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Introduction

Introduction
Renormalization Group (RG) is a method of analysis of the short
distance limit of Quantum Field Theory (QFT - the mathematical
framework of elementary particle physics).
It gave several important results:

asymptotic freedom of nonabelian gauge theories
corrections to parton picture of Deep Inelastic Scattering
applications to charge confinement
applications to Statistical Mechanics, Dynamical Systems...

Conceptual problem: formulated in Lagrangian approach,
model-dependent
An axiomatic approach to QFT can be formulated in terms of Operator
Algebras: Algebraic Quantum Field Theory (AQFT) [Haag-Kastler ’64]
A model-independent version of RG adapted to AQFT, proposed in
[Buchholz-Verch ’94] gives several interesting structural results
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Algebraic Quantum Field Theory

Algebras of Local Observables
Main assumption of [Haag-Kastler ’64]: A QFT is fixed by the
knowledge of its local observables
Basic input: assignment O 7→ A (O), where

O open bounded subset of Minkowski spacetime Rs+1

A (O) von Neumann algebras on a fixed Hilbert space H
if O1 and O2 spacelike separated (i.e. no signal can travel
between them), then for all A1 ∈ A (O1), A2 ∈ A (O2)

[A1,A2] = 0 (locality)

∃U unitary cont. representation of Poincaré group
SO↑(1, s) o Rs+1 on H such that if α(Λ,x) := Ad U(Λ, x) then

α(Λ,x)(A (O)) = A (ΛO + x) (covariance)

∃!Ω ∈H U(Rs+1)-invariant, s.t.
⋃

O A (O)Ω = H (vacuum)
This structure is a local net of observable algebras
Physical interpretation: self-adjoint A ∈ A (O) is an observable
measurable in O
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Algebraic Quantum Field Theory

Example: Free scalar field of mass m ≥ 0
W Weyl algebra: C*-algebra generated by unitaries W (f ),
f ∈ DR(Rs+1), such that

W (f )W (g) = eiσ(f ,g)W (f + g)

σ(f ,g) =
1
2

Im
∫

Rs

dsp
ωm(p)

f̂ (ωm(p),p)ĝ(ωm(p),p)

ωm(p) =
√

p2 + m2

Fock vacuum: pos. norm. ω(m) : W→ C (state) determined by

ω(m)(W (f )) = exp
{
−1

4

∫
Rs

dsp
ωm(p)

|̂f (ωm(p),p)|2
}

(m > 0 if s = 1)

(π(m),H (m),Ω(m)) corresponding GNS representation, i.e.

ω(m)(W ) = 〈Ω(m), π(m)(W )Ω(m)〉, W ∈W

Local algebras

A (m)(O) := {π(m)(W (f )) : supp f ⊂ O}′′
Gerardo Morsella (Roma 2) Operator Alegbras and QFT YRM11 - UCM 7 / 20
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Algebraic Renormalization Group

Scaling Algebras

On C∗-algebra of bounded functions λ ∈ R×+ 7→ Aλ ∈ A define:

‖Aλ‖ := sup
λ
‖Aλ‖,

α(Λ,x)(A)λ := Ad U(Λ, λx)(Aλ),

Definition ([Buchholz-Verch ’94])
Local scaling algebra of O:

A(O) :=

{
A : Aλ ∈ A (λO), lim

(Λ,x)→(1,0)
‖α(Λ,x)(A)− A‖ = 0

}
Scaling algebra A: C*-inductive limit of {A(O)}, i.e. A :=

⋃
O A(O)

Continuity w.r.t. Poincaré group action is equivalent to the requirement
that Aλ occupies a phase-space volume independent of λ
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Algebraic Renormalization Group

Scaling Limits 1/2
ϕ (locally normal) state on A ; ϕ

λ
(A) := ϕ(Aλ) states on A,

SLA (ϕ) := {weak* limit points of (ϕ
λ

)λ>0 for λ→ 0}.

Theorem ([Buchholz-Verch ’94])

SLA (ϕ) = (ω0,ι)ι∈I is independent of ϕ.

