Operator Algebras and the Renormalization Group in Quantum Field Theory

Gerardo Morsella

Tor Vergata University, Roma

Workshop of Young Researchers in Mathematics 2011 UCM, September 21-23, 2011

A (10) A (10) A (10)

Outline

- 2) Algebraic Quantum Field Theory
- 3 Algebraic Renormalization Group
- 4 Superselection charges and their scaling limit

5 Further directions

A (10) > A (10) > A (10)

Introduction

Renormalization Group (RG) is a method of analysis of the short distance limit of Quantum Field Theory (QFT - the mathematical framework of elementary particle physics). It gave several important results:

- asymptotic freedom of nonabelian gauge theories
- corrections to parton picture of Deep Inelastic Scattering
- applications to charge confinement
- applications to Statistical Mechanics, Dynamical Systems...

Conceptual problem: formulated in Lagrangian approach, model-dependent

An axiomatic approach to QFT can be formulated in terms of Operator Algebras: Algebraic Quantum Field Theory (AQFT) [Haag-Kastler '64] A model-independent version of RG adapted to AQFT, proposed in [Buchholz-Verch '94] gives several interesting structural results

Introduction

Renormalization Group (RG) is a method of analysis of the short distance limit of Quantum Field Theory (QFT - the mathematical framework of elementary particle physics). It gave several important results:

- asymptotic freedom of nonabelian gauge theories
- corrections to parton picture of Deep Inelastic Scattering
- applications to charge confinement
- applications to Statistical Mechanics, Dynamical Systems...

Conceptual problem: formulated in Lagrangian approach, model-dependent

An axiomatic approach to QFT can be formulated in terms of Operator Algebras: Algebraic Quantum Field Theory (AQFT) [Haag-Kastler '64] A model-independent version of RG adapted to AQFT, proposed in [Buchholz-Verch '94] gives several interesting structural results

Introduction

Renormalization Group (RG) is a method of analysis of the short distance limit of Quantum Field Theory (QFT - the mathematical framework of elementary particle physics). It gave several important results:

- asymptotic freedom of nonabelian gauge theories
- corrections to parton picture of Deep Inelastic Scattering
- applications to charge confinement
- applications to Statistical Mechanics, Dynamical Systems...

Conceptual problem: formulated in Lagrangian approach, model-dependent

An axiomatic approach to QFT can be formulated in terms of Operator Algebras: Algebraic Quantum Field Theory (AQFT) [Haag-Kastler '64] A model-independent version of RG adapted to AQFT, proposed in [Buchholz-Verch '94] gives several interesting structural results

Outline

- 2 Algebraic Quantum Field Theory
- 3 Algebraic Renormalization Group
- 4 Superselection charges and their scaling limit

5 Further directions

A (10) A (10)

Outline

Introduction

- 2 Algebraic Quantum Field Theory
 - 3 Algebraic Renormalization Group
- 4 Superselection charges and their scaling limit

5 Further directions

A (10) > A (10) > A (10)

Algebras of Local Observables

Main assumption of [Haag-Kastler '64]: A QFT is fixed by the knowledge of its local observables

Basic input: assignment $O \mapsto \mathscr{A}(O)$, where

- O open bounded subset of Minkowski spacetime R^{s+1}
- $\mathscr{A}(O)$ von Neumann algebras on a fixed Hilbert space \mathscr{H}
- if O₁ and O₂ spacelike separated (i.e. no signal can travel between them), then for all A₁ ∈ A(O₁), A₂ ∈ A(O₂)

$$[A_1, A_2] = 0 \qquad (locality)$$

• $\exists U$ unitary cont. representation of Poincaré group $SO^{\uparrow}(1, s) \rtimes \mathbb{R}^{s+1}$ on \mathscr{H} such that if $\alpha_{(\Lambda, x)} := \operatorname{Ad} U(\Lambda, x)$ then

$$lpha_{(\Lambda,x)}(\mathscr{A}(\mathcal{O})) = \mathscr{A}(\Lambda \mathcal{O} + x)$$
 (covariance)

• $\exists ! \Omega \in \mathscr{H} U(\mathbb{R}^{s+1})$ -invariant, s.t. $\bigcup_O \mathscr{A}(O)\Omega = \mathscr{H}$ (vacuum) This structure is a local net of observable algebras Physical interpretation: self-adjoint $A \in \mathscr{A}(O)$ is an observable measurable in O

Algebras of Local Observables

Main assumption of [Haag-Kastler '64]: A QFT is fixed by the knowledge of its local observables

Basic input: assignment $O \mapsto \mathscr{A}(O)$, where

- O open bounded subset of Minkowski spacetime \mathbb{R}^{s+1}
- $\mathscr{A}(O)$ von Neumann algebras on a fixed Hilbert space \mathscr{H}
- if O₁ and O₂ spacelike separated (i.e. no signal can travel between them), then for all A₁ ∈ 𝔄(O₁), A₂ ∈ 𝔄(O₂)

$$[A_1, A_2] = 0 \qquad (locality)$$

• $\exists U$ unitary cont. representation of Poincaré group $SO^{\uparrow}(1, s) \rtimes \mathbb{R}^{s+1}$ on \mathscr{H} such that if $\alpha_{(\Lambda, x)} := \operatorname{Ad} U(\Lambda, x)$ then

$$lpha_{(\Lambda,x)}(\mathscr{A}(\mathcal{O})) = \mathscr{A}(\Lambda \mathcal{O} + x)$$
 (covariance)

