Structure and rigidity for Gaussian actions and their von Neumann algebras

Rémi Boutonnet

ENS Lyon

June 2014

Setting

- $\Gamma \curvearrowright (X, \mu)$ pmp dynamical system:
 - Γ discrete countable group;
 - (X, μ) standard probability space;
 - $\mu(g^{-1}A) = \mu(A)$, $A \subset X$, $g \in \Gamma$.

Setting

- $\Gamma \curvearrowright (X, \mu)$ pmp dynamical system:
 - Γ discrete countable group;
 - (X, μ) standard probability space;
 - $\mu(g^{-1}A) = \mu(A)$, $A \subset X$, $g \in \Gamma$.

Definition

The **Group-measure space construction** associated with an action $\sigma : \Gamma \curvearrowright (X, \mu)$ is $L^{\infty}(X, \mu) \rtimes \Gamma$ acting on $H = L^{2}(X, \mu) \otimes \ell^{2}(\Gamma)$, generated by

- $f \otimes 1$, $f \in L^{\infty}(X, \mu)$;
- unitaries $u_g = \sigma_g \otimes \lambda_g$, $g \in \Gamma$.

We have the relation $u_g f u_g^* = \sigma_g(f)$.

In this pmp setting, $L^{\infty}(X, \mu) \rtimes \Gamma$ is a finite von Neumann algebra: it admits a trace τ satisfying

$$au(fu_g) = \int_X f d\mu \delta_{e,g}$$

Action ${\mathcal G} \curvearrowright (X,\mu)$	Algebra $M=L^\infty(X,\mu) times G$
Free	$L^\infty(X,\mu)$ is maximal abelian
<i>G</i> -invariant set $Y \subset X$	Central projection $1_Y \in M' \cap M$
Ergodic	$Factor:\ M'\cap M=\mathbb{C}1$

Two pmp actions $\Gamma \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Y, \nu)$ are said to be

- **conjugate** if there exists an isomorphism $\delta : \Gamma \to \Lambda$ and a bimeasurable bijection $T : (X, \mu) \to (Y, \nu)$ such that $T(g \cdot x) = \delta(g) \cdot T(x)$, for a.e. $x \in X$, $g \in \Gamma$;
- orbit equivalent (OE) if there exists bimeasurable bijection
 T : (X, μ) → (Y, ν) such that T(Γ ⋅ x) = Λ ⋅ T(x) for a.e. x ∈ X;
- **W***-equivalent if the crossed product von Neumann algebras are isomorphic:

$$L^{\infty}(X,\mu) \rtimes \Gamma \simeq L^{\infty}(Y,\nu) \rtimes \Lambda.$$

Of course,

$\mathsf{Conjugacy} \Rightarrow \mathsf{OE}$

Theorem (Singer 1955)

Two actions $\Gamma \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Y, \nu)$ are OE if and only if there exists a pair isomorphism:

 $(L^{\infty}(X,\mu) \subset L^{\infty}(X,\mu) \rtimes \Gamma) \simeq (L^{\infty}(Y,\nu) \subset L^{\infty}(Y,\nu) \rtimes \Lambda).$

Theorem (Singer 1955)

Two actions $\Gamma \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Y, \nu)$ are OE if and only if there exists a pair isomorphism:

 $(L^{\infty}(X,\mu) \subset L^{\infty}(X,\mu) \rtimes \Gamma) \simeq (L^{\infty}(Y,\nu) \subset L^{\infty}(Y,\nu) \rtimes \Lambda).$

Orbit Equivalence \Rightarrow W^{*}-equivalence.

Question. What about the converse implications?

Theorem (Singer 1955)

Two actions $\Gamma \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Y, \nu)$ are OE if and only if there exists a pair isomorphism:

 $(L^{\infty}(X,\mu) \subset L^{\infty}(X,\mu) \rtimes \Gamma) \simeq (L^{\infty}(Y,\nu) \subset L^{\infty}(Y,\nu) \rtimes \Lambda).$

Orbit Equivalence \Rightarrow W^{*}-equivalence.

Question. What about the converse implications?

When the action is free, $A := L^{\infty}(X, \mu)$ is a Cartan subalgebra :

Maximal abelian ;

• Reguliar :
$$\{u \in \mathcal{U}(M), uAu^* = A\}'' = M$$
.

