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Classical Potential Theory concerns properties of the Dirichlet integral

D : L2(Rd,m)→ [0,+∞] D[u] :=

∫
Rd
|∇u|2 dm :

lower semicontinuous quadratic form on the Hilbert space L2(Rd,m)

finite on the Sobolev space H1(Rd)

closed form of the Laplace operator

∆ = −
d∑

k=1

∂2
k D[u] = ‖

√
∆u‖2

2

generator of the heat semigroup e−t∆ : L2(Rd,m)→ L2(Rd,m)

whose heat kernel

e−t∆(x, y) = (4πt)−d/2e−
|x−y|2

4t

is the fundamental solution of the heat equation ∂tu + ∆u = 0
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The contraction property or Markovianity D[u ∧ 1] ≤ D[u] is responsible for

Maximum Principle for solution of the Laplace equation ∆u = 0

Maximum Principle for solutions of the heat equation ∂tu + ∆u = 0

contractivity, positivity preserving and continuity properties of the heat
semigroup e−t∆ on the spaces L2(Rd,m), L∞(Rd,m), L1(Rd,m).

The Brownian motion (Ω,Px,Xt) is the stochastic processes on Rd associated to D

(e−t∆u)(x) = Px(u ◦ Xt)

whose polar sets B (avoided by the processes) are the Cap(B) = 0 sets for the
electrostatic capacity associated to D.

The above properties are proved by the knowledge of the Green function

∆−1u(x) =

∫
Rd

G(x, y)u(y) m(dy) G(x, y) = |x− y|2−d d ≥ 3 .

Beurling and Deny (late ’50) developed a kernel free potential theory
generalizing the notion of Dirichlet integral to locally compact spaces.

Fukushima (middle ’60) achieved the construction of the associated Hunt
process.
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Let (M, L2(M), L2
+(M), J) be a standard form of a von Neumann algebraM.

Let ξ0 ∈ L2
+(M) be a fixed cyclic and separating vector and ξ ∧ ξ0 ∈ L2

+(M) be the
projection of a real vector ξ = Jξ ∈ L2(M) onto the positive cone L2

+(M).

Definition. (Dirichlet form)

A Dirichlet form E : L2(M)→ (−∞,+∞] is a l.s.c., quadratic form such that

the domain F := {ξ ∈ L2(M) : E [ξ] < +∞} is dense in L2(M)

E [Jξ] = E [ξ] real

E [ξ ∧ ξ0] ≤ E [ξ] Markovian

(E ,F) is a complete Dirichlet form if its matrix expansions for n ≥ 1

En[(ξij)ij] :=
∑

ij

E [ξij]

are Dirichlet forms onM⊗Mn(C) (tacitly assumed since now on)

The domain F is called Dirichlet space when endowed with the graph norm

‖ξ‖F :=
√
E [ξ] + ‖ξ‖2

L2(M)
.
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Definition. (Markovian semigroup)

A self-adjoint C0-semigroup {Tt : t ≥ 0} on L2(M) is Markovian if

TtJ = JTt t ≥ 0

ξ ≤ ξ0 ⇒ Ttξ ≤ ξ0 t ≥ 0

{Tt : t ≥ 0} on L2(M) is completely Markovian if its matrix expansions

Tn
t ([ξij]ij) := [Ttξij]ij

are Markovian semigroups on L2(M⊗Mn(C)) (tacitly assumed since now on)

Consider the symmetric embedding i0 :M→ L2(M) i0(x) := ∆
1/4
ξ0

xξ0

and the faithful, normal state ω0 :M→ C ω0(x) := (ξ0|xξ0)2.

Theorem. (Modular ω0-symmetry)

Markovian semigroups are in 1:1 correspondence with C∗0 -continuous, positively
preserving, contractive semigroups {St : t ≥ 0} onM which are ω0-symmetric

ω0(St(x)σω0
−i/2(y)) = ω0(σ

ω0
−i/2(x)St(y)) x, y ∈Mσω0 , t > 0

through i0(St(x)) = Tt(i0(x)) x ∈M .
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Theorem. (Generalized Beurling-Deny correspondence)

Dirichlet forms are in 1:1 correspondence with Markovian semigroups by

E [ξ] = lim
t→0

1
t
(ξ|a− Ttξ) a ∈ F

or through the self-adjoint generator (L, dom (L))

Tt = e−tL E [a] = ‖
√

La‖2
L2(A,τ) a ∈ F = dom (

√
L) .