• $\exists ! \Omega \in \mathscr{H} U(\mathbb{R}^{s+1})$ -invariant, s.t. $\bigcup_O \mathscr{A}(O)\Omega = \mathscr{H}$ (vacuum) This structure is a local net of observable algebras Physical interpretation: self-adjoint $A \in \mathscr{A}(O)$ is an observable measurable in O

Algebras of Local Observables

Main assumption of [Haag-Kastler '64]: A QFT is fixed by the knowledge of its local observables

Basic input: assignment $O \mapsto \mathscr{A}(O)$, where

- O open bounded subset of Minkowski spacetime ℝ^{s+1}
- $\mathscr{A}(O)$ von Neumann algebras on a fixed Hilbert space \mathscr{H}
- if O₁ and O₂ spacelike separated (i.e. no signal can travel between them), then for all A₁ ∈ 𝔄(O₁), A₂ ∈ 𝔄(O₂)

$$[A_1, A_2] = 0 \qquad (locality)$$

• $\exists U$ unitary cont. representation of Poincaré group $SO^{\uparrow}(1, s) \rtimes \mathbb{R}^{s+1}$ on \mathscr{H} such that if $\alpha_{(\Lambda, x)} := \operatorname{Ad} U(\Lambda, x)$ then

$$\alpha_{(\Lambda,x)}(\mathscr{A}(O)) = \mathscr{A}(\Lambda O + x)$$
 (covariance)

• $\exists ! \Omega \in \mathscr{H} U(\mathbb{R}^{s+1})$ -invariant, s.t. $\bigcup_{O} \mathscr{A}(O)\Omega = \mathscr{H}$ (vacuum) This structure is a local net of observable algebras Physical interpretation: self-adjoint $A \in \mathscr{A}(O)$ is an observable measurable in O

Example: Free scalar field of mass $m \ge 0$ \mathfrak{W} Weyl algebra: C*-algebra generated by unitaries W(f), $f \in \mathscr{D}_{\mathbb{R}}(\mathbb{R}^{s+1})$, such that

$$egin{aligned} & \mathcal{W}(f)\mathcal{W}(g)=e^{i\sigma(f,g)}\mathcal{W}(f+g)\ & \sigma(f,g)=rac{1}{2}\,\mathrm{Im}\,\int_{\mathbb{R}^s}rac{d^sp}{\omega_m(p)}\overline{\widehat{f}(\omega_m(p),p)}\widehat{g}(\omega_m(p),p)\ & \omega_m(p)=\sqrt{p^2+m^2} \end{aligned}$$

Fock vacuum: pos. norm. $\omega^{(m)} : \mathfrak{W} \to \mathbb{C}$ (state) determined by

$$\omega^{(m)}(W(f)) = \exp\left\{-\frac{1}{4}\int_{\mathbb{R}^s} \frac{d^s p}{\omega_m(p)} |\hat{f}(\omega_m(p), p)|^2\right\} \quad (m > 0 \text{ if } s = 1)$$

 $(\pi^{(m)}, \mathscr{H}^{(m)}, \Omega^{(m)})$ corresponding GNS representation, i.e.

$$\omega^{(m)}(W)=\langle \Omega^{(m)},\pi^{(m)}(W)\Omega^{(m)}
angle, \quad W\in\mathfrak{W}$$

Local algebras

$$\mathscr{A}^{(m)}(\mathcal{O}) := \{\pi^{(m)}(W(f)) : \operatorname{supp} f \subseteq Q\}^{\mathcal{U}} \in \mathbb{R}$$

Example: Free scalar field of mass $m \ge 0$ \mathfrak{W} Weyl algebra: C*-algebra generated by unitaries W(f), $f \in \mathscr{D}_{\mathbb{R}}(\mathbb{R}^{s+1})$, such that

$$egin{aligned} & \mathcal{W}(f)\mathcal{W}(g)=e^{i\sigma(f,g)}\mathcal{W}(f+g)\ & \sigma(f,g)=rac{1}{2}\,\mathrm{Im}\,\int_{\mathbb{R}^s}rac{d^sp}{\omega_m(p)}\overline{\widehat{f}(\omega_m(p),p)}\widehat{g}(\omega_m(p),p)\ & \omega_m(p)=\sqrt{p^2+m^2} \end{aligned}$$

Fock vacuum: pos. norm. $\omega^{(m)} : \mathfrak{W} \to \mathbb{C}$ (state) determined by

$$\omega^{(m)}(W(f)) = \exp\left\{-\frac{1}{4}\int_{\mathbb{R}^s} \frac{d^s p}{\omega_m(p)} |\hat{f}(\omega_m(p), p)|^2\right\} \quad (m > 0 \text{ if } s = 1)$$

