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Setting

Γ y (X , µ) pmp dynamical system:

Γ discrete countable group;

(X , µ) standard probability space;

µ(g−1A) = µ(A), A ⊂ X , g ∈ Γ.

Definition

The Group-measure space construction associated with an action
σ : Γ y (X , µ) is L∞(X , µ) o Γ acting on H = L2(X , µ)⊗ `2(Γ),
generated by

f ⊗ 1, f ∈ L∞(X , µ);

unitaries ug = σg ⊗ λg , g ∈ Γ.

We have the relation ug fu∗g = σg (f ).
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Relate the action to its von Neumann algebra

In this pmp setting, L∞(X , µ) o Γ is a finite von Neumann algebra: it
admits a trace τ satisfying

τ(fug ) =

∫
X

fdµδe,g .

Action G y (X , µ) Algebra M = L∞(X , µ) o G

Free L∞(X , µ) is maximal abelian

G -invariant set Y ⊂ X Central projection 1Y ∈ M ′ ∩M

Ergodic Factor : M ′ ∩M = C1
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Equivalence between actions

Definition

Two pmp actions Γ y (X , µ) and Λ y (Y , ν) are said to be

conjugate if there exists an isomorphism δ : Γ→ Λ and a
bimeasurable bijection T : (X , µ)→ (Y , ν) such that
T (g · x) = δ(g) · T (x), for a.e. x ∈ X , g ∈ Γ;

orbit equivalent (OE) if there exists bimeasurable bijection
T : (X , µ)→ (Y , ν) such that T (Γ · x) = Λ · T (x) for a.e. x ∈ X ;

W∗-equivalent if the crossed product von Neumann algebras are
isomorphic:

L∞(X , µ) o Γ ' L∞(Y , ν) o Λ.

Of course,

Conjugacy ⇒ OE
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Theorem (Singer 1955)

Two actions Γ y (X , µ) and Λ y (Y , ν) are OE if and only if there exists
a pair isomorphism:

(L∞(X , µ) ⊂ L∞(X , µ) o Γ) ' (L∞(Y , ν) ⊂ L∞(Y , ν) o Λ).

Orbit Equivalence ⇒ W∗-equivalence.

Question. What about the converse implications?

When the action is free, A := L∞(X , µ) is a Cartan subalgebra :

Maximal abelian ;

Reguliar : {u ∈ U(M), uAu∗ = A}′′ = M.
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Questions

Can one recover the Cartan subalgebra inside L∞(X , µ) o G ?

Can one deduce conjugacy of two actions from an orbit equivalence
between them?

What kind of concrete data on an action can be read on its von
Neumann algebra?
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Amenable case

Examples (Amenable groups)

Finite and abelian groups are amenable;

stable under taking subgroup, quotient, extensions, direct limits;

Free groups are not amenable.

Theorem (Connes 1976)

Let Γ y (X , µ) be any free ergodic pmp action.
Then L∞(X , µ) o Γ is isomorphic to the hyperfinite II1 factor if and only if
Γ is amenable.

 W∗-equivalence is very poor in the amenable case.
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Gaussian actions
&

Ergodic properties
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Gaussian actions

Definition

To an orthogonal representation π : G → O(K ) one can associate a pmp
action σπ : G y (Xπ, µπ) on a standard probability space, the Gaussian
action.

If dimC K <∞ then the standard Gaussian measure on K ' Rn is
invariant under O(K ).

If dimC K =∞, identify K with a maximal Gaussian Hilbert space inside
some L2(X , µ), that is a subspace consisting of Gaussian random variables.
For instance, use the CCR functor.
Any orthogonal transformation of K comes from a unique pmp
transformation of (X , µ). We get a Γ-action on (X , µ).

Example

Let Γ y I and π : Γ→ O(`2
R(I )) the corresponding shift representation.

Then σπ is the generalized Bernoulli shift G y (R, µ0)I .
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Representation π Gaussian action σπ

Faithful Free

Weakly mixing Ergodic

Mixing Mixing

Direct sum Product

Definition

An action G y (X , µ) is strongly ergodic if all sequences (An) of almost
invariant sets are trivial:(

lim
n
µ(gAn∆An) = 0, ∀g

)
⇒ (µ(An)(1− µ(An)) = 0) .

Theorem (B.)

A Gaussian action σπ : G y (X , µ) is strongly ergodic iff π ⊗ π has no
almost invariant vectors.
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Structure of the crossed product

Solidity type result.

