Algebraic Renormalization Group and Pointlike Fields

Gerardo Morsella

Scuola Normale Superiore - Pisa

joint with H. Bostelmann, C. D'Antoni

Joint International Meeting UMI-DMV

Perugia, 18-22 June 2007

Outline

- Introduction
- Background
 - Scaling Algebras
 - Pointlike Fields from Local Algebras
- Scaling Limit of Pointlike Fields
 - Basic Idea
 - Phase Space and Scaling Limit
 - Renormalization Constants
- Summary & Outlook

Introduction

Conventional approach to the Renormalization Group:

- Pass from ϕ to renormalized field $\phi_{\lambda}(x) = Z_{\lambda}\phi(\lambda x)$;
- Renormalization constants Z_{λ} fixed by requiring e.g. $\langle \Omega, \phi_{\lambda}(x) \phi_{\lambda}(y) \Omega \rangle \sim \text{const as } \lambda \to 0.$

Problems:

- need to have detailed information on short-distance behaviour to calculate Z_λ;
- fields do not have direct physical interpretation.

Algebraic approach [Buchholz-Verch '95]:

- Z_{λ} not needed;
- based only on observables and model independent.

How does it compare to the conventional approach? How can we recover Z_{λ} ?

Scaling Algebras

Data:

- $O \subset \mathbb{R}^4 \to \mathscr{A}(O) \subset B(\mathscr{H})$ net of observable algebras.
- $x \in \mathbb{R}^4 \to U(x)$ unitary representation of translations.
- $\Omega \in \mathcal{H}$ vacuum.

On C*-algebra of bounded functions $\lambda \in \mathbb{R}_+^{\times} \to \underline{A}_{\lambda} \in \mathscr{A}$

$$\underline{\alpha}_{x}(\underline{A})_{\lambda} := \operatorname{Ad} U(\lambda x)(\underline{A}_{\lambda}), \qquad x \in \mathbb{R}^{4},$$

Definition ([Buchholz-Verch '95])

Local scaling algebra of O:

$$\underline{\mathfrak{A}}(O) := \left\{ \underline{A} \, : \, \underline{A}_{\lambda} \in \mathscr{A}(\lambda O), \lim_{x \to 0} \|\underline{\alpha}_{x}(\underline{A}) - \underline{A}\| = 0 \right\}$$

Scaling Algebras

 φ locally normal state on $\mathscr{A} \leadsto \underline{\varphi}_{\lambda}(\underline{A}) := \varphi(\underline{A}_{\lambda})$ states on $\underline{\mathfrak{A}}$,

 $\mathsf{SL}^{\mathscr{A}}(\varphi) := \{\mathsf{weak^*} \ \mathsf{limit} \ \mathsf{points} \ \mathsf{of} \ (\underline{\varphi}_{\lambda})_{\lambda > 0} \ \mathsf{for} \ \lambda \to 0\}.$

Theorem ([Buchholz-Verch '95])

- $SL^{\mathscr{A}}(\varphi)$ is independent of φ .
- $\underline{\omega}_0 \in SL^{\mathscr{A}}$ with GNS representation π_0 . Then $\mathscr{A}_0(O) := \pi_0(\underline{\mathfrak{A}}(O))''$ is a covariant net in vacuum representation.

 $O \to \mathscr{A}_0(O)$ is the scaling limit net of \mathscr{A} .

Physical interpretation: \mathscr{A}_0 describes the short-distance (i.e. high-energy) behaviour of \mathscr{A} .

Scaling Algebras

 $\exists (\mathscr{F}, G)$ such that $\mathscr{A} = \mathscr{F}^G$. [Doplicher-Roberts '90] Field scaling algebra \mathfrak{F} and scaling limit field net \mathscr{F}_0 defined in analogy to \mathfrak{A} , \mathscr{A}_0 .

$$\mathscr{A}_0 = \mathscr{F}_0^{G_0} \subset \mathscr{F}_0 \subseteq \mathscr{F}^0, \qquad \mathscr{F}^0 \text{ DR net of } \mathscr{A}_0$$

 $\mathscr{F}^0 \supsetneq \mathscr{F}_0 \implies \mathscr{A} \text{ has confined charges.}$

E.g. in the Schwinger model $\mathscr{F}=\mathscr{A} \implies \mathscr{F}_0=\mathscr{A}_0 \subsetneq \mathscr{F}^0$.