 $(\pi^{(m)}, \mathscr{H}^{(m)}, \Omega^{(m)})$ corresponding GNS representation, i.e. $\omega^{(m)}(W) = \langle \Omega^{(m)}, \pi^{(m)}(W) \Omega^{(m)} \rangle, \quad W \in \mathfrak{W}$

Local algebras

 $\mathscr{A}^{(m)}(\mathcal{O}) := \{\pi^{(m)}(W(f)) : \operatorname{supp} f \subseteq Q\}^{\prime\prime} \in \mathbb{R}$

Example: Free scalar field of mass $m \ge 0$ \mathfrak{W} Weyl algebra: C*-algebra generated by unitaries W(f), $f \in \mathscr{D}_{\mathbb{R}}(\mathbb{R}^{s+1})$, such that

$$egin{aligned} & \mathcal{W}(f)\mathcal{W}(g)=e^{i\sigma(f,g)}\mathcal{W}(f+g)\ & \sigma(f,g)=rac{1}{2}\,\mathrm{Im}\,\int_{\mathbb{R}^s}rac{d^sp}{\omega_m(p)}\overline{\widehat{f}(\omega_m(p),p)}\widehat{g}(\omega_m(p),p)\ & \omega_m(p)=\sqrt{p^2+m^2} \end{aligned}$$

Fock vacuum: pos. norm. $\omega^{(m)} : \mathfrak{W} \to \mathbb{C}$ (state) determined by

$$\omega^{(m)}(W(f)) = \exp\left\{-\frac{1}{4}\int_{\mathbb{R}^s} \frac{d^s p}{\omega_m(p)} |\hat{f}(\omega_m(p), p)|^2\right\} \quad (m > 0 \text{ if } s = 1)$$

 $(\pi^{(m)}, \mathscr{H}^{(m)}, \Omega^{(m)})$ corresponding GNS representation, i.e. $\omega^{(m)}(W) = \langle \Omega^{(m)}, \pi^{(m)}(W) \Omega^{(m)} \rangle, \quad W \in \mathfrak{W}$

Local algebras

$$\mathscr{A}^{(m)}(\mathcal{O}):=\{\pi^{(m)}(\mathcal{W}(f))\,:\,\operatorname{supp} f\subset Q\}''$$
 , the form

Outline

Introduction

2 Algebraic Quantum Field Theory

3 Algebraic Renormalization Group

4 Superselection charges and their scaling limit

5 Further directions

A (10) > A (10) > A (10)

Scaling Algebras

On C*-algebra of bounded functions $\lambda \in \mathbb{R}^{\times}_{+} \mapsto \underline{A}_{\lambda} \in \mathscr{A}$ define:

$$\begin{split} \|\underline{A}_{\lambda}\| &:= \sup_{\lambda} \|\underline{A}_{\lambda}\|, \ \underline{lpha}_{(\Lambda,x)}(\underline{A})_{\lambda} &:= \operatorname{\mathsf{Ad}} U(\Lambda,\lambda x)(\underline{A}_{\lambda}), \end{split}$$

Definition ([Buchholz-Verch '94]) Local scaling algebra of *O*:

$$\underline{\mathfrak{A}}(O) := \left\{ \underline{A} : \underline{A}_{\lambda} \in \mathscr{A}(\lambda O), \lim_{(\Lambda, x) \to (\mathbb{1}, 0)} \|\underline{\alpha}_{(\Lambda, x)}(\underline{A}) - \underline{A}\| = 0 \right\}$$

Scaling algebra $\underline{\mathfrak{A}}$: C*-inductive limit of $\{\underline{\mathfrak{A}}(O)\}$, i.e. $\underline{\mathfrak{A}} := \bigcup_{O} \underline{\mathfrak{A}}(O)$ Continuity w.r.t. Poincaré group action is equivalent to the requirement that \underline{A}_{λ} occupies a phase-space volume independent of λ

Gerardo Morsella (Roma 2)

Scaling Algebras

On C*-algebra of bounded functions $\lambda \in \mathbb{R}^{\times}_{+} \mapsto \underline{A}_{\lambda} \in \mathscr{A}$ define:

$$egin{aligned} & \|\underline{A}_{\lambda}\| := \sup_{\lambda} \|\underline{A}_{\lambda}\|, \ & \underline{lpha}_{(\Lambda, x)}(\underline{A})_{\lambda} := \operatorname{\mathsf{Ad}} U(\Lambda, \lambda x)(\underline{A}_{\lambda}), \end{aligned}$$

Definition ([Buchholz-Verch '94]) Local scaling algebra of *O*:

$$\underline{\mathfrak{A}}(\mathcal{O}) := \left\{ \underline{\mathcal{A}} \, : \, \underline{\mathcal{A}}_{\lambda} \in \mathscr{A}(\lambda \mathcal{O}), \lim_{(\Lambda, x) \to (\mathbb{1}, 0)} \|\underline{\alpha}_{(\Lambda, x)}(\underline{\mathcal{A}}) - \underline{\mathcal{A}}\| = 0 \right\}$$