Theorem (B. 2011)

Assume that π is weakly contained in the regular representation and put
M := L∞(X ) oσπ Γ.
Then for any diffuse subalgebra Q ⊂ L∞(X ), we have that Q ′ ∩M is
amenable.

Chifan-Ioana 2008: Generalized Bernoulli shifts Γ y [0, 1]I with
Stab(i) amenable for all i ∈ I ;

Ozawa 2008: SL2(Z) y T2.

The theorem applies to all Gaussian actions associated with
representations of lattices in simple Lie groups with finite center.
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Structure of the crossed-product

Corollary

Assume that π is weakly contained in the regular representation. Consider
the orbit equivalence relation RΓ ⊂ X × X induced by σπ.
Then for any non-amenable subequivalence relation R ⊂ RΓ, there exists
an R-invariant subset Y ⊂ X with positive measure where R is ergodic.

Theorem (B. 2011)

Assume that π is mixing and weakly contained in the regular rep., and
consider an intermediate subalgebra L∞(X ) ⊂ Q ⊂ L∞(X ) oσπ Γ.
Then there exist central projections (pn)n≥0 ⊂ Z(Q) such that

∑
n pn = 1

and

p0Q is amenable;

pnQ is a prime factor which does not have property Gamma, for all
n ≥ 1.
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Strategy of proof of the solidity theorem

Put M = L∞(X ) o Γ and M̃ = L∞(X × X ) o Γ.
Gaussian actions are malleable:(

cos(t) − sin(t)
sin(t) cos(t)

)
∈ O(K ⊕ K ) αt y L∞(X × X )

 αt ∈ Aut(M̃).

Fixed points: LΓ.

Proposition

1 (Spectral gap) If P ⊂ M has no amenable direct summand, αt → id
uniformly on U(P ′ ∩M) ;

2 If αt → id uniformly on U(P) then P ≺M LΓ or P ′ ∩M ≺M L∞(X ).
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W∗-rigidity

Theorem (Popa 2006)

Take two ICC property (T) groups Γ and Λ, e.g. SLn((Z) and SLm(Z).
Then any W∗-equivalence between their Bernoulli actions Γ y [0, 1]Γ and
Λ y [0, 1]Λ, comes from an isomorphism G ' H together with a
conjugacy of the actions.

Step 1 : OE-rigidity results.
Step 2 : Conjugate Cartan subalgebras.

Question : What about general Gaussian actions?
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Conjugate Cartan subalgebras

If L∞([0, 1]Γ) o Γ = L∞([0, 1]Λ) o Λ, then the deformation (αt) converges
uniformly on U(LΛ).
Hence LΛ and LΓ are unitarily conjugate.

Now comes the key technical result.

Theorem (Popa 2006)

Let Γ y (X , µ) be a Bernoulli action and put M = L∞(X ) o Γ. Assume
that B ⊂ M is a Cartan subalgebra normalized by unitaries un ∈ LG which
go weakly to 0.
Then B is unitary conjugate to L∞(X ).

The proof relies on

Deformation/rigidity;

Algebraic structure of Bernoulli actions (cylinders);

Very strong mixing properties of Bernoulli actions.
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Generalization to Gaussian actions

Theorem (B. 2012)

Let Γ y (X , µ) be a mixing Gaussian action and put M = L∞(X ) o Γ.
Assume that B ⊂ M is a Cartan subalgebra normalized by unitaries
un ∈ LG which go weakly to 0.
Then B is unitary conjugate to L∞(X ).

Corollary (B. 2012)

Any mixing Gaussian action σ of an ICC property (T) group is
W∗-superrigid:
If ρ is any pmp action which is W∗-equivalent to σ then it is conjugate to
σ.

Ioana 2010 : Bernoulli actions of the same groups.
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Other applications

Trivial fundamental groups for crossed-product von Neumann
algebras;

Computation of outer automorphism groups.

Theorem (B. 2012)

Take an ICC property (T) group Γ, and a mixing rep. π which is not
weakly contained in the regular representation.
Then the crossed-product by the associated Gaussian action is not stably
isomorphic to a group factor, yet it has an anti-isomorphism.

Proof. If L∞(X ) o Γ ' LG , then we prove that G must be of the form
G ' H o Γ, where H is abelian and where the action Γ y LH is conjugate
to σπ.
If π is mixing, Γ y H has finite stabilizers, and hence Γ y LH is
contained in the regular rep.
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