Short Distance Analysis of Superselection Charges

Gerardo Morsella

Istituto Nazionale di Alta Matematica "F. Severi"

Recent Advances in Operator Algebras

Roma, November 9th, 2006

Outline

- Background
- Scaling Algebras
- Superselection Theory
- 3 Scaling limit and preservation of sectors
 - DHR sectors
 - BF sectors
- Models with preserved and non-preserved sectors
 - Scaling limit of tensor product theories
 - Construction of the models

Motivations

- Intrinsic understanding of charge confinement concept in Quantum Field Theory.
- D. Buchholz: confined charges are charges of the scaling limit theory which are not also charges of the underlying theory.
- Problem: find canonical way to compare the charge structures of the two theories.
- In particular: identify charges of the underlying theory preserved in the scaling limit.
- Idea: characterize preservance of charges by the scaling behaviour of the associated charged fields.

Scaling Algebras Superselection Theory

Scaling Algebras

Data:

- $O \subset \mathbb{R}^4 \to \mathscr{A}(O) \subset B(\mathscr{H})$ net of observable algebras.
- $x \in \mathbb{R}^4 \to U(x)$ unitary representation of translations.
- $\Omega \in \mathscr{H}$ vacuum.

On C*-algebra of bounded functions $\lambda \in \mathbb{R}_+^{\times} \to \underline{A}_{\lambda} \in \mathscr{A}$

$$\underline{lpha}_{{\pmb{x}}}({\underline{A}})_{\lambda}:= {\sf Ad}\ U(\lambda {\pmb{x}})({\underline{A}}_{\lambda}), \qquad {\pmb{x}}\in \mathbb{R}^4,$$

Definition ([Buchholz-Verch'95])

Local scaling algebra of *O*:

$$\underline{\mathfrak{A}}(\mathcal{O}) := \left\{ \underline{\mathcal{A}} : \, \underline{\mathcal{A}}_{\lambda} \in \mathscr{A}(\lambda \mathcal{O}), \lim_{x \to 0} \|\underline{\alpha}_{x}(\underline{\mathcal{A}}) - \underline{\mathcal{A}}\| = 0 \right\}$$

Scaling Algebras Superselection Theory

Scaling Algebras

 $\varphi \text{ locally normal state on } \mathscr{A} \rightsquigarrow \underline{\varphi}_{\lambda}(\underline{A}) := \varphi(\underline{A}_{\lambda}) \text{ states on } \underline{\mathfrak{A}},$

 $\mathsf{SL}^{\mathscr{A}}(\varphi) := \{ \mathsf{weak}^* \text{ limit points of } (\underline{\varphi}_{\lambda})_{\lambda > 0} \text{ for } \lambda \to 0 \}.$

Theorem ([Buchholz-Verch'95])

- $SL^{\mathscr{A}}(\varphi)$ is independent of φ .
- $\underline{\omega}_0 \in SL^{\mathscr{A}}$ with GNS representation π_0 . Then $\mathscr{A}_0(\mathcal{O}) := \pi_0(\underline{\mathfrak{A}}(\mathcal{O}))''$ is a covariant net in vacuum representation.

 $O \rightarrow \mathscr{A}_0(O)$ is the scaling limit net of \mathscr{A} . Physical interpretation: \mathscr{A}_0 describes the short-distance (i.e. high-energy) behaviour of \mathscr{A} .

Scaling Algebras Superselection Theory

Superselection Theory

Described by classes of localized endomorphisms:

$$\Delta(\mathcal{O}) := \{ \rho \in \mathsf{End}(\mathscr{A}) \, : \, \rho(\mathcal{A}) = \mathcal{A} \, \forall \mathcal{A} \in \mathscr{A}(\mathcal{O}') \}$$

Theorem ([Doplicher-Roberts'90])

- $\exists O
 ightarrow \mathscr{F}(O)$ field net, $g \in G
 ightarrow V(g)$, G compact, such that:
 - $\mathscr{F}(O)^G = \mathscr{A}(O);$
 - ∀ρ ∈ Δ(O) ∃ψ₁,..., ψ_d ∈ ℱ(O) orthogonal isometries, v_[ρ] d-dimensional irrep of G, with

$$\operatorname{Ad} V(g)(\psi_i) = \sum_{j=1}^d v_{[\rho]}(g)_{ij}\psi_j, \quad \rho(A) = \sum_{j=1}^d \psi_j A \psi_j^*.$$

DHR sectors BF sectors

Scaling limit and preservation of DHR sectors

Field scaling algebra $\underline{\mathfrak{F}}$ and scaling limit field net \mathscr{F}_0 defined in analogy to $\underline{\mathfrak{A}}$, \mathscr{A}_0 . $\exists G_0 = G/N_0$ such that $\mathscr{F}_0(O)^{G_0} = \mathscr{A}_0(O)$. General situation:

 $\mathscr{F}^0 \supseteq \mathscr{F}_0 \implies \mathscr{A}$ has confined charges. E.g. in the Schwinger model $\mathscr{F} = \mathscr{A} \implies \mathscr{F}_0 = \mathscr{A}_0 \subsetneq \mathscr{F}^0$

DHR sectors BF sectors

Scaling limit and preservation of DHR sectors

2/2

Which sectors *survive* the scaling limit? Physical picture \rightarrow pointlike charges survive.