Scaling algebra $\underline{\mathfrak{A}}$: C*-inductive limit of $\{\underline{\mathfrak{A}}(O)\}$, i.e. $\underline{\mathfrak{A}} := \bigcup_O \underline{\mathfrak{A}}(O)$ Continuity w.r.t. Poincaré group action is equivalent to the requirement that \underline{A}_{λ} occupies a phase-space volume independent of λ

Gerardo Morsella (Roma 2)

Scaling Algebras

On C*-algebra of bounded functions $\lambda \in \mathbb{R}^{\times}_{+} \mapsto \underline{A}_{\lambda} \in \mathscr{A}$ define:

$$egin{aligned} & \|\underline{A}_{\lambda}\| := \sup_{\lambda} \|\underline{A}_{\lambda}\|, \ & \underline{lpha}_{(\Lambda, x)}(\underline{A})_{\lambda} := \operatorname{\mathsf{Ad}} U(\Lambda, \lambda x)(\underline{A}_{\lambda}), \end{aligned}$$

Definition ([Buchholz-Verch '94]) Local scaling algebra of *O*:

$$\underline{\mathfrak{A}}(\mathcal{O}) := \left\{ \underline{\mathcal{A}} : \underline{\mathcal{A}}_{\lambda} \in \mathscr{A}(\lambda \mathcal{O}), \lim_{(\Lambda, x) \to (\mathbb{1}, 0)} \|\underline{\alpha}_{(\Lambda, x)}(\underline{\mathcal{A}}) - \underline{\mathcal{A}}\| = 0 \right\}$$

Scaling algebra $\underline{\mathfrak{A}}$: C*-inductive limit of $\{\underline{\mathfrak{A}}(O)\}$, i.e. $\underline{\mathfrak{A}} := \overline{\bigcup_O \underline{\mathfrak{A}}(O)}$ Continuity w.r.t. Poincaré group action is equivalent to the requirement that \underline{A}_{λ} occupies a phase-space volume independent of λ

Gerardo Morsella (Roma 2)

 φ (locally normal) state on $\mathscr{A} \rightsquigarrow \underline{\varphi}_{\lambda}(\underline{A}) := \varphi(\underline{A}_{\lambda})$ states on $\underline{\mathfrak{A}}$,

 $SL^{\mathscr{A}}(\varphi) := \{ weak^* \text{ limit points of } (\underline{\varphi}_{\lambda})_{\lambda > 0} \text{ for } \lambda \to 0 \}.$

Theorem ([Buchholz-Verch '94])

• $SL^{\mathscr{A}}(\varphi) = (\underline{\omega}_{0,\iota})_{\iota \in I}$ is independent of φ .

<u>ω</u>_{0,ι} ∈ SL^A with GNS representation (π_{0,ι}, ℋ_{0,ι}, Ω_{0,ι}). Then
 A_{0,ι}(O) := π_{0,ι}(<u>A</u>(O))" is a net of local algebras with Poincaré group action defined by

 $U_{0,\iota}(\Lambda, x)\pi_{0,\iota}(\underline{A})\Omega_{0,\iota}=\pi_{0,\iota}(\underline{\alpha}_{(\Lambda, x)}(\underline{A}))\Omega_{0,\iota}$

(If s = 1 the vacuum may be not unique)

 $O \mapsto \mathscr{A}_{0,\iota}(O)$ is the scaling limit net of \mathscr{A} . **Physical interpretation**: $\mathscr{A}_{0,\iota}$ describes the short-distance (i.e. high-energy) behaviour of \mathscr{A} .

Gerardo Morsella (Roma 2)

Operator Alegbras and QFT

 φ (locally normal) state on $\mathscr{A} \rightsquigarrow \underline{\varphi}_{\lambda}(\underline{A}) := \varphi(\underline{A}_{\lambda})$ states on $\underline{\mathfrak{A}}$,

 $\mathsf{SL}^{\mathscr{A}}(\varphi) := \{ \mathsf{weak}^* \text{ limit points of } (\underline{\varphi}_{\lambda})_{\lambda > 0} \text{ for } \lambda \to 0 \}.$

1/2

Theorem ([Buchholz-Verch '94])

•
$$SL^{\mathscr{A}}(\varphi) = (\underline{\omega}_{0,\iota})_{\iota \in I}$$
 is independent of φ .

<u>ω</u>_{0,ι} ∈ SL^A with GNS representation (π_{0,ι}, ℋ_{0,ι}, Ω_{0,ι}). Then
 A_{0,ι}(O) := π_{0,ι}(<u>A</u>(O))" is a net of local algebras with Poincaré group action defined by

$$U_{0,\iota}(\Lambda, x)\pi_{0,\iota}(\underline{A})\Omega_{0,\iota} = \pi_{0,\iota}(\underline{\alpha}_{(\Lambda, x)}(\underline{A}))\Omega_{0,\iota}$$

(If s = 1 the vacuum may be not unique)

 $O \mapsto \mathscr{A}_{0,\iota}(O)$ is the scaling limit net of \mathscr{A} . Physical interpretation: $\mathscr{A}_{0,\iota}$ describes the short-distance (i.e. high-energy) behaviour of \mathscr{A} .

