Renormalization of Pointlike Quantum Fields from Scaling Algebras

Gerardo Morsella

Scuola Normale Superiore - Pisa

in progress with H. Bostelmann, C. D'Antoni

1st French-Italian Meeting on Noncommutative Geometry

Roma, November 23-25, 2007

Outline

- Introduction
- 2 Background
 - Scaling Algebras
 - Pointlike Fields from Local Algebras
- Scaling Limit of Pointlike Fields
 - Basic Idea
 - Phase Space and Scaling Limit
 - Uniform Operator Product Expansion
 - Renormalization Group
- Summary & Outlook

Introduction

Conventional approach to the Renormalization Group:

- Pass from ϕ to renormalized field $\phi_{\lambda}(x) = Z_{\lambda}\phi(\lambda x)$;
- Renormalization constants Z_{λ} fixed by requiring e.g. $\langle \Omega, \phi_{\lambda}(x) \phi_{\lambda}(y) \Omega \rangle$ has finite limit as $\lambda \to 0$.

Problems:

- many choices of Z_λ: all equivalent?
- why not more general renormalization?
- fields do not have direct physical interpretation.

Algebraic approach [Buchholz-Verch '95]:

- Z_{λ} not needed;
- based only on observables and model independent.

How does it compare to the conventional approach? How can we recover Z_{λ} ?

Scaling Algebras

Data:

- $O \subset \mathbb{R}^4 \to \mathscr{A}(O) \subset B(\mathscr{H})$ net of observable algebras.
- $(\Lambda, x) \rightarrow U(\Lambda, x)$ unitary representation of Poincaré group.
- $\Omega \in \mathcal{H}$ vacuum.

On C*-algebra of bounded functions $\lambda \in \mathbb{R}_+^{\times} \to \underline{A}_{\lambda} \in \mathscr{A}$ define

- $\underline{\alpha}_{(\Lambda,x)}(\underline{A})_{\lambda} := \operatorname{Ad} U(\Lambda, \lambda x)(\underline{A}_{\lambda});$
- $\underline{\delta}_{\mu}(\underline{A})_{\lambda} := \underline{A}_{\lambda\mu};$
- $\bullet \ \underline{\alpha}_g := \underline{\alpha}_{(\mu, \Lambda, x)} := \underline{\delta}_{\mu} \circ \underline{\alpha}_{(\Lambda, x)}.$

Local scaling algebra of O:

$$\underline{\mathfrak{A}}(O) := \left\{ \underline{A} : \underline{A}_{\lambda} \in \mathscr{A}(\lambda O), \lim_{g \to \mathrm{id}} \|\underline{\alpha}_g(\underline{A}) - \underline{A}\| = 0 \right\}$$

Scaling Algebras

m mean on (0,1], i.e. state on $\mathcal{B}((0,1])$,

$$\underline{\omega}_0(\underline{A}) := \mathbf{m}(\lambda \to \omega(\underline{A}_\lambda))$$

scaling limit state on $\underline{\mathfrak{A}}$.

Examples:

- **1** $\mathbf{m}_{\lambda_0}(f) = f(\lambda_0)$, then $\underline{\omega}_0$ vacuum state at scale λ_0 ;
- **2 m** weak* limit point of \mathbf{m}_{λ_0} as $\lambda_0 \to 0$, then $\underline{\omega}_0$ Buchholz-Verch limit state;
- **3 m** invariant: $\mathbf{m}(f(\mu \cdot)) = \mathbf{m}(f)$.

2 and 3 generalizations of limit $\lambda \to 0$: $\mathbf{m}(f) = \lim_{\lambda \to 0} f(\lambda)$ if limit exists.

Scaling Algebras

Theorem

- $(\pi_0, \mathcal{H}_0, \Omega_0)$ GNS representation of $\underline{\omega}_0 \Longrightarrow \mathcal{A}_0(O) := \pi_0(\underline{\mathfrak{A}}(O))''$ Poincaré covariant net in vacuum representation: scaling limit net;
- in case (1 and) $2 \underline{\omega}_0$ is pure, in 3 it is not;
- in case 3 A₀ also dilation covariant.

Example: \mathscr{A} massive free field in d = 3 + 1:

- $\mathscr{A}_0(O) \cong \mathscr{A}_{\mathsf{massless}}(O) \bar{\otimes} \pi_0(\mathfrak{Z}(\underline{\mathfrak{A}}))'';$
- $\underline{\omega}_0$ pure $\implies \mathscr{A}_0(O) \cong \mathscr{A}_{\text{massless}}(O)$;
- $\underline{\omega}_0$ dilation invariant $\Longrightarrow \overline{\pi_0(\mathfrak{J}(\underline{\mathfrak{A}}))''\Omega_0}$ non-separable, $U_0(g)\cong U_{\text{massless}}(g)\otimes U_{\mathfrak{J}}(g)$.

