A Model-Independent Approach to the Short Distance Limit of Quantum Fields

Gerardo Morsella

Scuola Normale Superiore - Pisa

joint work with H. Bostelmann, C. D'Antoni to appear on CMP

Università "La Sapienza", Roma May 7, 2007

Introduction

Short distance analysis of quantum fields is usually performed via the Renormalization Group (RG):

- Pass from ϕ to renormalized field at scale $\lambda > 0$ $\phi_{\lambda}(x) = Z_{\lambda}\phi(\lambda x);$
- Renormalization constants Z_{λ} fixed by requiring e.g. $\langle \Omega, \phi_{\lambda}(x)\phi_{\lambda}(y)\Omega \rangle$ has finite limit as $\lambda \to 0$;
- in good cases (e.g. asymptotically free theories) perturbation theory and RG equations show that

 $\exists \lim_{\lambda \to 0} \langle \Omega, \phi_{\lambda}(x_1) \dots \phi_{\lambda}(x_n) \Omega \rangle = \langle \Omega_0, \phi_0(x_1) \dots \phi_0(x_n) \Omega_0 \rangle;$

 field \(\phi_0\) defines new theory, considered as scaling limit of the original one.

Introduction

Problems:

- how to define scaling limit if theory is not asymptotically free (or perturbation theory not useful)?
- many choices of Z_{λ} : all equivalent?
- why not more general renormalization prescription?
- fields do not have direct physical interpretation.
- Algebraic approach to RG [Buchholz-Verch '95]:
 - works for every theory;
 - defined without using quantum fields $\implies Z_{\lambda}$ not needed;
 - based only on observables.

How does it compare to the conventional approach? Can we use it to define scaling limit for quantum fields more generally?

Outline

2 Background

- Algebraic Quantum Field Theory
- Scaling Algebras
- Pointlike Fields from Local Algebras

Scaling Limit of Pointlike Fields

- Basic Idea
- Phase Space and Scaling Limit
- Uniform Operator Product Expansion
- Renormalization Group

Summary

Algebraic Quantum Field Theory Scaling Algebras Pointlike Fields from Local Algebras

Algebraic Quantum Field Theory

Theory defined by the assignment of

 $O \subset \mathbb{R}^4 \to \mathscr{A}(O) \subset B(\mathscr{H})$, local covariant net of observable algebras:

•
$$O_1 \subset O_2 \implies \mathscr{A}(O_1) \subset \mathscr{A}(O_2);$$

•
$$O_1$$
 spacelike to $O_2 \implies \mathscr{A}(O_1) \subset \mathscr{A}(O_2)';$

 exists (Λ, x) → U(Λ, x) unitary representation of Poincaré group with positive energy such that

$$U(\Lambda, x) \mathscr{A}(O) U(\Lambda, x)^* = \mathscr{A}(\Lambda O + x);$$

• exists unique invariant $\Omega \in \mathscr{H}$ with $\overline{\mathscr{A}\Omega} = \mathscr{H}$ (vacuum). Interpretation: $\mathscr{A}(O) = \{\text{observables measurable in } O\}''$.

Algebraic Quantum Field Theory Scaling Algebras Pointlike Fields from Local Algebras

Scaling Algebras

On C*-algebra of bounded functions $\lambda \in \mathbb{R}_+^{\times} \to \underline{A}_{\lambda} \in \mathscr{A}$ define

• $\underline{\alpha}_{(\Lambda,x)}(\underline{A})_{\lambda} := U(\Lambda,\lambda x)\underline{A}_{\lambda}U(\Lambda,\lambda x)^{*};$

•
$$\underline{\delta}_{\mu}(\underline{A})_{\lambda} := \underline{A}_{\lambda\mu};$$

•
$$\underline{\alpha}_{g} := \underline{\alpha}_{(\mu,\Lambda,x)} := \underline{\delta}_{\mu} \circ \underline{\alpha}_{(\Lambda,x)}.$$

Local scaling algebra of O [Buchholz-Verch '95]:

$$\underline{\mathfrak{A}}(\mathcal{O}) := \left\{ \underline{A} : \underline{A}_{\lambda} \in \mathscr{A}(\lambda \mathcal{O}), \lim_{g \to \mathsf{id}} \|\underline{lpha}_g(\underline{A}) - \underline{A}\| = 0
ight\}$$

where $\|\underline{A}\| := \sup_{\lambda} \|\underline{A}_{\lambda}\|$.