Gerardo Morsella (Roma 2)

Operator Alegbras and QFT

 φ (locally normal) state on $\mathscr{A} \rightsquigarrow \underline{\varphi}_{\lambda}(\underline{A}) := \varphi(\underline{A}_{\lambda})$ states on $\underline{\mathfrak{A}}$,

 $\mathsf{SL}^{\mathscr{A}}(\varphi) := \{ \mathsf{weak}^* \text{ limit points of } (\underline{\varphi}_{\lambda})_{\lambda > 0} \text{ for } \lambda \to 0 \}.$

1/2

Theorem ([Buchholz-Verch '94])

•
$$SL^{\mathscr{A}}(\varphi) = (\underline{\omega}_{0,\iota})_{\iota \in I}$$
 is independent of φ .

<u>ω</u>_{0,ι} ∈ SL^A with GNS representation (π_{0,ι}, ℋ_{0,ι}, Ω_{0,ι}). Then
 A_{0,ι}(O) := π_{0,ι}(<u>A</u>(O))" is a net of local algebras with Poincaré group action defined by

$$U_{0,\iota}(\Lambda, x)\pi_{0,\iota}(\underline{A})\Omega_{0,\iota} = \pi_{0,\iota}(\underline{\alpha}_{(\Lambda, x)}(\underline{A}))\Omega_{0,\iota}$$

(If s = 1 the vacuum may be not unique)

 $O \mapsto \mathscr{A}_{0,\iota}(O)$ is the scaling limit net of \mathscr{A} . Physical interpretation: $\mathscr{A}_{0,\iota}$ describes the short-distance (i.e. high-energy) behaviour of \mathscr{A} .

Gerardo Morsella (Roma 2)

Operator Alegbras and QFT

YRM11 - UCM

10/20

2/2

Classification:

- \mathscr{A} has trivial scaling limit if $\mathscr{A}_{0,\iota} = \mathbb{C}\mathbb{1}$ for all $\underline{\omega}_{0,\iota}$
- \mathscr{A} has unique scaling limit if all nets $\mathscr{A}_{0,\iota}$ are isomorphic and $\neq \mathbb{C}1$
- A has degenerate scaling limit otherwise

Examples:

- $\mathscr{A}^{(m)}$ free scalar field of mass $m \ge 0$ in s = 2, 3 spatial dimensions $\implies \mathscr{A}^{(m)}_{0,\iota} \simeq \mathscr{A}^{(0)}: \mathscr{A}^{(m)}$ has unique limit [Buchholz-Verch '97]
- A Lutz model (suitable subnet of a generalized free field) has trivial limit [Lutz '98]

Open problem: construct nets with a degenerate scaling limit

3

< 日 > < 同 > < 回 > < 回 > < □ > <

2/2

Classification:

- \mathscr{A} has trivial scaling limit if $\mathscr{A}_{0,\iota} = \mathbb{C}\mathbb{1}$ for all $\underline{\omega}_{0,\iota}$
- \mathscr{A} has unique scaling limit if all nets $\mathscr{A}_{0,\iota}$ are isomorphic and $\neq \mathbb{C}1$
- A has degenerate scaling limit otherwise

Examples:

- $\mathscr{A}^{(m)}$ free scalar field of mass $m \ge 0$ in s = 2, 3 spatial dimensions $\implies \mathscr{A}^{(m)}_{0,\iota} \simeq \mathscr{A}^{(0)}: \mathscr{A}^{(m)}$ has unique limit [Buchholz-Verch '97]
- A Lutz model (suitable subnet of a generalized free field) has trivial limit [Lutz '98]

Open problem: construct nets with a degenerate scaling limit

Outline

Introduction

- 2 Algebraic Quantum Field Theory
- 3) Algebraic Renormalization Group
- Superselection charges and their scaling limit

5 Further directions

不同 いんきいんき

States and representations

Physical states are represented by linear, positive, normalized functionals $\varphi : \mathscr{A} \to \mathbb{C}$. GNS Theorem: { states on \mathscr{A} } \leftrightarrow { representations (i.e. *-homomorphisms on some $B(\mathscr{K})$) of \mathscr{A} } Problem: identify representations of interest in particle physics

Definition (DHR selection criterion [Doplicher-Haag-Roberts '71]) A representation π is DHR if

$$\pi \upharpoonright \mathscr{A}(O') \cong \pi_0 \upharpoonright \mathscr{A}(O') \qquad \forall O$$

where $\pi_0(A) = A$ (vacuum representation)

Superselection sectors: unitary equivalence classes of DHR rep. Interpreted as a physical charge localized in some bounded region

States and representations

Physical states are represented by linear, positive, normalized functionals $\varphi : \mathscr{A} \to \mathbb{C}$. GNS Theorem: { states on \mathscr{A} } \leftrightarrow { representations (i.e. *-homomorphisms on some $B(\mathscr{K})$) of \mathscr{A} } Problem: identify representations of interest in particle physics