- Can one recover the Cartan subalgebra inside $L^{\infty}(X,\mu) \rtimes G$?
- Can one deduce conjugacy of two actions from an orbit equivalence between them?
- What kind of concrete data on an action can be read on its von Neumann algebra?

Examples (Amenable groups)

- Finite and abelian groups are amenable;
- stable under taking subgroup, quotient, extensions, direct limits;
- Free groups are **not** amenable.

Theorem (Connes 1976)

Let $\Gamma \curvearrowright (X, \mu)$ be any free ergodic pmp action. Then $L^{\infty}(X, \mu) \rtimes \Gamma$ is isomorphic to the hyperfinite II₁ factor if and only if Γ is amenable.

 \rightsquigarrow W*-equivalence is very poor in the amenable case.

Gaussian actions & Ergodic properties

To an orthogonal representation $\pi : G \to \mathcal{O}(K)$ one can associate a pmp action $\sigma_{\pi} : G \curvearrowright (X_{\pi}, \mu_{\pi})$ on a standard probability space, the Gaussian action.

To an orthogonal representation $\pi : G \to \mathcal{O}(K)$ one can associate a pmp action $\sigma_{\pi} : G \curvearrowright (X_{\pi}, \mu_{\pi})$ on a standard probability space, the Gaussian action.

If dim_{\mathbb{C}} $K < \infty$ then the standard Gaussian measure on $K \simeq \mathbb{R}^n$ is invariant under $\mathcal{O}(K)$.

To an orthogonal representation $\pi : G \to \mathcal{O}(K)$ one can associate a pmp action $\sigma_{\pi} : G \curvearrowright (X_{\pi}, \mu_{\pi})$ on a standard probability space, the Gaussian action.

If dim_C $K < \infty$ then the standard Gaussian measure on $K \simeq \mathbb{R}^n$ is invariant under $\mathcal{O}(K)$.

If dim_C $K = \infty$, identify K with a maximal Gaussian Hilbert space inside some $L^2(X, \mu)$, that is a subspace consisting of Gaussian random variables. For instance, use the CCR functor.

Any orthogonal transformation of K comes from a unique pmp transformation of (X, μ) . We get a Γ -action on (X, μ) .

To an orthogonal representation $\pi : G \to \mathcal{O}(K)$ one can associate a pmp action $\sigma_{\pi} : G \curvearrowright (X_{\pi}, \mu_{\pi})$ on a standard probability space, the Gaussian action.

If dim_C $K < \infty$ then the standard Gaussian measure on $K \simeq \mathbb{R}^n$ is invariant under $\mathcal{O}(K)$.

If dim_C $K = \infty$, identify K with a maximal Gaussian Hilbert space inside some $L^2(X, \mu)$, that is a subspace consisting of Gaussian random variables. For instance, use the CCR functor.

Any orthogonal transformation of K comes from a unique pmp transformation of (X, μ) . We get a Γ -action on (X, μ) .

Example

Let $\Gamma \curvearrowright I$ and $\pi : \Gamma \to \mathcal{O}(\ell^2_{\mathbb{R}}(I))$ the corresponding shift representation. Then σ_{π} is the generalized Bernoulli shift $G \curvearrowright (\mathbb{R}, \mu_0)^I$.

Representation π	Gaussian action σ_{π}
Faithful	Free
Weakly mixing	Ergodic
Mixing	Mixing
Direct sum	Product

Representation π	Gaussian action σ_{π}
Faithful	Free
Weakly mixing	Ergodic
Mixing	Mixing
Direct sum	Product

An action $G \curvearrowright (X, \mu)$ is strongly ergodic if all sequences (A_n) of almost invariant sets are trivial:

$$\left(\lim_{n}\mu(gA_{n}\Delta A_{n})=0,\,\forall g\right)\Rightarrow\left(\mu(A_{n})(1-\mu(A_{n}))=0
ight).$$

Theorem (B.)

A Gaussian action σ_{π} : $G \curvearrowright (X, \mu)$ is strongly ergodic iff $\pi \otimes \pi$ has no almost invariant vectors.

Rémi Boutonnet

Solidity type result.

Theorem (B. 2011)

Assume that π is weakly contained in the regular representation and put $M := L^{\infty}(X) \rtimes_{\sigma_{\pi}} \Gamma$. Then for any diffuse subalgebra $Q \subset L^{\infty}(X)$, we have that $Q' \cap M$ is amenable.

