \in \mathcal{B}$ ia multiplier, $a \in \mathcal{M}(\mathcal{F}) \cap \mathcal{F}$, if and only if $\partial a \in \mathcal{M}(\mathcal{H})$.

Theorem. (CS TAMS 2014)

Consider multipliers algebra $\mathcal{M}(\mathcal{F})$, multipliers subspace $\mathcal{M}(\mathcal{H})$, assume $1 \in \mathcal{F}$.

- The Dirichlet space \mathcal{F} is a $\mathcal{M}(\mathcal{F})$ -bimodule
- $\mathcal{M}(\mathcal{H})$ is a Banach space embedded in \mathcal{H} : $\|\xi\|_{\mathcal{H}} \leq \|1\|_{\mathcal{F}} \cdot \|\xi\|_{\mathcal{M}(\mathcal{H})}$
- $\mathcal{M}(\mathcal{H})$ is a $\mathcal{M}(\mathcal{F})$ -bimodule

Overview	Carré du champ	Dirac operator in \mathcal{DS}	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms			
0	0	0	000	00000000	0000000			
Closable de	Closable derivations							

Definition. (CS TAMS 2014)

Define the multiplier seminorm as

$$\|\partial a\|_{\mathcal{M}(\mathcal{H})} = \|M_{\partial a}\|_{\mathcal{F}\to\mathcal{H}} = \|[\partial,a]\|_{\mathcal{F}\to\mathcal{H}} \qquad a\in\mathcal{M}(\mathcal{F})\cap\mathcal{F}$$

Proposition. (CS TAMS 2014)

- The derivation ∂ : M(F) ∩ F → M(H) is densely defined and closable from F to M(H)
- its graph norm is equivalent to the multipliers norm

 $\|a\|_{\mathcal{F}} + \|\partial a\|_{\mathcal{M}(\mathcal{H})} \asymp \|a\|_{\mathcal{M}(\mathcal{F})} \qquad a \in \mathcal{M}(\mathcal{F}) \cap \mathcal{F}$

• the derivation $\partial : \mathcal{M}(\mathcal{F}) \cap \mathcal{B} \to \mathcal{M}(\mathcal{H})$ is closable from A to $\mathcal{M}(\mathcal{H})$.

Question. Which geometry underlies the automorphisms subgroup of A, leaving invariant the graph norm

$$\mathcal{M}(\mathcal{F}) \cap \mathcal{B} \ni a \to ||a||_A + ||\partial a||_{\mathcal{M}(\mathcal{H})}?$$

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → つ Q (~

Overview	Carré du champ	Dirac operator in DS	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms	
0	0	0	000	00000000	00000000	
Isocapacitary inequality						

In a commutative setting $(C_0(X), m)$, the Choquet capacity associated to a Dirichlet forms $(\mathcal{E}, \mathcal{F})$ is defined as the following set function

$$Cap(A) := \inf\{\|b\|_{\mathcal{F}} : b \in \mathcal{F}, \ b \ge 1_A\} \qquad A \subset X \text{ open}$$
$$Cap(B) := \inf\{Cap(A) : B \subset A \text{ open}\} \qquad B \subset X \text{ Borel}.$$

Proposition. (CS TAMS 2014)

Consider a Dirichlet form $(\mathcal{E}, \mathcal{F})$ in a commutative setting $(C_0(X), m)$. Then the multiplier seminorm of $a \in \mathcal{M}(\mathcal{F}) \cap \mathcal{F}$ is equivalent to

$$\|[\partial, a]\|_{\mathcal{F} \to \mathcal{H}} \asymp \sup_{B \subset X} \frac{\Gamma[a](B)}{\operatorname{Cap}(B)} \quad isocapacitary \ inequality \,.$$

Isocapacitary inequalities were considered by V. Maz'ya with respect to the Dirichlet integral on \mathbb{R}^n and by M. Fukushima for Dirichlet spaces on locally compact spaces.

Overview	Carré du champ	Dirac operator in \mathcal{DS}	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms
0	0	0	000	00000000	00000000
Sobolev alge	ebras				

• On a Riemannian manifold $(V, g), n := \dim(V) \ge 3$, by Sobolev inequality

$$\|b\|_{rac{2n}{n-2}}^2 \le c_S \cdot \|b\|_{\mathcal{F}}^2$$

we have the bound $m(B)^{1-\frac{2}{n}} \leq c \cdot \operatorname{Cap}(B)$ $B \subset X$ Borel so that the algebra of finite energy multipliers contains the weak Sobolev-Marcinkiewic algebra and the Sobolev algebra

$$H^1_\infty(V,g)\subset H^1_{Mar,\infty}(V,g)\subset \mathcal{M}(\mathcal{F})\cap \mathcal{F}$$

• on the other hand, as $\operatorname{Cap}(B_r) \leq c \cdot r^{n-2}$, B_r for all balls of radius r > 0, the algebra of finite energy multipliers is contained in the Sobolev-Morrey algebra and in the algebra of functions with bounded mean oscillations

$$\mathcal{M}(\mathcal{F}) \cap \mathcal{F} \subseteq H^1_{Mor,\infty}(V,g) \subseteq BMO(V,g)$$

Overview	Carré du champ	Dirac operator in \mathcal{DS}	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms	
0	0	0	000	00000000	000000000	
Conformal invariance						

• On the Euclidean space \mathbb{R}^n , one easily checks that the group of homeomorphisms leaving invariant the Sobolev seminorm

$$\|a\|_{H^1_{\infty}} := \int_{\mathbb{R}^n} |\nabla a|^n \, dm$$

coincides with conformal group $\operatorname{Co}(\mathbb{R}^n)$

• On the Euclidean space \mathbb{R}^n , it is much more difficult to see that the group of homeomorphisms leaving invariant the BMO seminorm

$$||a||_{\mathrm{BMO}} := \sup_{\mathcal{Q} \subset \mathbb{R}^n} \frac{1}{m(\mathcal{Q})} \int_{\mathcal{Q}} |a - a_{\mathcal{Q}}| \, dm$$

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → つ Q (~

still coincides with conformal group $\operatorname{Co}(\mathbb{R}^n)$

H.M. Reimann Comment. Math. Helv (49) 1974, K. Astala Michigan Math. J. (30) 1983).