Algebraic Quantum Field Theory Scaling Algebras Pointlike Fields from Local Algebras

Scaling Algebras

- Continuity condition $\iff \underline{A}_{\lambda}$ has a "phase space occupation" independent of $\lambda \iff \hbar$ not rescaled.
- Typical elements

$$\underline{A}_{\lambda} = \int dx \, g(x) U(\lambda x) e^{i\phi_{\lambda}(f)} U(\lambda x)^*, \quad \operatorname{supp} f + \operatorname{supp} g \subset O,$$

bounded irrespective of Z_{λ} .

 We consider "all possible renormalization schemes" compatible with above requirements.

Algebraic Quantum Field Theory Scaling Algebras Pointlike Fields from Local Algebras

Scaling Algebras

3/5

Limit $\lambda \to 0$: take mean **m** on (0, 1], i.e. state on bounded functions on (0, 1], and define

$$\underline{\omega}_{0}(\underline{A}) := \mathbf{m}(\lambda \to \omega(\underline{A}_{\lambda}))$$

scaling limit state on $\underline{\mathfrak{A}}$. (Here $\omega := \langle \Omega, (\cdot)\Omega \rangle$.) Examples:

- $\mathbf{m}_{\lambda_0}(f) = f(\lambda_0)$, then $\underline{\omega}_0$ vacuum state at scale λ_0 ;
- m weak* limit point of m_{λ₀} as λ₀ → 0, then <u>ω₀</u> Buchholz-Verch limit state;
- **(a) m** dilation invariant: $\mathbf{m}(f(\mu \cdot)) = \mathbf{m}(f)$.

2 and 3 generalizations of limit $\lambda \to 0$: $\mathbf{m}(f) = \lim_{\lambda \to 0} f(\lambda)$ if limit exists.

Algebraic Quantum Field Theory Scaling Algebras Pointlike Fields from Local Algebras

Theorem

- $(\pi_0, \mathscr{H}_0, \Omega_0)$ GNS representation of $\underline{\omega}_0 \implies$ $\mathscr{A}_0(\mathcal{O}) := \pi_0(\mathfrak{A}(\mathcal{O}))''$ Poincaré covariant net in vacuum representation: scaling limit net;
- in case (1 and) $2 \underline{\omega}_0$ is pure, in 3 it is not;
- in case 3 \mathcal{A}_0 also dilation covariant.
- In good cases all A₀ corresponding to ω₀ pure are isomorphic and nontrivial ⇒ A has unique scaling limit.
- It can also be non-unique, or trivial ($\mathscr{A}_0 = \mathbb{C}1$).

Algebraic Quantum Field Theory Scaling Algebras Pointlike Fields from Local Algebras

Scaling Algebras

5/5

Example: \mathscr{A} massive free field in d = 3 + 1:

- $\mathscr{A}_0(\mathcal{O}) \cong \mathscr{A}_{\text{massless}}(\mathcal{O}) \bar{\otimes} \pi_0(\mathfrak{Z}(\underline{\mathfrak{A}}))'';$
- $\underline{\omega}_0$ pure $\implies \mathscr{A}_0(O) \cong \mathscr{A}_{\text{massless}}(O);$

• $\underline{\omega}_0$ dilation invariant $\implies \overline{\pi_0(\mathfrak{Z}(\underline{\mathfrak{A}}))''\Omega_0}$ non-separable, $U_0(g) \cong U_{\text{massless}}(g) \otimes U_{\mathfrak{Z}}(g).$

Summarizing:

- In this framework every theory has a scaling limit, but in an abstract way.
- How does it compare to conventional approach?
- In particular: Z_{λ} not needed. Can they be recovered?

Algebraic Quantum Field Theory Scaling Algebras Pointlike Fields from Local Algebras

Basic idea [Haag-Ojima '96]: assume

$$\Sigma_{E,r} = \{ \sigma \upharpoonright \mathscr{A}(O_r) : \sigma \in P(E)B(\mathscr{H})_*P(E) \}$$

is compact and "does not change" for small r

- \implies "finite" number of states describe short distance behaviour
- \implies basis (ϕ_j) of $\Sigma^*_{E,r}$ are pointlike fields.