- $\psi_j(\lambda) \in \mathscr{F}(\lambda O)$ of class $[\rho] \implies \psi_j(\lambda)\Omega$ charge $[\rho]$ in λO .
- [ρ] pointlike \implies energy of $\psi_j(\lambda)\Omega \sim \lambda^{-1}$.

Theorem ([D'Antoni-M.-Verch'04])

With $\psi_j(\lambda)$ as above and

$$(\underline{lpha}_h\psi_j)_\lambda:=\int_{\mathbb{R}^4}dx\,h(x)\mathrm{Ad}\,U(\lambda x)(\psi_j(\lambda)),$$

there exists

$$\psi_j^{\mathsf{0}} = \operatorname{s*-lim}_{h \to \delta} \pi_{\mathsf{0}}(\underline{\alpha}_h \psi_j) \in \mathscr{F}_{\mathsf{0}}(O)$$

and ψ_i^0 is a G_0 -multilplet which implements a DHR sector of \mathscr{A}_0 .

DHR sectors BF sectors

Scaling limit and preservation of BF sectors

- For BF sectors $\mathscr{F}(\mathcal{O}) \to \mathscr{F}(\mathcal{C})$, \mathcal{C} spacelike cone.
- Asymptotically free theories → charges in cone become localized in the scaling limit.
- $\underline{\mathfrak{F}}(C; O), O \subset C$ defined by functions $\lambda \to \underline{F}_{\lambda} \in \mathscr{F}(\lambda C)$ such that $\lim_{\lambda \to 0} \sup_{A \in \mathfrak{A}(O')_1} \|[\underline{F}_{\lambda}, \underline{A}_{\lambda}]\| = 0.$
- $\mathscr{F}_0(\mathcal{O}) := \bigcap_{\mathcal{C} \supset \mathcal{O}} \pi_0(\underline{\mathfrak{F}}(\mathcal{C}; \mathcal{O}))''.$
- Preservation notion similar to DHR case.

Scaling limit of tensor product theories Construction of the models

Scaling limit of tensor product theories

• Define
$$\Theta_{\beta,O} : \mathscr{F}(O) \to \mathscr{H}, \, \Theta_{\beta,O}(F) = e^{-\beta H} F \Omega.$$

• \mathscr{F} is asymptotically *p*-nuclear, $p \in (0, 1]$, if

$$\limsup_{\lambda\to 0^+} \|\Theta_{\lambda\beta,\lambda O}\|_{\textit{P}} < \infty$$

 $\|\cdot\|_p =$ nuclear *p*-norm.

Theorem ([D'Antoni-M.'06])

 $\mathscr{F}^{(i)}$ asymptotically p-nuclear, $\mathscr{F}_0^{(i)}$ with Haag duality, i = 1, 2, $\mathscr{F} := \mathscr{F}^{(1)} \otimes \mathscr{F}^{(2)}$. Then

$$\mathscr{F}_0^{(1)}\otimes \mathscr{F}_0^{(2)}\cong \mathscr{F}_0.$$

Scaling limit of tensor product theories Construction of the models

Construction of the Models

- *G*₁, *G*₂ compact Lie groups.
- ϕ_k G₁-multiplet of generalized free fields with $d\rho(m) = dm$.
- φ_k G₂-multiplet of free fields.
- $\mathscr{F}^{(1)}(O)$ generated by $\phi_k(\Box^{n(O)}f)$, supp $f \subset O$, $n(O) \to +\infty$ as $O \to \{pt\}$.
- $\mathscr{F}^{(2)}(O)$ generated by $\varphi_k(f)$, supp $f \subset O$.

Theorem ([Lutz'97, D'Antoni-M.'06])

Let $\mathscr{F} := \mathscr{F}^{(1)} \otimes \mathscr{F}^{(2)}$ with $G = G_1 \times G_2$. Then $\mathscr{F}^{(1)}_0 = \mathbb{C}\mathbb{1}$ and $\mathscr{F}_0 = \mathscr{F}^{(2)}_0$, and all the G_2 -sectors of \mathscr{F} are preserved.

Summary

- Scaling algebras methods can be used to study the short distance properties of superselection charges.
- Intrinsic notion of confinement: A confined charge of *A* is a (DHR) sector of *A*₀ which doesn't come from a preserved (DHR or BF) sector of *A*.
- It is difficult to exclude the appearence of non-preserved sectors on the basis of standard assumptions.
- Outlook
 - Can Haag duality rule out non-preserved sectors?
 - Construct examples of preserved BF sectors.

References

References I

- C. D'Antoni, G. Morsella, R. Verch. Ann. Henri Poincaré, **5** (2004), 809.
- C. D'Antoni, G. Morsella. *Rev. Math. Phys.*, **18** (2006), 565.