- Chifan-Ioana 2008: Generalized Bernoulli shifts $\Gamma \curvearrowright [0,1]^I$ with Stab(*i*) amenable for all $i \in I$;
- Ozawa 2008: $SL_2(\mathbb{Z}) \curvearrowright \mathbb{T}^2$.

The theorem applies to all Gaussian actions associated with representations of lattices in simple Lie groups with finite center.

Corollary

Assume that π is weakly contained in the regular representation. Consider the orbit equivalence relation $\mathcal{R}_{\Gamma} \subset X \times X$ induced by σ_{π} . Then for any non-amenable subequivalence relation $\mathcal{R} \subset \mathcal{R}_{\Gamma}$, there exists an \mathcal{R} -invariant subset $Y \subset X$ with positive measure where \mathcal{R} is ergodic.

Corollary

Assume that π is weakly contained in the regular representation. Consider the orbit equivalence relation $\mathcal{R}_{\Gamma} \subset X \times X$ induced by σ_{π} . Then for any non-amenable subequivalence relation $\mathcal{R} \subset \mathcal{R}_{\Gamma}$, there exists an \mathcal{R} -invariant subset $Y \subset X$ with positive measure where \mathcal{R} is ergodic.

Theorem (B. 2011)

Assume that π is mixing and weakly contained in the regular rep., and consider an intermediate subalgebra $L^{\infty}(X) \subset Q \subset L^{\infty}(X) \rtimes_{\sigma_{\pi}} \Gamma$. Then there exist central projections $(p_n)_{n\geq 0} \subset \mathcal{Z}(Q)$ such that $\sum_n p_n = 1$ and

- p₀Q is amenable;
- *p_nQ* is a prime factor which does not have property Gamma, for all n ≥ 1.

Put $M = L^{\infty}(X) \rtimes \Gamma$ and $\tilde{M} = L^{\infty}(X \times X) \rtimes \Gamma$. Gaussian actions are **malleable**:

$$\begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix} \in \mathcal{O}(K \oplus K) \rightsquigarrow \alpha_t \curvearrowright L^{\infty}(X \times X) \\ \rightsquigarrow \alpha_t \in \operatorname{Aut}(\tilde{M}).$$

Put $M = L^{\infty}(X) \rtimes \Gamma$ and $\tilde{M} = L^{\infty}(X \times X) \rtimes \Gamma$. Gaussian actions are **malleable**:

$$\begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix} \in \mathcal{O}(K \oplus K) \rightsquigarrow \alpha_t \curvearrowright L^{\infty}(X \times X) \\ \rightsquigarrow \alpha_t \in \operatorname{Aut}(\tilde{M}).$$

Fixed points: $L\Gamma$.

Put $M = L^{\infty}(X) \rtimes \Gamma$ and $\tilde{M} = L^{\infty}(X \times X) \rtimes \Gamma$. Gaussian actions are **malleable**:

$$egin{pmatrix} \cos(t) & -\sin(t) \ \sin(t) & \cos(t) \end{pmatrix} \in \mathcal{O}(K \oplus K) \rightsquigarrow lpha_t \frown L^\infty(X imes X) \ \rightsquigarrow lpha_t \in \operatorname{Aut}(ilde{M}). \end{cases}$$

Fixed points: $L\Gamma$.

Proposition

 (Spectral gap) If P ⊂ M has no amenable direct summand, α_t → id uniformly on U(P' ∩ M);

2 If $\alpha_t \to \text{id uniformly on } \mathcal{U}(P)$ then $P \prec_M L\Gamma$ or $P' \cap M \prec_M L^{\infty}(X)$.

Theorem (Popa 2006)

Take two ICC property (T) groups Γ and Λ , e.g. $SL_n((\mathbb{Z}) \text{ and } SL_m(\mathbb{Z})$. Then any W^* -equivalence between their Bernoulli actions $\Gamma \curvearrowright [0,1]^{\Gamma}$ and $\Lambda \curvearrowright [0,1]^{\Lambda}$, comes from an isomorphism $G \simeq H$ together with a conjugacy of the actions.

Step 1 : OE-rigidity results.

Step 2 : Conjugate Cartan subalgebras.

Theorem (Popa 2006)

Take two ICC property (T) groups Γ and Λ , e.g. $SL_n((\mathbb{Z})$ and $SL_m(\mathbb{Z})$. Then any W^* -equivalence between their Bernoulli actions $\Gamma \curvearrowright [0,1]^{\Gamma}$ and $\Lambda \curvearrowright [0,1]^{\Lambda}$, comes from an isomorphism $G \simeq H$ together with a conjugacy of the actions.

