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Introduction

Introduction 1/2
Scaling algebra: model independent, intrinsic approach to the analysis
of UV behaviour of QFT within the algebraic approach [Buchholz-Verch
’95].
Main results:

General analysis of scaling behavior of superselection charges
and intrinsic concept of charge confinement [Buchholz ’96,
D’Antoni-M.-Verch ’04, Conti-M. ’09]
Model independent understanding of pointlike field
renormalization [Bostelmann-D’Antoni-M. ’09]
Connections with quantum Gromov-Hausdorff metric
[Bostelmann-Guido-Suriano, in progress] and with Connes-Higson
asymptotic morphisms [Conti-M., in progress]
Applications to concrete models: free scalar field of mass m > 0
in d = 3,4, Schwinger model ⇐⇒ free scalar field of mass m > 0
in d = 2 [Buchholz-Verch ’97], certain generalized free fields [Lutz
’97, Mohrdieck ’02, D’Antoni-M. ’07]
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Introduction

Introduction 2/2

What about (more interesting) interacting models?
Problem: main tool of constructive theory is field-theoretic Euclidean
approach, relation with algebraic Minkowskian approach is rather
indirect

But:
an approach to construction of interacting models directly in the
algebraic framework has been proposed in [Buchholz-Lechner ’04],
and the construction of a class of 2d integrable models has been
performed in [Lechner ’08].
Interesting: 2d sigma models (integrable, but not directly covered here)
share several features with QCD, e.g. asymptotic freedom

Natural question: it is possible to compute the (Buchholz-Verch)
scaling limit of these models?
Here: some partial answer
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2d Models with a Factorizing S-Matrix

Main Idea
Natural data for a constructive approach in AQFT: particle spectrum
and S-matrix.
In 2d there exists a family of simple S-matrices (factorizing S-matrices)
described by an appropriate single analytic function S, the scattering
function. Arise in integrable models (Sin(h)-Gordon, Ising, Thirring...)
Form factor program: form factors (i.e. matrix elements) of local fields
determined by axioms, n-point functions obtained as series. But
convergence is not under control.

Strategy of algebraic approach:
1 Define auxiliary fields and algebras associated to unbounded

regions (wedges)
2 Define double-cone algebras through intersections of wedge

algebras
3 Show that double-cone algebras are non-trivial
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2d Models with a Factorizing S-Matrix

Scattering Functions

Definition
A scattering function is a bounded S : R + i[0, π]→ C, analytic in the
interior, such that

S(θ) = S(θ)−1 = S(θ + iπ) = S(−θ), θ ∈ R

S is regular if it is analytic and bounded in R + i(−κ, π + κ), κ > 0.
S regular has limit if limθ→+∞ S(θ) = limθ→−∞ S(θ).

S0 := {regular S}, S∞ := {regular S with limit}
Example of S ∈ S∞ (essentially all):

S(θ) = ±
N∏

k=1

sinh θ − ibk

sinh θ + ibk
, bk > 0

Result: S ∈ S∞ =⇒ S(∞) := limθ→+∞ S(θ) = limθ→−∞ S(θ) = ±1.
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2d Models with a Factorizing S-Matrix

Scaling of Scattering Functions
Rapidity θ related to 2-momentum by p(θ) = m(cosh θ, sinh θ) for
m > 0 (mass)
In order to study scaling p → λ−1p define

Sm(p,q) := S
(

sinh−1(p/m)− sinh−1(q/m)
)

Sm(λ−1p, λ−1q) = Sλm(p,q)
p,q ∈ R

Lemma
If S ∈ S∞

S0(p,q) := lim
λ→0+

Sλm(p,q) =


S(∞) = ±1 pq < 0
S(0) p = q = 0
S
(

log p − log q
)

p > 0,q > 0
S
(

log(−q)− log(−p)
)

p < 0,q < 0

Guess: Chiral theory in the limit with some "interaction" (see later)
Gerardo Morsella (Roma 2) Scaling and Factorizing S-Matrices AQFT Pavia 2011 9 / 31
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2d Models with a Factorizing S-Matrix