Pointlike Fields from Local Algebras

Basic idea [Haag-Ojima '96]: assume

$$\Sigma_{E,r} = \{ \sigma \upharpoonright \mathscr{A}(O_r) : \sigma \in P(E)B(\mathscr{H})_*P(E) \}$$

is compact and "does not change" for small r

- ⇒ "finite" number of states describe short distance behaviour
- \implies basis (ϕ_j) of $\Sigma_{E,r}^*$ are pointlike fields.

Pointlike Fields from Local Algebras

Quantitative version:

- $\Sigma = B(\mathcal{H})_*$, $C^{\infty}(\Sigma) = \cap_{\ell>0} R^{\ell} \Sigma R^{\ell}$, $R = (1+H)^{-1}$;
- $\|\sigma\|^{(\ell)} = \|R^{-\ell}\sigma R^{-\ell}\|, \ \sigma \in C^{\infty}(\Sigma);$
- $\Xi : \sigma \in C^{\infty}(\Sigma) \to \sigma \in \Sigma$.

Definition ([Bostelmann '05])

 $O \to \mathscr{A}(O)$ satisfies the microscopic phase space condition I if $\forall \gamma > 0, \ \exists \ell > 0, \ \psi : C^{\infty}(\Sigma) \to \Sigma$ of finite rank such that

$$\|\psi\|^{(\ell)} < \infty,$$

$$\|(\Xi - \psi)(\cdot) \upharpoonright \mathscr{A}(O_r)\|^{(\ell)} = o(r^{\gamma}).$$

Pointlike Fields from Local Algebras

rank ψ minimal, $\psi = \sum_{j} \sigma_{j} \phi_{j}$, $\sigma_{j} \in \Sigma$, $\phi_{j} \in C^{\infty}(\Sigma)^{*}$. Define $\Phi_{\gamma} := \operatorname{span}\{\phi_{j}\}$. $\Phi_{\gamma} \subseteq \Phi_{\gamma'}$ if $\gamma < \gamma'$.

Theorem ([Bostelmann '05])

- Φ_{γ} independent of ψ ;
- $\bullet \cup_{\gamma>0} \Phi_{\gamma} = \{\phi : \exists \ell > 0, R^{\ell} \phi R^{\ell} \in \cap_{r>0} (R^{\ell} \mathscr{A}(O_r) R^{\ell})^{-} \}.$

$$\phi(f) = \int dx \, f(x) U(x) \phi U(x)^*, \qquad \phi \in \Phi_{\gamma},$$

Wightman field on $C^{\infty}(H) = \bigcap_{\ell>0} R^{\ell} \mathcal{H}$, and $\phi(f) \eta \mathcal{A}(O)$ [Fredenhagen-Hertel '81].

$$\phi$$
 free: $\Phi_0 = \mathbb{C}\mathbb{1}$, $\Phi_1 = \text{span}\{\mathbb{1}, \phi\}$, $\Phi_2 = \text{span}\{\Phi_1, \partial_\mu \phi, : \phi^2 :\}$,...

According to phase space condition, if $A \in \mathcal{A}(O_r)$:

$$A \sim \sum_j \sigma_j(A)\phi_j$$
 as $r \to 0$.

Can be generalized to unbounded objects by $\varepsilon/3$ argument.

Theorem ([Bostelmann '05])

 $\phi, \phi' \in \Phi_{\gamma}$. For all $\beta > 0$ exist $\sigma_j \in \Sigma$, $\phi_j \in \Phi_{\gamma'}$, $\ell > 0$ such that

$$\|\phi(f)\phi'(f')-\sum_{j}\sigma_{j}(\phi(f)\phi'(f'))\phi_{j}\|^{(\ell)}=o(d^{\beta}),$$

where $d = \max\{\text{diam supp } f, \text{diam supp } f'\}$.

Operator product expansion of $\phi(f)\phi'(f')$.

Basic Idea

- Is the microscopic phase space condition valid for \$\mathscr{A}_0\$?
- Can we recover Z_{λ} such that $\phi_0(x) = \lim_{\lambda \to 0} Z_{\lambda} \phi(\lambda x)$?

$$\psi: C^{\infty}(\Sigma) \to \Sigma$$
 as above of rank 1:

$$\psi = \sigma \phi, \qquad \sigma \in \Sigma, \phi \in \cup_{\gamma > 0} \Phi_{\gamma}.$$

Typically $\|\sigma \upharpoonright \mathscr{A}(\lambda O)\| \to 0$ as $\lambda \to 0$ (e.g. as $O(\lambda)$ for free fields).

Let $\underline{A} \in \underline{\mathfrak{A}}(O)$: $\psi^*(\underline{A}_{\lambda}) = \sigma(\underline{A}_{\lambda})\phi$ should be thought as a field at scale $\lambda \implies$ we can choose $Z_{\lambda} = \sigma(\underline{A}_{\lambda}) \sim \lambda$.

Message: maps ψ are the good scale independent objects.