Definition (DHR selection criterion [Doplicher-Haag-Roberts '71]) A representation π is DHR if

$$\pi \restriction \mathscr{A}(O') \cong \pi_0 \restriction \mathscr{A}(O') \qquad \forall O$$

where $\pi_0(A) = A$ (vacuum representation)

Superselection sectors: unitary equivalence classes of DHR rep. Interpreted as a physical charge localized in some bounded region

イロト 不得 トイヨト イヨト

States and representations

Physical states are represented by linear, positive, normalized functionals $\varphi : \mathscr{A} \to \mathbb{C}$. GNS Theorem: { states on \mathscr{A} } \leftrightarrow { representations (i.e. *-homomorphisms on some $B(\mathscr{K})$) of \mathscr{A} } Problem: identify representations of interest in particle physics

Definition (DHR selection criterion [Doplicher-Haag-Roberts '71]) A representation π is DHR if

$$\pi \restriction \mathscr{A}(O') \cong \pi_0 \restriction \mathscr{A}(O') \qquad \forall O$$

where $\pi_0(A) = A$ (vacuum representation)

Superselection sectors: unitary equivalence classes of DHR rep. Interpreted as a physical charge localized in some bounded region

Gerardo Morsella (Roma 2)

< 日 > < 同 > < 回 > < 回 > < □ > <

Doplicher-Roberts reconstruction 1/2

One would like to have a more explicit description of DHR states

Theorem (DR reconstruction [Doplicher-Roberts '90])

If $s \ge 2$, there exist unique

- net $O \mapsto \mathscr{F}(O)$ on Hilbert space $\mathscr{K} \supset \mathscr{H}$ (canonical field net)
- V unitary cont. rep. of compact group G on *X* (canonical gauge group)

such that:

• $\mathscr{A}(O) = \mathscr{F}(O)^G := \{F \in \mathscr{F}(O) : V(g)FV(g)^* = F, \forall g \in G\}$

- for all superselection sectors ξ of A and all O there exist ψ₁,...,ψ_d ∈ ℱ(O) orthogonal isometries (ψ_j^{*}ψ_k = δ_{jk}) transforming like a d-dimensional irreducible representation of G such that π_ξ(A) = ∑_j ψ_jAψ_j^{*} is a DHR representation of class ξ
- *F* satisfies Z₂-graded commutation relations

3

Doplicher-Roberts reconstruction 1/2

One would like to have a more explicit description of DHR states

Theorem (DR reconstruction [Doplicher-Roberts '90])

- If $s \ge 2$, there exist unique
 - net $O \mapsto \mathscr{F}(O)$ on Hilbert space $\mathscr{K} \supset \mathscr{H}$ (canonical field net)
 - V unitary cont. rep. of compact group G on *K* (canonical gauge group)

such that:

•
$$\mathscr{A}(O) = \mathscr{F}(O)^G := \{F \in \mathscr{F}(O) : V(g)FV(g)^* = F, \, \forall g \in G\}$$

- for all superselection sectors ξ of A and all O there exist ψ₁,...,ψ_d ∈ ℱ(O) orthogonal isometries (ψ_j^{*}ψ_k = δ_{jk}) transforming like a d-dimensional irreducible representation of G such that π_ξ(A) = ∑_jψ_jAψ_j^{*} is a DHR representation of class ξ
- ℱ satisfies ℤ₂-graded commutation relations

3

Doplicher-Roberts reconstruction 2/2

Main result of AQFT superselection theory, remarkable both from physical viewpoint:

- in the conventional approach to QFT charge carrying fields, their commutation relations, and gauge group are put in by assumption, and the observables are derived as the invariant part
- here, all this structure is fixed by the knowledge of the local observables

and from mathematical viewpoint:

- (suitable) DHR representation form the objects of a C*-category with additional properties
- above correspondence between sectors and representations of G leads to the identification of the abstract dual of a compact group as a symmetric tensor C*-category with subobjects, direct sums and conjugates, generalizing Tannaka-Krein duality

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Doplicher-Roberts reconstruction 2

2/2

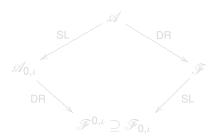
Main result of AQFT superselection theory, remarkable both from physical viewpoint:

- in the conventional approach to QFT charge carrying fields, their commutation relations, and gauge group are put in by assumption, and the observables are derived as the invariant part
- here, all this structure is fixed by the knowledge of the local observables
- and from mathematical viewpoint:
 - (suitable) DHR representation form the objects of a C*-category with additional properties
 - above correspondence between sectors and representations of G leads to the identification of the abstract dual of a compact group as a symmetric tensor C*-category with subobjects, direct sums and conjugates, generalizing Tannaka-Krein duality

3

Scaling limit of superselection sectors 1/2 Field scaling algebra \mathfrak{F} and scaling limit field net $\mathscr{F}_{0,\iota}$ defined in analogy to \mathfrak{A} , $\mathscr{A}_{0,\iota}$ + continuity w.r.t. action of *G* [D'Antoni-M-Verch '04] $\exists G_{0,\iota} = G/N_{0,\iota}$ acting on $\mathscr{F}_{0,\iota}$ such that $\mathscr{A}_{0,\iota}(O)$ is the invariant part of $\mathscr{F}_{0,\iota}(O)$

General situation:



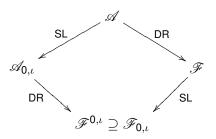
There may be sectors of $\mathscr{A}_{0,\iota}$ which cannot be reached using fields from $\mathscr{F}_{0,\iota}$ (but only from $\mathscr{F}^{0,\iota}$). These should correspond to "confined charges" of particle physics, supposed to appear e.g. in QCD.