Wedge Local Fields and Algebras 1/2

S-symmetric Fock space Hm :=
⊕+∞

n=0 Hm,n, where
Hm,n ⊂ L2(R,dp/ωm(p))⊗n is defined by (m ≥ 0)

Ψn(p1, . . . ,pk+1,pk , . . . ,pn) = Sm(pk ,pk+1)Ψn(p1, . . . ,pn)

Creation-annihilation operators satisfy Zamolodchikov-Faddeev
algebra (as distributions):

zm(p)zm(q) = Sm(p,q)zm(q)zm(p)

zm(p)z†m(q) = Sm(q,p)z†m(q)zm(p) + ωm(p)δ(p − q)

Used in [Schroer ’97] to define a quantum field

φm(x) =

∫
R

dp
2πωm(p)

(
e−i(ωm(p),p)·xzm(p) + ei(ωm(p),p)·xz†m(p)

)
(to be smeared with appropriate test functions f ∈ S (R2)).
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2d Models with a Factorizing S-Matrix

Wedge Local Fields and Algebras 2/2
φm is Poincaré covariant but non-local if S 6= 1:

[φm(f ), φm(g)] 6= 0 supp f ⊂ (supp g)′

Define right/left wedge WR/L := {x = (x0, x1) ∈ R2 : x1 > ±|x0|}
Algebra associated to φm and left wedge:

Mm,L := {eiφm(f ) : f ∈ SR(WL)}′′

Theorem ([Lechner ’03, Buchholz-Lechner ’04])
Ω cyclic and separating for Mm,L

If (∆, J) are modular objects for (Mm,L,Ω) =⇒ ∆it are boosts and

(JΨ)n(p1, . . . ,pn) = Ψn(pn, . . . ,p1)

space-time reflection.
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2d Models with a Factorizing S-Matrix

Local Algebras for m > 0
Algebra associated to the right wedge:

φ′m(f ) := Jφm(f j)J, f j(x) := f (−x)

Mm,R := {eiφ′
m(f ) : f ∈ SR(WR)}′′ = M ′

m,L

Algebra of double cone Ox ,y = (WL + x) ∩ (WR + y), y − x ∈WL:

Am(Ox ,y ) := αm
x (Mm,L) ∩ αm

y (Mm,R)

Then O 7→ Am(O) is a local net, i.e. Am(O1) ⊂ Am(O2)′ if O1 ⊂ O′2,
but it could be that Am(O) = C1

Theorem ([Lechner ’08])
If S ∈ S0 and m > 0 then

Ω is cyclic and separating for Am(O)

Am(WL/R) = Mm,L/R

The S-matrix of Am is the factorizing S-matrix defined by S

Linked to spectral properties of ∆
Gerardo Morsella (Roma 2) Scaling and Factorizing S-Matrices AQFT Pavia 2011 12 / 31



2d Models with a Factorizing S-Matrix

Local Algebras for m > 0
Algebra associated to the right wedge:

φ′m(f ) := Jφm(f j)J, f j(x) := f (−x)

Mm,R := {eiφ′
m(f ) : f ∈ SR(WR)}′′ = M ′

m,L

Algebra of double cone Ox ,y = (WL + x) ∩ (WR + y), y − x ∈WL:

Am(Ox ,y ) := αm
x (Mm,L) ∩ αm

y (Mm,R)

Then O 7→ Am(O) is a local net, i.e. Am(O1) ⊂ Am(O2)′ if O1 ⊂ O′2,
but it could be that Am(O) = C1

Theorem ([Lechner ’08])
If S ∈ S0 and m > 0 then

Ω is cyclic and separating for Am(O)

Am(WL/R) = Mm,L/R

The S-matrix of Am is the factorizing S-matrix defined by S

Linked to spectral properties of ∆
Gerardo Morsella (Roma 2) Scaling and Factorizing S-Matrices AQFT Pavia 2011 12 / 31



2d Models with a Factorizing S-Matrix

Local Algebras for m > 0
Algebra associated to the right wedge:

φ′m(f ) := Jφm(f j)J, f j(x) := f (−x)

Mm,R := {eiφ′
m(f ) : f ∈ SR(WR)}′′ = M ′

m,L

Algebra of double cone Ox ,y = (WL + x) ∩ (WR + y), y − x ∈WL:

Am(Ox ,y ) := αm
x (Mm,L) ∩ αm

y (Mm,R)

Then O 7→ Am(O) is a local net, i.e. Am(O1) ⊂ Am(O2)′ if O1 ⊂ O′2,
but it could be that Am(O) = C1

Theorem ([Lechner ’08])
If S ∈ S0 and m > 0 then

Ω is cyclic and separating for Am(O)

Am(WL/R) = Mm,L/R

The S-matrix of Am is the factorizing S-matrix defined by S

Linked to spectral properties of ∆
Gerardo Morsella (Roma 2) Scaling and Factorizing S-Matrices AQFT Pavia 2011 12 / 31



Scaling of Wedge Local Fields

Outline

1 Introduction

2 2d Models with a Factorizing S-Matrix

3 Scaling of Wedge Local Fields

4 Chiral Models with a Factorizing S-Matrix

5 Examples with constant S

6 Summary & Outlook

Gerardo Morsella (Roma 2) Scaling and Factorizing S-Matrices AQFT Pavia 2011 13 / 31



Scaling of Wedge Local Fields

Buchholz-Verch Scaling Limit of Am
On C∗-algebra of bounded functions λ ∈ R×+ 7→ Aλ ∈ Am define:

α(Λ,x)(A)λ := Ad U(Λ, λx)(Aλ), (Λ, x) ∈P↑
+

Local scaling algebra of O:

Am(O) :=

{
A : Aλ ∈ Am(λO), lim

γ→e
‖αγ(A)− A‖ = 0

}
ωλ(A) := ω(Aλ), A ∈ Am

scaling limit states: ω0 weak* limit point of (ωλ)λ>0 for λ→ 0
scaling limit theory: Am,0(O) := π0(Am(O))′′, with π0 GNS
represenation of ω0

Buchholz-Verch scaling limit always exists and is a local theory
(possibly trivial), but actual computation is complicated because local
observables are difficult to exhibit explicitly.
Easier to consider scaling of wedge local objects to get an idea of the
scaling limit

Gerardo Morsella (Roma 2) Scaling and Factorizing S-Matrices AQFT Pavia 2011 14 / 31
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Scaling of Wedge Local Fields

Scaling of Wedge Local Fields

Given f ∈ S (R2) set fλ(x) = λ−2f (λ−1x)

Theorem
If fj ∈ S (R2) are derivatives of test functions then

lim
λ→0
〈Ωm, φ

[′]
m(f1,λ) . . . φ

[′]
m(fn,λ)Ωm〉 = 〈Ω0, φ

[′]
0 (f1) . . . φ

[′]
0 (fn)Ω0〉

Condition f̂j(0) = 0 due to logarithmic infrared divergence of measure
dp

ωm(p) as m→ 0 in d = 2

Question: if f̂ (0) 6= 0, does | logλ|−1/2φm(fλ) tends to a multiple of the
identity, as in 2d free scalar field?
Anyway massless model, defined by φ0, is at least a subnet (tensor
factor?) of the complete BV scaling limit
Also, massless model is interesting in its own right
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Chiral Models with a Factorizing S-Matrix

Half-Line Local Fields and Algebras 1/2
Since S0(p,q) = ±1 for pq < 0, the massless 2d theory has a (twisted)
chiral structure
S-symmetric Fock space H :=

⊕+∞
n=0 Hn, where

Hn ⊂ L2(R+,dp/p)⊗n is defined by

Ψn(p1, . . . ,pk+1,pk , . . . ,pn) = S0(pk ,pk+1)Ψn(p1, . . . ,pn)