In particular, Dirichlet forms are nonnegative E ≥ 0 and Markovian semigroups are
positivity preserving and contractive.

Extending Markovian semigroups fromM to L2(M) via non symmetric
embeddings

iα(x) := ∆α
ξ0 xξ0 α ∈ [0, 1/2] α 6= 1/4 ,

produces semigroups on L2(M) which automatically commute with ∆ξ0 .

By duality and interpolation, Markovian semigroups extend to C0-semigroups
on noncommutative Lp(M) spaces, p ∈ [1,+∞).
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Theorem. (Ergodic Markovian semigroups)

The following properties are equivalent:

the Markovian semigroup {Tt : t ≥ 0} on L2(M, ω) is ergodic:
for ξ, η ∈ L2

+(M, ω) there exists t > 0 such that (ξ|Ttη)2 > 0

the Markovian semigroup {Tt : t ≥ 0} on L2(M, ω) is indecomposable:
for some t > 0, Tt leaves invariant no proper face of the cone L2

+(M, ω)

λ := inf{E [ξ] : ‖ξ‖2 = 1} is a Perron-Frobenius eigenvalue:
it is a simple eigenvalue with cyclic eigenvector ξλ ∈ L2

+(M, ω).

Faces F of the self-polar cone L2
+(M, ω) are in 1:1 correspondence with Peirce

projections Pe = eJeJ associated to projections e ∈ Proj (M)

F = Pe(L2
+(M, ω)) .

In the trace case, the above equivalences were established by L. Gross in his paper
Existence and uniqueness of physical ground states, J. Funct. Anal. 10 (1972).
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Let {αt : t ∈ R} be a strongly continuous automorphisms group on the C∗-algebra A,
Aα the algebra of its analytic elements and let ω ∈ A∗+ be a KMSβ-state for β ∈ R.

Definition. (KMS symmetric semigroups on C∗-algebras)

A C0-semigroup {St : t ≥ 0} on A is KMSβ symmetric with respect to ω if

ω(bSt(a)) = ω(α− iβ
2

(a)St(α+ iβ
2

(b))) a, b ∈ B

for some dense, α-invariant, ∗-subalgebra B ⊆ Aα.

equivalently ω(α− iβ
2

(b)St(a)) = ω(α− iβ
2

(a)St(b)) a, b ∈ B

KMS symmetry is a deformation of the KMS condition, in fact for t = 0 we get

ω(ba) = ω(α− iβ
2

(a)α
+ iβ

2
(b)) = ω(aα+iβ(b)) a, b ∈ B .

In case {αt : t ∈ R} and {St : t ≥ 0} commute, KMS symmetry reduces to

ω(bSt(a)) = ω(St(b)a) GNS symmetry

also referred to as detailed balance.
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Proposition.
The following conditions are equivalent

a C0-semigroup {St : t ≥ 0} on A is KMSβ symmetric with respect to ω

for any a, b ∈ A and on the KMS-strip Dβ ⊂ C there exists a bounded
continuous function Fa,b : Dβ → A, analytic in Dβ such that for s ∈ R, t ≥ 0

Fa,b(s) = ω(α−s(a)St(α+s(b))) , Fa,b(s + iβ) = ω(α+s(b)St(α−s(a))) .
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Dirichlet forms by KMS symmetric semigroups

Let ω0 ∈ A∗+ be a KMSβ-state for {αt : t ∈ R} ⊂ Aut (A) and consider

the cyclic GNS representation (πω0 ,Hω0 , ξ0) of A

the von Neumann algebraM := πω0 (A)′′ acting on the space

L2(M, ω0) ' Hω0 carrying

the standard form determined by L2
+(M, ω0) = {∆1/4

ξ0
πω0 (A+)ξ0}

the normal extension of ω0 toM given by ω0(x) := (ξ0|ξ0x)2 , x ∈M
the modular automorphisms group {σω0

t : t ∈ R} ofM.

Proposition.