ω0,ι ∈ SLA with GNS representation (π0,ι,H0,ι,Ω0,ι). Then
A0,ι(O) := π0,ι(A(O))′′ is a net of local algebras with Poincaré
group action defined by

U0,ι(Λ, x)π0,ι(A)Ω0,ι = π0,ι(α(Λ,x)(A))Ω0,ι

(If s = 1 the vacuum may be not unique)

O 7→ A0,ι(O) is the scaling limit net of A .
Physical interpretation: A0,ι describes the short-distance (i.e.
high-energy) behaviour of A .
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Algebraic Renormalization Group

Scaling Limits 2/2

Classification:
A has trivial scaling limit if A0,ι = C1 for all ω0,ι

A has unique scaling limit if all nets A0,ι are isomorphic and 6= C1
A has degenerate scaling limit otherwise

Examples:
A (m) free scalar field of mass m ≥ 0 in s = 2,3 spatial dimensions
=⇒ A

(m)
0,ι ' A (0): A (m) has unique limit [Buchholz-Verch ’97]

A Lutz model (suitable subnet of a generalized free field) has
trivial limit [Lutz ’98]

Open problem: construct nets with a degenerate scaling limit
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Superselection charges and their scaling limit

States and representations

Physical states are represented by linear, positive, normalized
functionals ϕ : A → C.
GNS Theorem: { states on A } ↔ { representations (i.e.
*-homomorphisms on some B(K )) of A }
Problem: identify representations of interest in particle physics

Definition (DHR selection criterion [Doplicher-Haag-Roberts ’71])
A representation π is DHR if

π � A (O′) ∼= π0 � A (O′) ∀O

where π0(A) = A (vacuum representation)

Superselection sectors: unitary equivalence classes of DHR rep.
Interpreted as a physical charge localized in some bounded region
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Superselection charges and their scaling limit

States and representations

Physical states are represented by linear, positive, normalized
functionals ϕ : A → C.
GNS Theorem: { states on A } ↔ { representations (i.e.
*-homomorphisms on some B(K )) of A }
Problem: identify representations of interest in particle physics

Definition (DHR selection criterion [Doplicher-Haag-Roberts ’71])
A representation π is DHR if

π � A (O′) ∼= π0 � A (O′) ∀O

where π0(A) = A (vacuum representation)

Superselection sectors: unitary equivalence classes of DHR rep.
Interpreted as a physical charge localized in some bounded region

Gerardo Morsella (Roma 2) Operator Alegbras and QFT YRM11 - UCM 13 / 20



Superselection charges and their scaling limit

States and representations

Physical states are represented by linear, positive, normalized
functionals ϕ : A → C.
GNS Theorem: { states on A } ↔ { representations (i.e.
*-homomorphisms on some B(K )) of A }
Problem: identify representations of interest in particle physics

Definition (DHR selection criterion [Doplicher-Haag-Roberts ’71])
A representation π is DHR if

π � A (O′) ∼= π0 � A (O′) ∀O

where π0(A) = A (vacuum representation)

Superselection sectors: unitary equivalence classes of DHR rep.
Interpreted as a physical charge localized in some bounded region

Gerardo Morsella (Roma 2) Operator Alegbras and QFT YRM11 - UCM 13 / 20



Superselection charges and their scaling limit

Doplicher-Roberts reconstruction 1/2

One would like to have a more explicit description of DHR states

Theorem (DR reconstruction [Doplicher-Roberts ’90])
If s ≥ 2, there exist unique

net O 7→ F (O) on Hilbert space K ⊃H (canonical field net)
V unitary cont. rep. of compact group G on K (canonical gauge
group)

such that:
A (O) = F (O)G := {F ∈ F (O) : V (g)FV (g)∗ = F , ∀g ∈ G}
for all superselection sectors ξ of A and all O there exist
ψ1, . . . , ψd ∈ F (O) orthogonal isometries (ψ∗j ψk = δjk )
transforming like a d-dimensional irreducible representation of G
such that πξ(A) =