Associated Zamolodchikov operators:

z(p)z(q) = S0(p,q)z(q)z(p)

z(p)z†(q) = S0(q,p)z†(q)z(p) +
1
p
δ(p − q)

p,q > 0

and translation-dilation covariant quantum field

ϕ(x) =

∫ +∞

0
dp
(
e−ipxz(p) + eipxz†(p)

)
, x ∈ R

to be smeared with test functions f ∈ S (R) such that f̂ (0) = 0.
Gerardo Morsella (Roma 2) Scaling and Factorizing S-Matrices AQFT Pavia 2011 17 / 31
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Chiral Models with a Factorizing S-Matrix

Wedge Local Fields and Algebras 2/2

Right half-line algebra:

M+ := {eiϕ(f ) : f ∈ SR(0,+∞)}′′

Theorem
Ω cyclic and separating for M+

(∆, J) modular objects of (M+,Ω) =⇒ ∆it = dilation by e2πt , J
reflection

(JΨ)n(p1, . . . ,pn) = Ψn(pn, . . . ,p1)

Left field and algebra:

ϕ′(f ) := Jϕ(f j)J, f j(x) := f (−x)

M− := {eiφ′(f ) : f ∈ SR(−∞,0)}′′ = M ′
+
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Chiral Models with a Factorizing S-Matrix

Chiral Local Algebras 1/2

We can define local algebras for finite intervals I = (a,b):

A (I) := αa(M+) ∩ αb(M−).

This gives a consistent local net (A (I) ⊂ A (J)′ if I ∩ J = ∅) of von
Neumann algebras on R, translation-dilation-reflection covariant.

Question 1: How large are the A (I)?
Question 2: Is this a conformally covariant net?

First result:

Theorem
A ∈ A (I) =⇒ [A,S(∞)N ] = 0, i.e. local operators are even with
respect to the particle number
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Chiral Models with a Factorizing S-Matrix

Chiral Local Algebras 2/2

Proof:
Take A ∈ A (−1,1), g ∈ S (1,+∞), g′ ∈ S (−∞,1)

With gλ(x) := g(eλx) (dilatation of g), there holds for all λ > 0,

0 = [A, ϕ(gλ)ϕ′(g′λ)]

= [A, z†(gλ)z†(g′λ)′ + z†(gλ)z(g′λ)′ + z†(g′λ)′z(gλ) + z(gλ)z(g′λ)′]

+ [A, [z(gλ), z†(g′λ)′]]

weakly of finite particle vectors:

lim
λ→∞

z†(gλ)z†(g′λ)′ + z†(gλ)z(g′λ)′ + z†(g′λ)′z(gλ) + z(gλ)z(g′λ)′ = 0

lim
λ→∞

[z(gλ), z†(g′λ)′] = S(∞)N
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Chiral Models with a Factorizing S-Matrix

Local Algebras vs. Conformal Symmetry

Theorem
The space Hloc := A (I)Ω is independent of I.
The representation of the translation-dilation-reflection group
extends to a representation of the conformal group on Hloc and
the net extends to a net on S1 which is covariant under it.

Follows from [Guido-Longo-Wiesbrock ’98]
This leaves the two alternatives:

Local observables + conformal symmetry, or
No conformal symmetry and no local observables
(Hloc = CΩ,A (I) = C1).
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Chiral Models with a Factorizing S-Matrix

Chiral decomposition of 2d Models 1/3

xl/r := x0 ± x1 light ray coordinates
Hl/r , zl/r , ϕl/r ,Al/r copies of H , z, ϕ,A associated to left/right light
ray

splitting p integration in φ0 in (−∞,0) and (0,+∞) and making
p → −p in first integral:

φ0(x) =
1

2π

(∫ +∞

0

dp
p
(
e−ipxl z0(−p) + eipxl z†0(−p)

)
︸ ︷︷ ︸

ϕ′
l (xl )⊗1

+

∫ +∞

0

dp
p
(
e−ipxr z0(p) + eipxr z†0(p)

)
︸ ︷︷ ︸

S(∞)Nl⊗ϕr (xr )

S(∞)Nl comes from Zamolodchikov relations and
S0(p,q) = S(∞) for pq < 0
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Chiral Models with a Factorizing S-Matrix