A KMSβ symmetric, C0-semigroup {St : t ≥ 0} on A

leaves globally invariant the kernel of the cyclic representation:
St(ker (πω0 )) ⊆ ker (πω0 )

extends to a ω0-symmetric, C∗0 -semigroup {Tt : t ≥ 0} on the von Neumann
algebraM by Tt ◦ πω0 = πω0 ◦ St

extends to a Markovian semigroup on L2(M, ω0)

determines a Dirichlet form on the standard form (M, L2(M, ω0), L2
+(M, ω0))
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Example: Bounded Dirichlet forms

Example (C. JFA 147 (1997)).
On a standard form (M, L2(M), L2

∗(M), J) consider j(x) := JxJ for x ∈M and

finite subsets {ak : k = 1, . . . , n} ⊂ M, {µk, νk : k = 1, . . . , n} ⊂ (0,+∞)

operators dk : L2(M)→ L2(M) defined by dk := i(µkak − νkj(a∗k ))

quadratic form on L2(M) given by E [ξ] :=
∑n

k=1 ‖dkξ‖2
L2(M)

Then E is

J-real iff
∑n

k=1[µ
2
ka∗k ak − ν2

k aka∗k ] ∈ µ ∩M′

Markovian if moreover∑n
k=1[µ

2
ka∗k ak − µkνk(akj(ak) + a∗k j(a∗k )) + ν2

k aka∗k ]ξ0 ≥ 0;

the associated Markovian semigroup is conservative, Ttξ0 = ξ0 for all t ≥ 0, if
moreover the numbers (µk/νk)

2 are eigenvalues of the modular operator ∆ξ0

corresponding to eigenvectors akξ0

the generator has the form

L =
n∑

k=1

[µ2
ka∗k ak − µkνk(akj(ak) + a∗k j(a∗k )) + ν2

k aka∗k ] .
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Example: Ornstein-Uhlembeck semigroups

Example (C.-Fagnola-Lindsay CMP 210 (2000)).

Consider the canonical base {ek : k ∈ N} of Hilbert space h := l2(N)

the C∗-algebra of compact operators K(h)

the von Neumann algebra of bounded operators B(h)

the Hilbert-Schmidt standard form (B(h),L2(h),L2
+(h), J)

fix parameters µ > λ > 0 and set ν := (λ/µ)2

the state ων(x) := (1− ν)
∑

k≥0 ν
k|ek >< ek|

the cyclic vector ξν := (1− ν)1/2∑
k≥0 ν

k/2|ek >< ek|
creation/annihilation operators
a∗(ek) :=

√
k + 1ek+1 a(ek) :=

√
kek−1 a(e0) = 0

satisfying the Canonical Commutation Relation: aa∗ − a∗a = I.

Then the closure of the quadratic form E : L2(h)→ [0,+∞)

E [ξ] := ‖µaξ−λξa∗‖2+‖µaξ∗−λξ∗a∗‖2 F := linear span{|ek >< el| : k, l ∈ N}

is a Dirichlet form and the associated Markovian semigroup reduces to an ergodic,
Markovian, C0-semigroup on K(h) leaving the state ων invariant.
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Consider the lattice Zd and the class L of its finite subsets

denote AX :=
⊗

x∈X M2(C) the algebra of observables in X ∈ L
denote A0 =

⋃
X∈L AX the normed algebra of local observables

A := A0 the C∗-algebra of quasi-local observabes

consider an interaction Φ := {ΦX = Φ∗X ∈ AX : X ∈ L}

Then if λ > 0 is such that ‖Φ‖λ := supx∈Zd

∑
x∈X∈L |X|4

|X|eλdiam (X)‖ΦX‖ < +∞,
a norm closable derivation A is defined on by

D(δ) := A0 δ(a) :=
∑

X∩Y 6=∅

i[ΦY , a] a ∈ AX X ∈ L

and the automorphisms group {αΦ
t : t ∈ R} generated by its closure satisfies

analiticity: the evolution R 3 t→ αΦ
t (a) of local observables a ∈ A0, extends

analytically to the strip Dβλ , βλ := λ
2‖Φ‖λ

finite group velocity: for a ∈ A{x}, b ∈ AX, t ∈ R we have

‖[αΦ
t (a), b]‖ ≤ 2‖a‖ · ‖b‖ · |X| · e−(λdist(x,X))−2|t|Φ‖λ) .