Algebraic Quantum Field Theory Scaling Algebras Pointlike Fields from Local Algebras

Pointlike Fields from Local Algebras

Quantitative version:

• $\Sigma = B(\mathscr{H})_*, \ C^{\infty}(\Sigma) = \cap_{\ell > 0} R^{\ell} \Sigma R^{\ell}, \ R = (1 + H)^{-1};$

•
$$\|\sigma\|^{(\ell)} = \|R^{-\ell}\sigma R^{-\ell}\|, \sigma \in \mathcal{C}^{\infty}(\Sigma);$$

•
$$\Xi : \sigma \in \mathcal{C}^{\infty}(\Sigma) \to \sigma \in \Sigma.$$

Definition ([Bostelmann '05])

 $O \to \mathscr{A}(O)$ satisfies the microscopic phase space condition I if $\forall \gamma > 0, \exists \ell > 0, \psi : C^{\infty}(\Sigma) \to \Sigma$ of finite rank such that

$$\|\psi\|^{(\ell)} < \infty,$$

$$\|(\Xi - \psi)(\cdot) \upharpoonright \mathscr{A}(O_r)\|^{(\ell)} = o(r^{\gamma}).$$

Algebraic Quantum Field Theory Scaling Algebras Pointlike Fields from Local Algebras

Pointlike Fields from Local Algebras

rank
$$\psi$$
 minimal, $\psi = \sum_{j} \sigma_{j} \phi_{j}, \sigma_{j} \in \Sigma, \phi_{j} \in C^{\infty}(\Sigma)^{*}$.
Define $\Phi_{\gamma} := \operatorname{span}\{\phi_{j}\}$. $\Phi_{\gamma} \subseteq \Phi_{\gamma'}$ if $\gamma < \gamma'$.

Theorem ([Bostelmann '05])

• Φ_{γ} independent of ψ ;

•
$$\phi \in \Phi_{\gamma} \implies \exists A_r \in \mathscr{A}(O_r), \ell > 0$$
 such that

$$\|\phi-A_r\|^{(\ell)}=O(r).$$

$$\phi(f) = \int dx f(x) U(x) \phi U(x)^*, \qquad \phi \in \Phi_{\gamma},$$

Wightman field on $C^{\infty}(H) = \bigcap_{\ell > 0} R^{\ell} \mathscr{H}$, and $\phi(f) \eta \mathscr{A}(O)$. ϕ free: $\Phi_0 = \mathbb{C}\mathbb{1}$, $\Phi_1 = \operatorname{span}\{\mathbb{1}, \phi\}$, $\Phi_2 = \operatorname{span}\{\Phi_1, \partial_{\mu}\phi, : \phi^2 :\}$,

Algebraic Quantum Field Theory Scaling Algebras Pointlike Fields from Local Algebras

Pointlike Fields from Local Algebras

According to phase space condition, if $A \in \mathscr{A}(O_r)$:

$${oldsymbol A}\sim \sum_j \sigma_j({oldsymbol A})\phi_j \qquad ext{as } r o {oldsymbol 0}.$$

Can be generalized to local fields by $\varepsilon/3$ argument.

Theorem ([Bostelmann '05])

 $\phi, \phi' \in \Phi_{\gamma}$. For all $\beta > 0$ exist $\sigma_j \in \Sigma$, $\phi_j \in \Phi_{\gamma'}$, $\ell > 0$ such that

$$\|\phi(f_d)\phi'(f_d')-\sum_j\sigma_j(\phi(f_d)\phi'(f_d'))\phi_j\|^{(\ell)}=o(d^\beta),$$

where $f, f' \in \mathscr{S}$ and $f_d(x) = d^{-4}f(d^{-1}x)$.

Operator product expansion of $\phi(f)\phi'(f')$.

Basic Idea Phase Space and Scaling Limit Uniform Operator Product Expansion Renormalization Group

Basic Idea

- Is the microscopic phase space condition valid for A₀?
- Can we recover Z_{λ} such that $\phi_0(x) = \lim_{\lambda \to 0} Z_{\lambda} \phi(\lambda x)$?