∑
j ψjAψ∗j is a DHR representation of class ξ

F satisfies Z2-graded commutation relations

Gerardo Morsella (Roma 2) Operator Alegbras and QFT YRM11 - UCM 14 / 20
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Superselection charges and their scaling limit

Doplicher-Roberts reconstruction 2/2

Main result of AQFT superselection theory, remarkable both from
physical viewpoint:

in the conventional approach to QFT charge carrying fields, their
commutation relations, and gauge group are put in by assumption,
and the observables are derived as the invariant part
here, all this structure is fixed by the knowledge of the local
observables

and from mathematical viewpoint:
(suitable) DHR representation form the objects of a C*-category
with additional properties
above correspondence between sectors and representations of G
leads to the identification of the abstract dual of a compact group
as a symmetric tensor C*-category with subobjects, direct sums
and conjugates, generalizing Tannaka-Krein duality

Gerardo Morsella (Roma 2) Operator Alegbras and QFT YRM11 - UCM 15 / 20
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Superselection charges and their scaling limit

Scaling limit of superselection sectors 1/2
Field scaling algebra F and scaling limit field net F0,ι defined in
analogy to A, A0,ι + continuity w.r.t. action of G [D’Antoni-M-Verch ’04]
∃G0,ι = G/N0,ι acting on F0,ι such that A0,ι(O) is the invariant part of
F0,ι(O)
General situation:

A
SL

xxrrrrrrrrrrr
DR

%%KKKKKKKKKKK

A0,ι

DR
!!B

BB
BB

BB
B F

SL
����

��
��

��

F 0,ι ⊇ F0,ι

There may be sectors of A0,ι which cannot be reached using fields
from F0,ι (but only from F 0,ι). These should correspond to “confined
charges” of particle physics, supposed to appear e.g. in QCD
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Superselection charges and their scaling limit

Scaling limit of superselection sectors 2/2

Problem: find a canonical way of identifying charges of A which are
preserved in the limit

Theorem ([D’Antoni-M-Verch ’04])
The preserved charges are those associated to orthogonal isometries
ψj(λ) ∈ F (λO) such that ψj(λ)∗Ω has energy scaling as λ−1

Physical interpretation: preserved charges are pointlike (their
localization only requires energy according to uncertainty principle, no
internal structure)⇒ they survive in the limit
This gives an intrinsic (i.e. only based on observables) notion of
confinement:

Definition ([D’Antoni-M-Verch ’04])
A confined charge of the theory defined by A is a charge of A0 which
does not come from a preserved charge of A

Gerardo Morsella (Roma 2) Operator Alegbras and QFT YRM11 - UCM 17 / 20
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Superselection charges and their scaling limit

Example: the Schwinger model
Schwinger model:

2d QED with massless fermions
algebra of observables: A (m) with m > 0, s = 1
[Lowenstein-Swieca ’71]
no charged states⇒ F = A (m) [Fröhlich-Morchio-Strocchi ’79]
interpreted as confinement of fermions

Scaling limit [Buchholz-Verch ’97]:

A (0) ⊂ A
(m)

0,ι

∃ states ωq on A
(m)

0,ι s.t. ωq(W (f )) = eiL(f )ω(0)(W (f )) where

L(f ) = ∓πqf̂ (0) if supp f is in the left/right spacelike complement
of {0} × [−r , r ] =⇒ ωq induces non-trivial (BF) sectors

Thus F 0,ι ) F0,ι = A
(m)

0,ι and the Schwinger model has confined
sectors
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Further directions

Further directions
Summary:

in AQFT the (ultraviolet) scaling limit is defined in an intrinsic,
model independent fashion
can be used to formulate an intrinsic notion of charge confinement

Further results:
given (G,N � G), examples in which sectors corresponding to
G-rep. trivial on N preserved, while others are not, can be
constructed [D’Antoni-M ’06]
provides a model independent framework for pointlike field
renormalization [Bostelmann-D’Antoni-M ’09 ’10]
scaling limit of interacting models in 2d can be studied
[Bostelmann-Lechner-M ’11]
connections with noncommutative geometry (in particular with
Connes-Higson asymptotic morphisms and KK-theory) can be
established [Conti-M, to appear]
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