Isotropic, anisotropic Heisenberg and Ising models correspond to different Φ.
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Example: Approach to equilibria of Quantum Spin Systems 1

Let ω ∈ A∗+ be a KMSβ state of the automorphisms group {αΦ
t : t ∈ R}

consider the standard form (M, L2(M, ω), L2(M, ω)) ofM := πω(A)′′

generated by the cyclic representation (πω, L2(M, ω), ξω)

consider the Pauli matrices {σx
j ∈ A{x} : j = 0, 1, 2, 3} at sites x ∈ Zd

their images ax
j := πω(σx

j ) ∈M
denote f0 : R→ R the function f0(t) := (cosh(2πt))−1

Theorem. (Y.M. Park, IDAQP Rel. Top. 3, (2000))

At sufficiently high temperature β < λ
‖Φ‖λ

, the form E : L2(M, ω)→ [0,+∞]

E [ξ] :=
∑
x∈Zd

3∑
j=0

Ex,j[ξ] Ex,j[ξ] :=

∫
R
‖[σt−i/4(ax

j )− j(σt−i/4(ax
j ))]ξ‖2f0(t)dt

is a Dirichlet form with respect to the cyclic vector ξω ∈ L2
+(M, ω).

Proof: combines i) stability of the Markovian property and lower semicontinuity
under superposition ii) the condition on the temperature implies that ax

j are analytic
elements for the modular group so that the forms Ex,j are well defined and also
provide a dense domain in L2(M, ω) where E is finite.
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Example: Approach to equilibria of Quantum Spin Systems 1

Theorem. (Y.M. Park J. Math. Physics 46 (2005))

The following properties are equivalent

ω is an extremal KMSβ state for the automorphisms group {αΦ
t : t ∈ R}

ω is a factor state

the Markovian semigroup {Tt : t ≥ 0} on L2(M, ω) is ergodic.

"Proof": by construction, {ax
j : x ∈ Zd , j = 0, 1, 2, 3} generatesM and one gets

{ξ ∈ L2(M, ω) : Ttξ = ξ , t > 0} = (M∩M′)ξ0 .
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Example: Approach to equilibria of Quantum Spin Systems 2

Let ω ∈ A∗+ be a KMSβ state of the automorphisms group {αΦ
t : t ∈ R}

consider the standard form (M, L2(M, ω), L2(M, ω)) ofM := πω(A)′′

consider the partial traces TrX : A→ A corresponding to X ∈ L

Theorem. (A. Majewski-B. Zegarlinski Lett. Math. Phys. 36 (1996))

There exist λ > 0 such that ‖Φ‖λ < +∞ and β > 0 such that

There exist γX ∈ AX normalized and rapidly decaying

TrX(γ∗XγX) = 1 ‖γX+j − Tri(γX+j)‖A ≤ c · (1 + |i− j|)−(2d+ε)

such that the generalized conditional expectation EX(a) := TrX(γ∗X aγX) are
completely positive, unital and KMSβ symmetric

LX(a) := a− EX(a) is a bounded generators of a completely positive, unital,
KMSβ symmetric semigroup

a bounded Dirichlet form is given by

EX : L2(M, ω)→ [0,+∞) EX[iω(πω(a))] := ω(αΦ

− iβ
4

(a))αΦ

− iβ
4

(LXa))

the quadratic form E : L2(M, ω)→ [0,+∞] E :=
∑

j∈Zd EX+j

is densely defined, closable, Markovian and its closure is a Dirichlet form.
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Compact Quantum Groups

A Compact Quantum Group G = (A,∆) is a unital C∗-algebra A =: C(G) and

a coproduct ∆ : A→ A⊗ A, a unital, ∗-homomorphism which is

coassociative (∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆ and satisfies

cancelation rules Lin((1⊗ A)∆(A)) = Lin((A⊗ 1)∆(A)) = A⊗ A.

A unitary corepresentation of G is a unitary matrix U = (ujk) ∈ Mn(A) such that

∆(ujk) =
∑n

p=1 ujp ⊗ upk j, k = 1, . . . , n .