 $\psi: C^{\infty}(\Sigma) \to \Sigma$ as above of rank 1:

$$\psi = \sigma \phi, \qquad \sigma \in \Sigma, \phi \in \cup_{\gamma > 0} \Phi_{\gamma}.$$

Typically $\|\sigma \upharpoonright \mathscr{A}(\lambda O)\| \to 0$ as $\lambda \to 0$ (e.g. as $O(\lambda)$ for free fields).

Let $\underline{A} \in \mathfrak{A}(O)$: $\psi^*(\underline{A}_{\lambda}) = \sigma(\underline{A}_{\lambda})\phi$ should be thought as a field at scale $\lambda \implies$ we can choose $Z_{\lambda} = \sigma(\underline{A}_{\lambda}) \sim \lambda$.

Message: maps ψ are the good scale independent objects.

Basic Idea Phase Space and Scaling Limit Uniform Operator Product Expansion Renormalization Group

Phase Space and Scaling Limit

Scaling: $r \rightarrow \lambda r$, $E \rightarrow \lambda^{-1}E \implies$ phase space condition needs sharpening:

Definition

 $O \to \mathscr{A}(O)$ satisfies the microscopic phase space condition II if $\forall \gamma > 0, \exists c, \varepsilon > 0$ and $\psi : C^{\infty}(\Sigma) \to \Sigma$ of finite rank such that for large *E*, small *r*,

$$\|\psi \upharpoonright \Sigma_E, \mathscr{A}(O_r)\| \leq c(1+Er)^{\gamma}, \ \|(\Xi-\psi) \upharpoonright \Sigma_E, \mathscr{A}(O_r)\| \leq c(Er)^{\gamma+\varepsilon}.$$

Satisfied by free fields in d = 3 + 1 [Bostelmann '00]. Reasonable for asymptotically free theories (logarithmic corrections). Note: PSC II \implies PSC I.

Basic Idea Phase Space and Scaling Limit Uniform Operator Product Expansion Renormalization Group

Phase Space and Scaling Limit

Consider $\lambda \to \underline{\phi}_{\lambda} \in C^{\infty}(\Sigma)^*$ such that

$$\sup_{\lambda} \|\underline{\phi}_{\lambda} \upharpoonright \Sigma_{\mathcal{E}/\lambda} \| < \infty$$

(and $g
ightarrow \underline{lpha}_g(\underline{\phi})$ is continuous).

Theorem

Let $O \rightarrow \mathscr{A}(O)$ satisfy PSC II. Then:

• π_0 extends to $\underline{\phi}$ and $\pi_0(\underline{\phi}) \in C^{\infty}(\Sigma_0)^*$ is a local field of \mathscr{A}_0 . If $\underline{\omega}_0$ pure:

- $O \rightarrow \mathscr{A}_0(O)$ satisfies PSC I;
- dim $\Phi_{0,\gamma} \leq \dim \Phi_{\gamma}$.

Basic Idea Phase Space and Scaling Limit Uniform Operator Product Expansion Renormalization Group

Phase Space and Scaling Limit

Idea of proof.

• For $\underline{B} \in \underline{\mathfrak{A}}$ with $\underline{B}_{\lambda} \Omega \in P(E/\lambda) \mathscr{H}$:

 $\langle \pi_{\mathbf{0}}(\underline{B})\Omega_{\mathbf{0}}, \pi_{\mathbf{0}}(\underline{\phi})\pi_{\mathbf{0}}(\underline{B})\Omega_{\mathbf{0}} \rangle := \mathbf{m}(\lambda \to \langle \underline{B}_{\lambda}\Omega, \underline{\phi}_{\lambda}\underline{B}_{\lambda}\Omega \rangle),$

• Define $\psi_0^*(\underline{A}) := \pi_0(\psi^*(\underline{A})) \implies$ estimates on ψ^* pass to $\psi_0^* \implies$ PSC I for \mathscr{A}_0 if $\underline{\omega}_0$ pure.

• $\exists \underline{A}_r \in \underline{\mathfrak{A}}(O_r), \ell > 0$ such that

$$\sup_{\lambda} \|\underline{R}^{\ell}_{\lambda}(\underline{\phi}_{\lambda} - (\underline{A}_{r})_{\lambda})\underline{R}^{\ell}_{\lambda}\| = O(r)$$

where $\underline{R}_{\lambda} = (1 + \lambda H)^{-1} \implies \pi_0(\underline{\phi})$ local field.