Chiral decomposition of 2d Models 2/3

Theorem
H0
∼= Hl ⊗Hr

z]0(−p)/p ∼= z]l (p)′ ⊗ 1, z]0(p)/p ∼= S(∞)Nl ⊗ z]r (p), p > 0

φ0(x) ∼= 1
2π

(
ϕ′l(xl)⊗ 1 + S(∞)Nl ⊗ ϕr (xr )

)
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Chiral Models with a Factorizing S-Matrix

Chiral decomposition of 2d Models 3/3

Ae/o even/odd parts of A ∈ B(H ) w.r.t. S(∞)N

for Rl/r vNa on Hl/r define twisted tensor products

Rl⊗̂Rr = Rl ⊗Rr ,e + S(∞)Nl Rl ⊗Rr ,o

Rl⊗̌Rr = Rl,e ⊗Rr + Rl,o ⊗ S(∞)Nr Rr ,o

Theorem

M0,R
∼= Ml,+⊗̌Mr ,−

M0,L
∼= Ml,−⊗̂Mr ,+

A0(I × J) ∼= Al(I)⊗Al(J)

Last equality follows from first two and the fact that Al/r (I)o is trivial
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Examples with constant S

S = 1: free U(1) current

For S = 1 we have the free U(1) current:
Hloc = H

Ω cyclic and separating for A (I) (large local algebras)
conformal symmetry with c = 1
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Examples with constant S

S = −1: critical Ising model 1/2

If S = −1 the Zamolodchikov’s algebra is the usual CAR algebra, so
one can expect:

Theorem
For S = −1 ("critical Ising model"):

Hloc = {states of even particle number} ( H

A (I) generated by energy density of a free Fermi field

ψ(x) :=
1

2π

∫ +∞

0
dp
√

p
(√

i eipxz†(p) +
1√
i
e−ipxz(p)

)
conformal symmetry on Hloc with c = 1/2
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Examples with constant S

S = −1: critical Ising model 2/2

Proof:
supp f ⊂ (a,b) =⇒ ψ(f ) ∈ A (a,+∞), since ψ(f ) = ϕ(k) with
supp k ⊂ (a,+∞)

{ψ(f ), ϕ(g)} = 0 if supp g ⊂ (b,+∞)

then Pe(a,b) (even polynomials in ψ) ⊂ A (a,b) and
He := Pe(a,b)Ω = Hloc (therefore local algebras are non-trivial)
T (x) := : ψ∂ψ : (x) is translation-dilations covariant, local,
relatively local to Pe and (weakly on suitable states)∫

R
dx T (x) = H

then T has Lüscher-Mack commutation relations with c = 1/2
then Vir1/2 ⊂ A (on He) and therefore they coincide by Haag
duality

Gerardo Morsella (Roma 2) Scaling and Factorizing S-Matrices AQFT Pavia 2011 28 / 31



Examples with constant S

What about non-constant S?

Conjecture
For non-constant S:

Hloc = CΩ

A (I) = C1

Form factors of local observables A ∈ A (I)

Fn(p,q1, . . . ,qn−1) := 〈z†(p)z†(q1) . . . z†(qn−1)Ω,AΩ〉

have analytic continuation in p to the upper and lower complex plane,
and the "jump" on {p < 0} is a distribution determined by S.
But conformal symmetry seems to require Fn to be analytic across the
cut.
Compatible only for A = c1.
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Summary & Outlook

Summary & Outlook
Results:

Massless scattering models can be defined.
I Observables localized in half-lines
I Translation-dilation-reflection symmetry

In the cases S = ±1, there are local observables and
conformal symmetry, maybe on a proper subspace.
In particular, the model depends on S!

I Important to know, since scattering theory is not available.

Open points:
Prove/disprove conjecture about non constant S
In which sense are the models interacting? Can one measure S?
Relation to literature (models are often considered in a
thermodynamical context – Thermodynamic Bethe Ansatz)
Relation to the Buchholz-Verch scaling limit of the massive
factorizing models
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