Gerardo Morsella (Roma 2)

Operator Alegbras and QFT

YRM11 - UCM 16 / 20

Scaling limit of superselection sectors 1/2 Field scaling algebra \mathfrak{F} and scaling limit field net $\mathscr{F}_{0,\iota}$ defined in analogy to $\mathfrak{A}, \mathscr{A}_{0,\iota}$ + continuity w.r.t. action of *G* [D'Antoni-M-Verch '04] $\exists G_{0,\iota} = G/N_{0,\iota}$ acting on $\mathscr{F}_{0,\iota}$ such that $\mathscr{A}_{0,\iota}(O)$ is the invariant part of $\mathscr{F}_{0,\iota}(O)$ General situation:



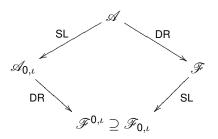
There may be sectors of $\mathscr{A}_{0,\iota}$ which cannot be reached using fields from $\mathscr{F}_{0,\iota}$ (but only from $\mathscr{F}^{0,\iota}$). These should correspond to "confined charges" of particle physics, supposed to appear e.g. in QCD, $\mathfrak{F}_{2,\iota}$

Gerardo Morsella (Roma 2)

Operator Alegbras and QFT

YRM11 - UCM 16 / 20

Scaling limit of superselection sectors 1/2 Field scaling algebra \mathfrak{F} and scaling limit field net $\mathscr{F}_{0,\iota}$ defined in analogy to $\mathfrak{A}, \mathscr{A}_{0,\iota}$ + continuity w.r.t. action of *G* [D'Antoni-M-Verch '04] $\exists G_{0,\iota} = G/N_{0,\iota}$ acting on $\mathscr{F}_{0,\iota}$ such that $\mathscr{A}_{0,\iota}(O)$ is the invariant part of $\mathscr{F}_{0,\iota}(O)$ General situation:



There may be sectors of $\mathscr{A}_{0,\iota}$ which cannot be reached using fields from $\mathscr{F}_{0,\iota}$ (but only from $\mathscr{F}^{0,\iota}$). These should correspond to "confined charges" of particle physics, supposed to appear e.g. in QCD

Gerardo Morsella (Roma 2)

Operator Alegbras and QFT

Scaling limit of superselection sectors 2/2

Problem: find a canonical way of identifying charges of \mathscr{A} which are preserved in the limit

Theorem ([D'Antoni-M-Verch '04])

The preserved charges are those associated to orthogonal isometries $\psi_j(\lambda) \in \mathscr{F}(\lambda O)$ such that $\psi_j(\lambda)^* \Omega$ has energy scaling as λ^{-1}

Physical interpretation: preserved charges are pointlike (their localization only requires energy according to uncertainty principle, no internal structure) \Rightarrow they survive in the limit This gives an intrinsic (i.e. only based on observables) notion of confinement:

Definition ([D'Antoni-M-Verch '04])

A confined charge of the theory defined by \mathscr{A} is a charge of \mathscr{A}_0 which does not come from a preserved charge of \mathscr{A}

Scaling limit of superselection sectors

Problem: find a canonical way of identifying charges of \mathscr{A} which are preserved in the limit

Theorem ([D'Antoni-M-Verch '04])

The preserved charges are those associated to orthogonal isometries $\psi_j(\lambda) \in \mathscr{F}(\lambda O)$ such that $\psi_j(\lambda)^* \Omega$ has energy scaling as λ^{-1}

Physical interpretation: preserved charges are pointlike (their localization only requires energy according to uncertainty principle, no internal structure) \Rightarrow they survive in the limit

This gives an intrinsic (i.e. only based on observables) notion of confinement:

Definition ([D'Antoni-M-Verch '04])

A confined charge of the theory defined by \mathscr{A} is a charge of \mathscr{A}_0 which does not come from a preserved charge of \mathscr{A}

э

2/2

Scaling limit of superselection sectors

Problem: find a canonical way of identifying charges of \mathscr{A} which are preserved in the limit

Theorem ([D'Antoni-M-Verch '04])

The preserved charges are those associated to orthogonal isometries $\psi_j(\lambda) \in \mathscr{F}(\lambda O)$ such that $\psi_j(\lambda)^* \Omega$ has energy scaling as λ^{-1}

Physical interpretation: preserved charges are pointlike (their localization only requires energy according to uncertainty principle, no internal structure) \Rightarrow they survive in the limit This gives an intrinsic (i.e. only based on observables) notion of confinement:

Definition ([D'Antoni-M-Verch '04])