Phase Space and Scaling Limit

Scaling: $r \to \lambda r$, $E \to \lambda^{-1}E \implies$ phase space condition needs sharpening:

Definition

 $O \to \mathscr{A}(O)$ satisfies the microscopic phase space condition II if $\forall \gamma > 0, \ \exists c, \varepsilon > 0$ and $\psi : C^{\infty}(\Sigma) \to \Sigma$ of finite rank such that for large E, small r,

$$\|\psi \upharpoonright \Sigma_{E}, \mathscr{A}(O_{r})\| \leq c(1 + Er)^{\gamma},$$

 $\|(\Xi - \psi) \upharpoonright \Sigma_{E}, \mathscr{A}(O_{r})\| \leq c(Er)^{\gamma + \varepsilon}.$

Satisfied by free fields in d=3+1 [Bostelmann '00]. Reasonable for asymptotically free theories (logarithmic corrections).

Note: PSC II \implies PSC I.

Phase Space and Scaling Limit

Theorem

Let $O \to \mathscr{A}(O)$ satisfy PSC II, $\underline{\phi}_{\lambda} := \psi^*(\underline{A}_{\lambda}), \underline{A} \in \underline{\mathfrak{A}}(O_r)$.

• π_0 extends to ϕ and $\pi_0(\phi)$ is a local field of \mathscr{A}_0 .

If $\underline{\omega}_0$ pure:

- $O \rightarrow \mathscr{A}_0(O)$ satisfies PSC I;
- $\dim \Phi_{0,\gamma} \leq \dim \Phi_{\gamma}$.

For $\underline{B} \in \underline{\mathfrak{A}}$ with $\underline{B}_{\lambda}\Omega \in P(E/\lambda)\mathcal{H}$:

$$\langle \pi_0(\underline{B})\Omega_0, \pi_0(\underline{\phi})\pi_0(\underline{B})\Omega_0 \rangle = \mathbf{m}(\lambda \to \langle \underline{B}_{\lambda}\Omega, \underline{\phi}_{\lambda}\underline{B}_{\lambda}\Omega \rangle).$$

Uniform Operator Product Expansion

Consider
$$\underline{\alpha}_f \underline{\phi} = \int dx \, f(x) \underline{\alpha}_x(\underline{\phi}).$$

 $\pi_0(\underline{\phi}) \text{ local } \Longrightarrow \pi_0(\underline{\alpha}_f \underline{\phi} \, \underline{\alpha}_{f'} \underline{\phi}') = \alpha_{0,f} \pi_0(\underline{\phi}) \alpha_{0,f'} \pi_0(\underline{\phi}').$
Define $R_{\lambda} = (1 + \lambda H)^{-1}.$

Theorem

For all $\beta > 0$ exist $\sigma_{j,\lambda} \in \Sigma$, $\phi_j \in \Phi_{\gamma'}$, $\ell > 0$ such that

$$\sup_{\lambda} \big\| \underline{R}_{\lambda}^{\ell} \big(\underline{\alpha_f} \underline{\phi_{\lambda}} \, \underline{\alpha_{f'}} \underline{\phi_{\lambda}'} - \sum_{j} \sigma_{j,\lambda} (\underline{\alpha_f} \underline{\phi_{\lambda}} \, \underline{\alpha_{f'}} \underline{\phi_{\lambda}'}) \phi_j \big) \underline{R}_{\lambda}^{\ell} \big\| = o(\mathbf{d}^{\beta}),$$

where $d = \max\{\text{diam supp } f, \text{diam supp } f'\}$.

Therefore OPE terms converge to OPE terms.

Renormalization Group

Renormalization constants:

- Let $\psi = \sum_j \sigma_j \phi_j$, then $\underline{\phi}_{\lambda} = \sum_j \sigma_j (\underline{A}_{\lambda}) \phi_j = \sum_j Z_{j,\lambda} \phi_j$;
- 2-point Wightman functions:

$$\langle \Omega_0, \phi_0(x) \phi_0'(x') \Omega_0 \rangle = \mathbf{m} \Big(\lambda \to \sum_{j,k} Z_{j,\lambda} Z_{k,\lambda}' \langle \Omega, \phi_j(\lambda x) \phi_k(\lambda x') \Omega \rangle \Big);$$

• therefore $Z_{j,\lambda} = \sigma_j(\underline{A}_{\lambda})$ are renormalization constants.

Scaling transformations:

- $(\underline{\delta}_{\mu}\underline{\phi})_{\lambda} = \underline{\phi}_{\mu\lambda} = \sum_{i} Z_{j,\mu\lambda} \phi_{j}$: renormalization group;
- $\underline{\omega}_0$ invariant: $\pi_0(\underline{\delta}_{\mu}\phi) = U_0(\mu)\pi_0(\phi)U_0(\mu)^*$.

Summary & Outlook

Summary:

- no new observable fields appear in the limit;
- multiplicative renormalization obtained in an axiomatic framework;
- scaling of OPE coefficients is some substitute for coupling constant renormalization;
- renormalization group induces dilations in the limit theory.

Outlook:

- Structure of limit theory in general case (in particular for m invariant);
- Extension to charge carrying fields;
- Conditions for asymptotic freedom, completness...