Overview	Carré du champ	Dirac operator in \mathcal{DS}	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms		
0	0	0	000	00000000	000000000		
Conformal invariance							

Proposition. (CS TAMS 2014)

The seminorm of the algebra $\mathcal{M}(H^1) \cap H^1$ of finite energy multipliers of the

Dirichlet integral
$$\mathcal{D}[f] := \int_{\mathbb{R}^n} |\nabla f|^2 dm \quad f \in H^1(\mathbb{R}^n)$$

is invariant under conformal group

$$\|[\nabla, a \circ \gamma]\|_{H^1 \to L^2} = \|[\nabla, a]\|_{H^1 \to L^2} \qquad a \in \mathcal{M}(H^1) \cap H^1, \quad \gamma \in \mathrm{Co}(\mathbb{R}^n)$$

Steps of proof.

- $(\mathcal{D}, H^1(\mathbb{R}^n))$ is transient if and only if $n \ge 3$ so that $||f||_{\mathcal{D}} = \mathcal{D}[f]$ is a norm
- Green function $G(x, y) := c_n |x y|^{2-n}$
- resolvent $G(f)(x) = (-\Delta^{-1}f)(x) = \int_{\mathbb{R}^n} G(x, y)f(y) dy$
- isometric actions of the conformal group $Co(\mathbb{R}^n)$ on L^p -spaces

$$\gamma_r^*: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n) \qquad \gamma_p^*(f)(y) := J_{\gamma^{-1}}^{1/p} f(\gamma^{-1}(y)) \qquad \gamma \in \operatorname{Co}(\mathbb{R}^n)$$

where $J_{\gamma}(x) := |\det(\gamma'(x))|$ is the Jacobian of the transformation $\gamma \in Co(\mathbb{R}^n)$

(日) (日) (日) (日) (日) (日) (日) (日)

Overview	Carré du champ	Dirac operator in DS	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms	
0	0	0	000	00000000	000000000	
Conformal invariance						

• Hardy-Littlewood-Sobolev inequality for $0 < \lambda < n, p, q > 1, \frac{1}{p} + \frac{\lambda}{n} + \frac{1}{q} = 2$

$$I(f,h) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x) |x-y|^{-\lambda} h(y) \, dx \, dy \le c \cdot \|f\|_p \cdot \|h\|_q \quad f \in L^p(\mathbb{R}^n) \,, \quad h \in L^q(\mathbb{R}^n)$$

Riesz potentials

$$G_{\lambda}(f)(x) = \int_{\mathbb{R}^n} f(y) |x - y|^{-\lambda} dy$$

bounded from $L^q(\mathbb{R}^n)$ to $L^{p'}(\mathbb{R}^n)$ and from $L^p(\mathbb{R}^n)$ to $L^{q'}(\mathbb{R}^n)$

- resolvent boundedness $G: L^p(\mathbb{R}^n) \to L^r(\mathbb{R}^n)$ where $p = \frac{2n}{n+2}, r = \frac{2n}{n-2}$ (Sobolev exponent)
- resolvent conformal covariance

$$G(\gamma_p^*(f)) = \gamma_r^*(G(f)) \qquad f \in L^p(\mathbb{R}^n)$$

conformal invariance of the Hardy-Littlewood-Sobolev functional

$$I(\gamma_p^*(f), \gamma_p^*(f)) = I(f, f) \qquad f \in L^p(\mathbb{R}^n) \qquad p = \frac{2n}{2n - \lambda}$$
$$\mathcal{D}[G(f)] = c_n \cdot I(f, f) \qquad f \in L^r(\mathbb{R}^n) \qquad r = \frac{2n}{n+2}$$

Overview	Carré du champ	Dirac operator in DS	Spectral triple, Fredholm module of DS	NC Potential Theory	Lipschiz and multipliers seminorms
0	0	0	000	00000000	00000000
Conformal in	nvariance				

• multipliers norm

$$||a||_{\mathcal{M}(H^1)} := \sup\{||ab||_{H^1} : ||b||_{H^1} = 1\}$$

• and its conformal invariance

$$\|a \circ \gamma\|_{\mathcal{M}(H^1)} = \|a\|_{\mathcal{M}(H^1)} \qquad a \in \mathcal{M}(H^1) \qquad \gamma \in \mathrm{Co}(\mathbb{R}^n)$$

• multipliers seminorm

$$\|[\nabla, a]\|_{H^1 \to L^2} := \sup\{\|[\nabla, a]b\|_{L^2} : \|b\|_{H^1} = 1\}$$

• and its conformal invariance

$$\|[\nabla, a \circ \gamma]\|_{H^1 \to L^2} = \|[\nabla, a]\|_{H^1 \to L^2} \qquad a \in \mathcal{M}(H^1) \qquad \gamma \in \operatorname{Co}(\mathbb{R}^n).$$