Step 1 : OE-rigidity results.

Step 2 : Conjugate Cartan subalgebras.

Question : What about general Gaussian actions?

If $L^{\infty}([0,1]^{\Gamma}) \rtimes \Gamma = L^{\infty}([0,1]^{\Lambda}) \rtimes \Lambda$, then the deformation (α_t) converges uniformly on $\mathcal{U}(L\Lambda)$. Hence $L\Lambda$ and $L\Gamma$ are unitarily conjugate. If $L^{\infty}([0,1]^{\Gamma}) \rtimes \Gamma = L^{\infty}([0,1]^{\Lambda}) \rtimes \Lambda$, then the deformation (α_t) converges uniformly on $\mathcal{U}(L\Lambda)$. Hence $L\Lambda$ and $L\Gamma$ are unitarily conjugate. Now comes the key technical result.

Theorem (Popa 2006)

Let $\Gamma \curvearrowright (X, \mu)$ be a Bernoulli action and put $M = L^{\infty}(X) \rtimes \Gamma$. Assume that $B \subset M$ is a Cartan subalgebra normalized by unitaries $u_n \in LG$ which go weakly to 0. Then B is unitary conjugate to $L^{\infty}(X)$. If $L^{\infty}([0,1]^{\Gamma}) \rtimes \Gamma = L^{\infty}([0,1]^{\Lambda}) \rtimes \Lambda$, then the deformation (α_t) converges uniformly on $\mathcal{U}(L\Lambda)$. Hence $L\Lambda$ and $L\Gamma$ are unitarily conjugate. Now comes the key technical result.

Theorem (Popa 2006)

Let $\Gamma \curvearrowright (X, \mu)$ be a Bernoulli action and put $M = L^{\infty}(X) \rtimes \Gamma$. Assume that $B \subset M$ is a Cartan subalgebra normalized by unitaries $u_n \in LG$ which go weakly to 0. Then B is unitary conjugate to $L^{\infty}(X)$.

The proof relies on

- Deformation/rigidity;
- Algebraic structure of Bernoulli actions (cylinders);
- Very strong mixing properties of Bernoulli actions.

Let $\Gamma \curvearrowright (X, \mu)$ be a mixing Gaussian action and put $M = L^{\infty}(X) \rtimes \Gamma$. Assume that $B \subset M$ is a Cartan subalgebra normalized by unitaries $u_n \in LG$ which go weakly to 0. Then B is unitary conjugate to $L^{\infty}(X)$.

Let $\Gamma \curvearrowright (X, \mu)$ be a mixing Gaussian action and put $M = L^{\infty}(X) \rtimes \Gamma$. Assume that $B \subset M$ is a Cartan subalgebra normalized by unitaries $u_n \in LG$ which go weakly to 0. Then B is unitary conjugate to $L^{\infty}(X)$.

Corollary (B. 2012)

Any mixing Gaussian action σ of an ICC property (T) group is *W*^{*}-superrigid: If ρ is any pmp action which is *W*^{*}-equivalent to σ then it is conjugate to

 σ .

loana 2010 : Bernoulli actions of the same groups.

- Trivial fundamental groups for crossed-product von Neumann algebras;
- Computation of outer automorphism groups.

Take an ICC property (T) group Γ , and a mixing rep. π which is not weakly contained in the regular representation. Then the crossed-product by the associated Gaussian action is not stably isomorphic to a group factor, yet it has an anti-isomorphism.

- Trivial fundamental groups for crossed-product von Neumann algebras;
- Computation of outer automorphism groups.

Take an ICC property (T) group Γ , and a mixing rep. π which is not weakly contained in the regular representation. Then the crossed-product by the associated Gaussian action is not stably isomorphic to a group factor, yet it has an anti-isomorphism.

Proof. If $L^{\infty}(X) \rtimes \Gamma \simeq LG$, then we prove that *G* must be of the form $G \simeq H \rtimes \Gamma$, where *H* is abelian and where the action $\Gamma \curvearrowright LH$ is conjugate to σ_{π} . If π is mixing $\Gamma \curvearrowright H$ has finite stabilizers and hence $\Gamma \curvearrowright LH$ is

If π is mixing, $\Gamma \curvearrowright H$ has finite stabilizers, and hence $\Gamma \curvearrowright LH$ is contained in the regular rep.