Theorem. (Woronowicz (1987))

Let {Us : s ∈ Ĝ} be a complete family of inequivalent irr. unitary corepr. of G.
Then the algebra of polynomials, defined by

Pol(G) := Span{us
jk; s ∈ Ĝ, 1 ≤ j, k ≤ ns}

is a dense Hopf ∗-algebra with counit ε(us
jk) := δjk and antipode S(us

jk) := (us
kj)
∗

satisfying (mA being the product in A)

(ε⊗ id)∆(a) = a (id⊗ ε)∆(a) = a mA(S⊗ id)∆(a) = ε(a)I = mA(id⊗)∆(a) .
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Convolution and Haar state

Convolution ξ ? ξ′ ∈ A∗ of functionals ξ , ξ′ ∈ A∗ is defined by

ξ ? ξ′ := (ξ ⊗ ξ′) ◦∆ ;

convolution ξ ? a ∈ A of a functional ξ ∈ A′ and an element a ∈ A is defined by

ξ ? a := (id ⊗ ξ)(∆a) a ? ξ := (ξ ⊗ id )(∆a)

Theorem. (Woronowicz (1987))

On a CQG G = (A,∆) there exists a unique (Haar) state h ∈ A∗+ such that

h ? a = a ? h = h(a)1A a ∈ A .

It is a (σ ,−1)-KMS state with respect to a suitable ∗-automorphisms group of A

{σt : t ∈ R} h(ab) = h(σ−i(b)a) a, b ∈ A .

Notice that, in general, the Haar state is not a trace.
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Polar decomposition and unitary antipode

Theorem. (Woronowicz (1987))

The antipode S is closable and its closure S admits the polar decomposition:

S = R ◦ τ i
2
,

τ i
2

generates a ∗-automorphisms group {τt : t ∈ R} of the C∗-algebra A

R is a linear, anti-multiplicative, norm preserving involution on A such that
τt ◦ R = R ◦ τt for all t ∈ R, called unitary antipode.
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SUq(N)

Example: SUq(N)

The compact quantum group SUq(2) = (A,∆), 0 < q ≤ 1, is given by the
universal C∗-algebra A generated by the coefficients of the matrix

U =

(
α −qγ∗

γ α∗

)
with relations on α and γ that ensuring unitarity UU∗ = U∗U = 1

comultiplication ∆(α) := α⊗ α+ γ ⊗ γ, ∆(γ) := γ ⊗ α+ α∗ ⊗ γ
counit ε(α) = 1 ε(γ) = 0

antipode S(α) := α∗ , S(γ) := −qγ , S(us
jk) = (−q)(j−k)us

−k,−j

Haar state h(us
jk) = δs,0

automorphisms group σz(us
jk) = q2iz(j+k)us

jk z ∈ C
unitary antipode R(us

jk) = qk−j(us
kj)
∗
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Let A = Pol (G) and (P,Φ) a noncommutative probability space.

Random variable on A is a ∗-algebra homomorphism j : A → P
distribution of the random variable j : A → P is the state ϕj = Φ ◦ j

convolution of the random variables j1, j2 : A → P is the random variable

j1 ? j2 = mP ◦ (j1 ⊗ j2) ◦∆ .

A Quantum Stochastic Process is a family of random variables (js,t)0≤s≤t

jrs ? jst = jrt for all 0 ≤ r ≤ s ≤ t ≤ T increment property and jtt = ε1P
jst converges to jss in distribution for t↘ s weak continuity.

A QSP is called a Lévy Process if has

independent increments, i.e. for disjoint intervals (ti, si]

Φ
(
js1t1 (a1)...jsntn (an)

)
= Φ

(
js1t1 (a1)

)
...Φ
(
jsntn (an)

)
and [jsi,ti (a1), jsj,tj (a2)] = 0 for i 6= j,

stationary increments, i.e. ϕst = Φ ◦ jst depends only on t − s,
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Lévy Processes on Pol(G) and Markov Semigroups on C(G)

Theorem. (CFK 2011)

Lévy process (jst)0≤s≤t on a A are in 1:1 correspondence with Markov semigroup
(Tt) on A which are translation invariant

∆ ◦ Tt = (id⊗ Tt) ◦∆ t ≥ 0 .

"Proof". Distributions ϕt := ϕ0,t = Φ ◦ j0,t form a continuous convolution
semigroup of states on A:

ϕ0 = ε ϕs ? ϕt = ϕs+t lim
t→0

ϕt(b) = ε(b) b ∈ A

whose generating functional ϕt = exp? tG is defined as G = d
dtϕt
∣∣

t=0
.

A semigroup Tt : A → A is defined by the convolution

Tt = (id⊗ ϕt) ◦∆ = ϕt ? a, t ≥ 0

and its infinitesimal generator L : A → A results as the convolution operator
associated to the generating functional

L(a) = (id⊗ G) ◦∆(a) = G ? a .