Basic Idea Phase Space and Scaling Limit Uniform Operator Product Expansion Renormalization Group

Uniform Operator Product Expansion

Define $\underline{\alpha}_{f} \underline{\phi} = \int dx f(x) \underline{\alpha}_{x}(\underline{\phi})$, unbounded operator $\forall \lambda > 0$. Thanks to uniform approximation of $\underline{\alpha}_{f} \phi$ by $\underline{\alpha}_{f} \underline{A}_{r}$,

$$\pi_{\mathbf{0}}(\underline{\alpha}_{f}\underline{\phi}\,\underline{\alpha}_{f'}\underline{\phi}') = \alpha_{\mathbf{0},f}\pi_{\mathbf{0}}(\underline{\phi})\alpha_{\mathbf{0},f'}\pi_{\mathbf{0}}(\underline{\phi}'),$$

and furthermore:

Theorem

For all
$$\beta > 0$$
 exist $\sigma_{j,\lambda} \in \Sigma$, $\phi_j \in \Phi_{\gamma'}$, $\ell > 0$ such that

$$\sup_{\lambda} \left\|\underline{R}^{\ell}_{\lambda}(\underline{\alpha}_{f_{d}}\underline{\phi}_{\lambda} \underline{\alpha}_{f_{d}'}\underline{\phi}_{\lambda}' - \sum_{j} \sigma_{j,\lambda}(\underline{\alpha}_{f_{d}}\underline{\phi}_{\lambda} \underline{\alpha}_{f_{d}'}\underline{\phi}_{\lambda}')\phi_{j})\underline{R}^{\ell}_{\lambda}\right\| = o(d^{\beta}).$$

Therefore OPE terms converge to OPE terms.

Basic Idea Phase Space and Scaling Limit Uniform Operator Product Expansion Renormalization Group

Renormalization Group

Renormalization constants:

- $\underline{\phi}_{\lambda} = \sum_{j} \sigma_{j}(\underline{A}_{\lambda})\phi_{j}$ has well-defined limit $\phi_{0} = \pi_{0}(\underline{\phi})$;
- therefore $Z_{j,\lambda} = \sigma_j(\underline{A}_{\lambda})$ are renormalization constants.
- in particular for 2-point Wightman functions:

$$\langle \Omega_0, \phi_0(\boldsymbol{x}) \phi'_0(\boldsymbol{x}') \Omega_0 \rangle = \mathbf{m} \Big(\lambda \to \sum_{j,k} Z_{j,\lambda} Z'_{k,\lambda} \langle \Omega, \phi_j(\lambda \boldsymbol{x}) \phi_k(\lambda \boldsymbol{x}') \Omega \rangle \Big),$$

where $Z'_{k,\lambda} = \sigma_k(\underline{A}'_{\lambda}), \phi'_0 = \pi_0(\psi^*(\underline{A}')).$

Scaling transformations:

•
$$(\underline{\delta}_{\mu}\underline{\phi})_{\lambda} = \underline{\phi}_{\mu\lambda} = \sum_{j} Z_{j,\mu\lambda} \phi_{j}$$
: renormalization group;

•
$$\underline{\omega}_0$$
 invariant: $\pi_0(\underline{\delta}_\mu \underline{\phi}) = U_0(\mu) \pi_0(\underline{\phi}) U_0(\mu)^*$.

Basic Idea Phase Space and Scaling Limit Uniform Operator Product Expansion Renormalization Group

Scaling of OPE:

- no Lagrangian in our approach constants not visible;
- OPE coefficients are the "structure constants" of the algebra of quantum fields;
- scaling changes OPE coefficients.

Summary

Summary:

- short distance analysis of quantum fields performed in a model independent approach;
- multiplicative renormalization obtained in an axiomatic framework and renormalization constants provided automatically by general machinery;
- scaling of OPE coefficients is some substitute for coupling constant renormalization;
- renormalization group induces dilations in the limit theory;
- no new observable fields appear in the limit (not in contrast with QCD, where new unobservable fields should appear in the scaling limit).