Charge preservation: identifies sectors of \mathcal{A}_0 which are scaling limit of sectors of \mathcal{A} [D'Antoni-Verch-M. '03, D'Antoni-M. '06].

Pointlike Fields from Local Algebras

Basic idea [Haag-Ojima '96]:

$$\Sigma_{E,r} = \{ \sigma \upharpoonright \mathscr{A}(O_r) : \sigma \in P(E)B(\mathscr{H})_*P(E) \}$$

is compact for small r

- ⇒ "finite" number of states describe short distance behaviour
- \implies basis (ϕ_i) of $\Sigma_{F,r}^*$ are pointlike fields.

Pointlike Fields from Local Algebras

Quantitative version:

- $\Sigma = B(\mathcal{H})_*$, $C^{\infty}(\Sigma) = \cap_{\ell>0} R^{\ell} \Sigma R^{\ell}$, $R = (1+H)^{-1}$;
- $\|\sigma\|^{(\ell)} = \|R^{-\ell}\sigma R^{-\ell}\|, \ \sigma \in C^{\infty}(\Sigma);$
- Ξ : $\sigma \in C^{\infty}(\Sigma) \to \sigma \in \Sigma$.

Definition ([Bostelmann '05])

 $O \to \mathscr{A}(O)$ satisfies the asymptotic phase space condition if $\forall \gamma > 0, \ \exists \ell > 0, \ \psi : C^{\infty}(\Sigma) \to \Sigma$ of finite rank such that

$$\|\psi\|^{(\ell)} < \infty,$$

 $\|(\Xi - \psi) \upharpoonright \mathscr{A}(O_r)\|^{(\ell)} = o(r^{\gamma}).$

Pointlike Fields from Local Algebras

rank ψ minimal, $\psi = \sum_{j} \sigma_{j} \phi_{j}$, $\sigma_{j} \in \Sigma$, $\phi_{j} \in C^{\infty}(\Sigma)^{*}$. Define $\Phi_{\gamma} := \operatorname{span}\{\phi_{j}\}$. $\Phi_{\gamma} \subseteq \Phi_{\gamma'}$ if $\gamma < \gamma'$.

Theorem ([Bostelmann '05])

- Φ_{γ} independent of ψ ;
- $\bullet \cup_{\gamma>0} \Phi_{\gamma} = \{\phi : \exists \ell > 0, R^{\ell} \phi R^{\ell} \in \cap_{r>0} (R^{\ell} \mathscr{A}(O_r) R^{\ell})^{-} \}.$

$$\phi(f) = \int dx \, f(x) U(x) \phi U(x)^*, \qquad \phi \in \Phi_{\gamma},$$

Wightman field on $C^{\infty}(H) = \bigcap_{\ell>0} R^{\ell} \mathcal{H}$, and $\phi(f) \eta \mathcal{A}(O)$ [Fredenhagen-Hertel '81].

$$\phi$$
 free: $\Phi_0 = \mathbb{C}\mathbb{1}$, $\Phi_1 = \text{span}\{\mathbb{1}, \phi\}$, $\Phi_2 = \text{span}\{\Phi_1, \partial_\mu \phi, : \phi^2 :\}$,...

Basic Idea

- Is the asymptotic phase space condition valid for \mathcal{A}_0 ?
- Can we recover Z_{λ} such that $\phi_0(x) = \lim_{\lambda \to 0} Z_{\lambda} \phi(\lambda x)$?

 $\psi: C^{\infty}(\Sigma) \to \Sigma$ as above of rank 1:

$$\psi = \sigma \phi, \qquad \sigma \in \Sigma, \phi \in \cup_{\gamma > 0} \Phi_{\gamma}.$$

Typically $\|\sigma \upharpoonright \mathscr{A}(\lambda O)\| \to 0$ as $\lambda \to 0$ (e.g. as $O(\lambda)$ for free fields).