The semigroup extends to a translation invariant, Markov semigroup (Tt) on A and its
generator is the closure of G. Moreover, has the relations

G = ε ◦ L , ϕt = ε ◦ Tt t > 0 .
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KMS symmetric Lévy semigroups and spectrum

Theorem. (C-Franz-Kula JFA 266 (2014))

Let Tt = e−tL be a Lévy semigroup on A with generating functional G = ε ◦ L.
The following properties are then equivalent

the semigroup is KMS−1 symmetric with respect to the Haar state

the generator is KMS−1 symmetric with respect to the Haar state

the generating functional is invariant by the action of the unitary antipode R

G = G ◦ R on the Hopf algebra A = Pol (G) .

Proposition. (C-Franz-Kula JFA 266 (2014))

L2(A, h) decomposes as orthogonal sum of the finite dimensional subspaces

L2(A, h) =
⊕
s∈Ĝ

Es Es := Span {us
jkξh : j, k = 1, · · · , ns} s ∈ Ĝ .

L decomposes as a direct sum L =
⊕

s∈Ĝ Ls of its restrictions to the Es subspaces.
Its spectrum thus coincides with σ(L) =

⋃
s∈Ĝ σ(Ls).
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Example: free orthogonal quantum group O+
N

The C∗-algebra Cu(O+
N ) is generated by {vjk = v∗jk : i, k = 1, · · · ,N} subject to

N∑
l=1

vljvlk = δjk =
N∑

l=1

vjlvkl ∆vjk =

N∑
l=1

vlj ⊗ vlk

classes of irreducible, unitary corepresentations Ô+
N
∼= N

the Haar h state is a trace, faithful on Pol(O+
N ) but not on Cu(O+

N )

the Lévy semigroup e−tL is constructed on the reduced C∗-algebra Cr(O+
N )

denote Us ∈ Pol[−N,N] the Chebyshev polynomial of the second kind

U0(x) = 1, U1(x) = x, Us(x) = xUs−1(x)−Us−1(x), x ∈ [−N,N], s ∈ N

generating functional G(u(s)
jk ) := δjk

U′s (N)

Us(N)
, s ∈ N , j, k = 1, · · · ,Us(N)

the generator has discrete spectrum, eigenvalues and multiplicities are given by

λs =
U′s(N)

Us(N)
, ms = (Us(N))2

spectral dimensions: dN = 3 for N = 2, dN = +∞ for N ≥ 3.
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Haagerup Approximation Property

A second countable, locally compact group G has the Haagerup Approximation
property HAP if there exists a sequence of normalized, positive definite functions
ϕn ∈ C0(G), converging to the constant function 1 uniformly on compact subsets.

Equivalently, G has the HAP if there exists a proper, continuous, negative definite
function on G.

By a result of U. Haagerup, the free groups Fn have the HAP as their length functions
are negative definite.

A long research (Connes-Jones, Choda, Jolissaint, Boca, Popa) culminated with
various definitions of the HAP valid in general von Neumann algebras.

Let us consider the following one.

Definition. (Okayasu-Tomatsu 2014)

A von Neuman algebraM has the HAP if there exists a standard form
(M,H,P,J ) and a sequence of contractive, completely positive operators
Tn : H → H such that ‖ξ − Tnξ‖H → 0 as n→ +∞, for all ξ ∈ H.
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HAP and Dirichlet forms

Recently the above HAP has been found to be equivalent to others involving
Markovian semigroups and Dirichlet forms.

Theorem. (Caspers-Skalski 2014)

The following properties are equivalent

The von Neumann algebraM has the HAP

there exists a Markovian semigroup {Tt : t ≥ 0} w.r.t. a cyclic and separating
vector ξ0 ∈ P , such that Tt is compact for all t > 0

there exists a Dirichlet form (E ,F) w.r.t. a cyclic and separating vector ξ0 ∈ P ,
such that its spectrum is discrete.

As an application one can prove the following result.

Corollary. (Brannan 2012)

The von Neumann algebras L∞(Cr(O+
N ), h) of the free orthogonal quantum groups

O+
N in the cyclic representation of the Haar state h on L2(Cr(O+

N ), h), have Haagerup
approximation property.

Proof. The result follows from the Caspers-Skalski equivalence and the construction
of a Dirichlet form with discrete spectrum illustrated above.
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