A confined charge of the theory defined by \mathscr{A} is a charge of \mathscr{A}_0 which does not come from a preserved charge of \mathscr{A}

Gerardo Morsella (Roma 2)

イロト イポト イヨト イヨト

2/2

Example: the Schwinger model

Schwinger model:

- 2d QED with massless fermions
- algebra of observables: $\mathscr{A}^{(m)}$ with m > 0, s = 1 [Lowenstein-Swieca '71]
- no charged states $\Rightarrow \mathscr{F} = \mathscr{A}^{(m)}$ [Fröhlich-Morchio-Strocchi '79]
- interpreted as confinement of fermions

Scaling limit [Buchholz-Verch '97]:

- $\mathscr{A}^{(0)} \subset \mathscr{A}^{(m)}_{0,\iota}$
- ∃ states ω_q on 𝔄_{0,ℓ}^(m) s.t. ω_q(W(f)) = e^{iL(f)}ω⁽⁰⁾(W(f)) where
 L(f) = ∓πqf̂(0) if supp f is in the left/right spacelike complement of {0} × [-r, r] ⇒ ω_q induces non-trivial (BF) sectors

sectors

Example: the Schwinger model

Schwinger model:

- 2d QED with massless fermions
- algebra of observables: $\mathscr{A}^{(m)}$ with m > 0, s = 1 [Lowenstein-Swieca '71]
- no charged states $\Rightarrow \mathscr{F} = \mathscr{A}^{(m)}$ [Fröhlich-Morchio-Strocchi '79]
- interpreted as confinement of fermions

Scaling limit [Buchholz-Verch '97]:

•
$$\mathscr{A}^{(0)} \subset \mathscr{A}^{(m)}_{0,\iota}$$

• \exists states ω_q on $\mathscr{A}_{0,\iota}^{(m)}$ s.t. $\omega_q(W(f)) = e^{iL(f)}\omega^{(0)}(W(f))$ where $L(f) = \mp \pi q \hat{f}(0)$ if supp *f* is in the left/right spacelike complement of $\{0\} \times [-r, r] \implies \omega_q$ induces non-trivial (BF) sectors

Thus $\mathscr{F}^{0,\iota} \supseteq \mathscr{F}_{0,\iota} = \mathscr{A}_{0,\iota}^{(m)}$ and the Schwinger model has confined sectors

Example: the Schwinger model

Schwinger model:

- 2d QED with massless fermions
- algebra of observables: $\mathscr{A}^{(m)}$ with m > 0, s = 1 [Lowenstein-Swieca '71]
- no charged states $\Rightarrow \mathscr{F} = \mathscr{A}^{(m)}$ [Fröhlich-Morchio-Strocchi '79]
- interpreted as confinement of fermions

Scaling limit [Buchholz-Verch '97]:

•
$$\mathscr{A}^{(0)} \subset \mathscr{A}^{(m)}_{0,\iota}$$

• \exists states ω_q on $\mathscr{A}_{0,\iota}^{(m)}$ s.t. $\omega_q(W(f)) = e^{iL(f)}\omega^{(0)}(W(f))$ where $L(f) = \mp \pi q \hat{f}(0)$ if supp *f* is in the left/right spacelike complement of $\{0\} \times [-r, r] \implies \omega_q$ induces non-trivial (BF) sectors

Thus $\mathscr{F}^{0,\iota} \supseteq \mathscr{F}_{0,\iota} = \mathscr{A}^{(m)}_{0,\iota}$ and the Schwinger model has confined sectors

Outline

Introduction

- 2 Algebraic Quantum Field Theory
- 3 Algebraic Renormalization Group
- 4 Superselection charges and their scaling limit

5 Further directions

A (10) > A (10) > A (10)

Further directions

Summary:

- in AQFT the (ultraviolet) scaling limit is defined in an intrinsic, model independent fashion
- can be used to formulate an intrinsic notion of charge confinement urther results:
- given (G, N ⊲ G), examples in which sectors corresponding to G-rep. trivial on N preserved, while others are not, can be constructed [D'Antoni-M '06]
- provides a model independent framework for pointlike field renormalization [Bostelmann-D'Antoni-M '09 '10]
- scaling limit of interacting models in 2d can be studied [Bostelmann-Lechner-M '11]
- connections with noncommutative geometry (in particular with Connes-Higson asymptotic morphisms and KK-theory) can be established [Conti-M, to appear]

Further directions

Summary:

- in AQFT the (ultraviolet) scaling limit is defined in an intrinsic, model independent fashion
- can be used to formulate an intrinsic notion of charge confinement

Further results:

- given (G, N ⊲ G), examples in which sectors corresponding to G-rep. trivial on N preserved, while others are not, can be constructed [D'Antoni-M '06]
- provides a model independent framework for pointlike field renormalization [Bostelmann-D'Antoni-M '09 '10]
- scaling limit of interacting models in 2d can be studied [Bostelmann-Lechner-M '11]
- connections with noncommutative geometry (in particular with Connes-Higson asymptotic morphisms and KK-theory) can be established [Conti-M, to appear]

Gerardo Morsella (Roma 2)

Operator Alegbras and QFT