Let $\underline{A} \in \underline{\mathfrak{A}}(O)$: $\psi^*(\underline{A}_{\lambda}) = \sigma(\underline{A}_{\lambda})\phi$ should be thought as a field at scale $\lambda \implies$ we can choose $Z_{\lambda} = \sigma(\underline{A}_{\lambda}) \sim \lambda$.

Message: maps ψ are the good objects in the scaling limit.

Phase Space and Scaling Limit

Scaling: $r \to \lambda r$, $E \to \lambda^{-1}E \implies$ phase space condition needs sharpening:

Definition

 $O \to \mathscr{A}(O)$ satisfies the homogeneous asymptotic phase space condition if $\forall \gamma > 0, \ \exists c, \ell > 0 \ \text{and} \ \psi : C^\infty(\Sigma) \to \Sigma$ of finite rank such that

$$\|\psi \upharpoonright \Sigma_{E}, \mathscr{A}(O_{r})\| \leq c(1 + Er)^{\ell},$$

 $\|(\Xi - \psi) \upharpoonright \Sigma_{E}, \mathscr{A}(O_{r})\| \leq c(Er)^{\gamma}.$

Satisfied by free fields.

Also by asymptotically free theories (logarithmic corrections)? Note: HAPSC \implies APSC.

Phase space and Scaling Limit

Theorem

- $O \rightarrow \mathscr{A}(O)$ satisfies HAPSC $\Longrightarrow O \rightarrow \mathscr{A}_0(O)$ satisfies APSC;
- $dim\Phi_{0,\gamma} \leq dim\Phi_{\gamma}$.

Proof.

• Define $\chi_0: C^{\infty}(\Sigma_0) \to \underline{\mathfrak{A}}^*$ by

$$\chi_0(\langle \pi_0(\underline{B})\Omega_0, (\cdot)\pi_0(\underline{B}')\Omega_0 \rangle)(\underline{A}) = \lim_{\lambda} \psi(\langle \underline{B}_{\lambda}\Omega, (\cdot)\underline{B}'_{\lambda}\Omega \rangle)(\underline{A}_{\lambda}),$$

where spectral support of $\underline{B}, \underline{B}' = [0, E];$

- $\operatorname{rank}\chi_0 \leq \operatorname{rank}\psi$;
- $\Phi_{0,\gamma} := (\ker \chi_0)^{\perp}, \ \psi_0 := \Xi_0 \circ (p_{\Phi_{0,\gamma}})_*.$

Renormalization Constants

- $\operatorname{rank}\chi_0 < \infty \implies \Phi_{0,\gamma} = \operatorname{img}(\chi_0^* \upharpoonright \underline{\mathfrak{A}});$
- $\forall \phi_0 \in \Phi_{0,\gamma}, \exists \underline{A} \in \underline{\mathfrak{A}} : \phi_0 = \chi_0^*(\underline{A});$
- Compute:

$$\begin{split} \langle \pi_0(\underline{B})\Omega_0, & \phi_0(x)\pi_0(\underline{B})\Omega_0 \rangle \\ &= \chi_0(\langle \pi_0(\underline{\alpha}_{-x}\underline{B})\Omega_0, (\cdot)\pi_0(\underline{\alpha}_{-x}\underline{B})\Omega_0 \rangle)(\underline{A}) \\ &= \lim_{\lambda} \psi(\langle (\underline{\alpha}_{-x}\underline{B})_{\lambda}\Omega, (\cdot)(\underline{\alpha}_{-x}\underline{B})_{\lambda}\Omega \rangle)(\underline{A}_{\lambda}) \\ &= \lim_{\lambda} \sum_j \sigma_j(\underline{A}_{\lambda}) \langle \underline{B}_{\lambda}\Omega, \phi_j(\lambda x)\underline{B}_{\lambda}\Omega \rangle; \end{split}$$

• $Z_{i,\lambda} := \sigma_i(\underline{A}_{\lambda})$ renormalization constants.

This should be generalized to *n*-point functions.

Summary & Outlook

In the algebraic approach to the Renormalization Group, the field strength renormalization constants are obtained in a model-independent way.

Outlook:

- Coupling constants renormalization: Can be replaced by scaling of OPE coefficients?
- Asymptotic freedom: Under which conditions the limit fields are free? Perhaps conditions on the 2-point functions?